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Abstract: Amaryllidaceae alkaloids (AAs) are a structurally diverse family of alkaloids recognized
for their many therapeutic properties, such as antiviral, anti-cholinesterase, and anticancer properties.
Norbelladine and its derivatives, whose biological properties are poorly studied, are key interme-
diates required for the biosynthesis of all ~650 reported AAs. To gain insight into their therapeutic
potential, we synthesized a series of O-methylated norbelladine-type alkaloids and evaluated their
cytotoxic effects on two types of cancer cell lines, their antiviral effects against the dengue virus
(DENV) and the human immunodeficiency virus 1 (HIV-1), and their anti-Alzheimer’s disease (anti-
cholinesterase and -prolyl oligopeptidase) properties. In monocytic leukemia cells, norcraugsodine
was highly cytotoxic (CC50 = 27.0 µM), while norbelladine was the most cytotoxic to hepatocarcinoma
cells (CC50 = 72.6 µM). HIV-1 infection was impaired only at cytotoxic concentrations of the com-
pounds. The 3,4-dihydroxybenzaldehyde (selectivity index (SI) = 7.2), 3′,4′-O-dimethylnorbelladine
(SI = 4.8), 4′-O-methylnorbelladine (SI > 4.9), 3′-O-methylnorbelladine (SI > 4.5), and norcraugso-
dine (SI = 3.2) reduced the number of DENV-infected cells with EC50 values ranging from 24.1 to
44.9 µM. The O-methylation of norcraugsodine abolished its anti-DENV potential. Norbelladine and
its O-methylated forms also displayed butyrylcholinesterase-inhibition properties (IC50 values rang-
ing from 26.1 to 91.6 µM). Altogether, the results provided hints of the structure–activity relationship
of norbelladine-type alkaloids, which is important knowledge for the development of new inhibitors
of DENV and butyrylcholinesterase.

Keywords: Amaryllidaceae alkaloid; norbelladine; dengue virus; anti-cholinesterase; specialized
metabolism; O-methylation; galanthamine; Alzheimer’s disease; antiviral

1. Introduction

Amaryllidaceae are a family of monocotyledonous plants of the order Asparagales,
which is composed of 1100 species and 75 genera that are found in tropical, subtropical, and
warm regions of the world [1]. For centuries, Amaryllidaceae plant extracts have been recog-
nized worldwide for their varied therapeutic properties, including anti-acetylcholinesterase
(AChE), anti-microbial, and anti-tumor properties [2–5]. Their medicinal potency is mostly
attributed to the presence of specialized metabolites of the alkaloid group, which are named
the Amaryllidaceae alkaloids (AAs) [2,6]. To date, more than 650 AAs have been reported
and classified into norbelladine-, cherylline-, galanthamine-, lycorine-, lycorenine-, crinine-,
narciclasine-, tazettine-, and montanine-type based on the proposed biosynthetic origin of
the ring structure and their carbon skeleton [1,6,7]. All AAs are derived from norbelladine,
which is a common metabolic intermediate formed through the condensation of tyramine
and 3,4-dihydroxybenzaldehyde (3,4-DHBA) [8,9].
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AAs are known to have various pharmacological properties [10]. For example, several
AAs, such as sanguinine and galanthamine (Figure 1), are strong anti-acetylcholinesterase
inhibitors, with the latter being currently used as a treatment for symptoms of Alzheimer’s
disease (AD) [11,12]. Lycorine, like many other AAs, exhibits anticancer (i.e., cytotoxic
activity) [13–17], but also exerts an inhibitory effect against flaviviruses, such as DENV
(dengue virus), and viruses belonging to other families [18–21]. Recently, we demonstrated
that the AAs cherylline, pancracine, haemanthamine, and haemanthidine display antiviral
effects against DENV, and except for cherylline, also against human immunodeficiency
virus (HIV-1) [22,23]. The development of antiviral therapeutics based on AAs may provide
decisive medical solutions to catastrophic pandemics. Since many of these molecules
exert their antiviral action by targeting host factors, they present opportunities to develop
broad-spectrum treatments that are less susceptible to the emergence of drug resistance [24].
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Figure 1. Chemical structures of the molecules used in this study. Amaryllidaceae alkaloid precursors
(3,4-dihydroxybenzaldehyde and tyramine), intermediates (norcraugsodine and norbelladine), their
corresponding O-methylated derivatives (3′-O-methylnorcraugsodine, 3′-O-methylnorbelladine,
4′-O-methylnorcraugsodine, 4′-O-methylnorbelladine, 3′,4-’O-dimethylnorcraugsodine, and 3′,4′-O-
dimethylnorbelladine), and the well-known AAs galanthamine and lycorine.
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To date, few studies have been performed on the biological potential of norbelladine-type
AAs. One study demonstrated that norbelladine itself has slight in vitro anti-inflammatory
and anti-oxidant properties [25]. In another study, synthetically designed complex alka-
loid derivatives of carltonin A and B of the norbelladine-type were shown to exhibit anti-
butyrylcholinesterase (BuChE) and -prolyl oligopeptidase (POP) properties, both of which
are considered interesting targets for AD [26–28]. However, the pharmaceutical properties
of norbelladine-type alkaloids in relation to AD, viral infections, and cytotoxicity remain
largely unknown.

In this study, we investigated the biological activities of norbelladine-type molecules.
Since Amaryllidaceae plants do not accumulate high levels of such metabolites, we report on
the chemical synthesis of norbelladine, norcraugsodine, and their O-methylated derivatives
(i.e., 3′-O-methylnorbelladine, 3′-O-methylnorcraugsodine, 4′-O-methylnorbelladine, 4′-O-
methylnorcraugsodine, 3′,4′-O-dimethylnorbelladine, and 3′,4′-O-dimethylnorcraugsodine)
(Figure 1). We assessed their antiviral potential in cellulo, as well as that of their precursors,
namely, 3,4-dihydroxybenzaldehyde (3,4-DHBA) and tyramine, using propagative DENVGFP
vector and a non-propagative HIV-1GFP vector. We analyzed their cytotoxicity against acute
monocytic leukemia THP-1 cells and hepatocytic-cellular-carcinoma-derived Huh7 cells. We
also measured their anti-AD potential through an assessment of anti-AChE, -BuChE, and -POP
activity. We report for the first time that 3,4-DHBA and O-methylated norbelladine derivatives
inhibited DENV infection and that norbelladine displayed anti-butyrylcholinesterase activity.

2. Results
2.1. Chemical Synthesis

The synthesis of norbelladine and the different methylated analogs was performed
following a two-step reaction sequence reported in the literature for norbelladine [9,25].
Initially, the condensation of the relevant aldehyde with tyramine led to the imide interme-
diates with excellent yields (98% to 100%). Next, simple catalytic hydrogenation allowed
us to generate the final derivatives with yields ranging from 43% to 99%.

2.2. Cytotoxic Assay

Several alkaloids of the Amaryllidaceae family were reported to be cytotoxic [29]. There-
fore, we evaluated the cytotoxic activity of the AA precursors, namely, 3,4-DHBA and tyramine,
and the eight norbelladine-derived molecules on two types of cancer cell lines, including
human monocytic leukemia cells (THP-1) and human hepatocarcinoma cells (Huh7). Tyra-
mine is a natural by-product of the breakdown of the amino acid tyrosine and is found in
plants and animals. As expected for both cell lines, tyramine was not cytotoxic and did not
affect the cell viability, whereas lycorine was cytotoxic [30] at concentrations below 50 µM
(Figure 2, Table 1). For THP-1 cells, norcraugsodine and 3,4-DHBA at 100 µM and norbelladine
and 3′-O-methylnorbelladine at 200 µM were highly cytotoxic, killing a majority of the cells
(Figure 2a). For Huh7 cells, norbelladine, norcraugsodine, 3′,4′-O-dimethylnorbelladine, and
3,4-DHBA at 200 µM were cytotoxic, producing 50% cell death (Figure 2b).

The median cytotoxic concentrations (CC50) that caused a 50% decrease in cell viability
were estimated for all alkaloids reaching this value (Figure 2, Table 1). Norcraugsodine,
3,4-DHBA, norbelladine, and 3′-O-methylnorbelladine were highly cytotoxic to THP-1
cells, with CC50 values ranging from 27.0 µM to 99.0 µM (Table 1). The 3′- and 4′-O-
methylnorcraugsodine, 3′-O-methylnorbelladine, 3′,4′-O-dimethylnorcraugsodine, and
4′-O-methylnorbelladine exhibited only moderate cytotoxicity (<50% of cell death) at
200 µM on THP-1 cells (Figure 2a, Table 1). The norbelladine, norcraugsodine, 3′,4′-O-
dimethylnorbelladine, and 3,4-DHBA were cytotoxic to Huh7 cells (Figure 2b), with CC50
values ranging from 72.6 µM to 173.1 µM (Table 1). The 3′-O-methylnorcraugsodine was
weakly cytotoxic to Huh7 cells at the tested concentrations (Figure 2b). All other tested
molecules were not cytotoxic (Figure 2b; Table 1).
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Figure 2. Cytotoxic effects of norbelladine precursors and their derivatives on Huh7 and THP-1 cells.
To assess the cell viability, the cellular ATP levels were measured on (a) THP-1 and (b) Huh7 cells 72 h
after alkaloid addition at concentrations of 6.25 µM to 200 µM. Lycorine was utilized as a positive
control at concentrations of 0.3 µM to 40 µM. Results were normalized to equivalent concentrations of
DMSO and the x-axis is displayed in log10. DMSO: dimethylsulfoxide; ATP: adenosine triphosphate.

Table 1. EC50, CC50, and SI values of norbelladine precursors and derivatives with antiviral effects.
EC50: median effector concentration; CC50: median cytotoxic concentration; SI: selectivity index.

Alkaloids
EC50

HIV-1
(µM)

CC50
THP-1
(µM)

SI
HIV-1

EC50
DENV
(µM)

CC50
Huh7
(µM)

SI
DENV

Tyramine >200 - >200 - <1.0 >200 - >200 - <1.0
3,4-DHBA 51.5 * 31.65 0.6 24.1 * 173.1 7.2

Norbelladine 50.5 82.2 1.6 50.4 72.6 1.4
Norcraugsodine 55.5 27.0 0.5 37.7 121.8 3.2

3′-O-methylnorcraugsodine 107.2 * >200 >1.9 176.3 * >200 >1.1
3′-O-methylnorbelladine 134.7 * 99.01 0.73 44.9 * >200 >4.5
4′-O-methylnorbelladine 108.3 * >200 >1.8 40.5 * >200 >4.9

4′-O-methylnorcraugsodine >200 - >200 - <1.0 >200 - >200 - <1.0
3′,4′-O-dimethylnorbelladine 98.3 * >200 >2.0 27.5 131.4 4.8

3′,4′-O-dimethylnorcraugsodine >200 - >200 - <1.0 >200 - >200 - <1.0
Raltegravir 0.098 >10 - >102 u.i. u.i. u.i.

Lycorine u.i. 10.7 u.i. 0.090 17.4 193.3

EC50 and CC50 values of antiviral compounds (norbelladine, norcraugsodine, 3′-O-methylnorcraugsodine, 3′-O-
methylnorbelladine, 4′-O-methylnorbelladine, 3′,4′-O-dimethylnorbelladine, and 3,4-DHBA) were calculated using
the QuestGraph IC50 calculator (MLA Quest Graph™ IC50 Calculator, AAT Bioquest, Inc.). SI = CC50/EC50. “-”:
EC50 or CC50 was not achieved. “*”: compound addition did not yield complete viral inhibition. “u.i.”: unidentified.

In summary, 3,4-DHBA, norcraugsodine, and norbelladine were the most cytotoxic to
both types of cell lines, whereas 3′-O-methylnorbelladine displayed cytotoxic specificity to
THP-1, and 3′,4′-O-dimethylnorbelladine to Huh7 cells (Figure 2; Table 1).
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2.3. Antiviral Assay

Several studies shed light on the outstanding antiviral properties of alkaloids extracted
from Amaryllidaceae, such as lycorine, cherylline, haemanthamine, haemanthidine, and
pancracine [17,21,22]. Hence, we measured the antiviral activity of 3,4-DHBA, tyramine,
and the eight norbelladine-derived molecules toward HIV-1GFP and DENVGFP in THP-1
and Huh7 cells, respectively. Infection levels were measured 72 h post-infection, where a
dose-dependent inhibition of HIV-1GFP (Figure 3, Appendix A Figure A1) and DENVGFP
(Figure 4, Appendix A Figure A2) was generated. In addition, the effective concentration
inhibiting infection by 50% (EC50) was calculated, along with the selectivity index (SI) that
was determined by the ratio of CC50 and EC50 (Table 1).
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Figure 3. Antiretroviral effect of norbelladine precursors and derivatives on HIV-1GFP. The antiviral
activities against HIV-1GFP of norbelladine precursors and derivatives were evaluated 72 h post-
infection using THP-1 cells via flow cytometry at concentrations ranging from 6.25 µM to 200 µM.
Infections were performed with non-propagative HIV-1GFP virus at a multiplicity of infection (MOI)
of 0.1. Raltegravir served as a positive control and DMSO as a negative control at concentrations
equivalent to the tested alkaloids. Results were normalized to the value with HIV-1GFP infection
without treatment and the x-axis is displayed as log10.
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Figure 4. Antiflaviviral effects of norbelladine precursors and derivatives on DENVGFP. The antiviral
activities against DENVGFP of norbelladine precursors and derivatives were evaluated 72 h post-
infection using Huh7 cells via flow cytometry at concentrations ranging from 6.25 µM to 200 µM.
Infections were performed with propagative DENVGFP virus at an MOI of 0.025. Lycorine was used
as a positive control and DMSO as a negative control at concentrations equivalent to the tested
alkaloids. Results were normalized to the value of DENVGFP infection without treatment and the
x-axis is displayed as log10.
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2.3.1. Inhibition of HIV-1GFP

Norcraugsodine, 3,4-DHBA, and norbelladine prevented HIV-1 infection in most cells
at 100 µM, while their methylated forms and tyramine were mostly inactive. At 200 µM, all
three compounds and 3′-O-methylnorcraugsodine impeded HIV-1 infection (from 94% to
99% inhibition) (Figure 3, Appendix A Figure A1), with EC50 values ranging from 50.5 µM
to 107.2 µM, and selectivity indices (SIs) ranging from 0.5 to 1.6 (Table 1). Hence, at these
concentrations, AAs were also associated with significant toxicity, raising concerns about
the specificity of their antiretroviral properties.

2.3.2. Inhibition of DENVGFP

3,4-DHBA, 3′,4′-O-dimethylnorbelladine, norcraugsodine, 4′-O-methylnorbelladine,
3′-O-methylnorbelladine, and norbelladine showed strong inhibition of DENVGFP infection
at 50, 100, and 200 µM. Huh7 cells treated with 200 µM of these compounds resulted in an
89% to 100% decrease in infection, with the EC50 values ranging from 24.1 µM to 50.4 µM,
and SI ranging from 1.5 to 6.2 (Table 1, Figure 4; Appendix A Figure A2). 3,4-DHBA,
4′-O-methylnorbelladine, 3′,4′-O-dimethylnorbelladine, and 3′-O-methylnorbelladine were
the most selective with SI > 4.5. The other alkaloids tested showed little or no specific
antiviral effect against DENVGFP infections.

2.4. Choline Esterase and Prolyloligopeptidase Inhibitory Effect

Enzymatic inhibitions were first trialed using 1 mM of compounds in duplicates
(Appendix A Table A1). Further experiments were carried out only on selected active
molecules. Of all the compounds tested, only norcraugsodine, 3′-O-methylnorcraugsodine,
and 3′-O-methylnorbelladine inhibited POP activity, where norcraugsodine was the most
potent with IC50 = 463.8 µM (Figure 5a). Among all the AAs and precursors, only
3′,4′-O-dimethylnorbelladine exhibited a moderate level of inhibition of AChE, with
IC50 = 319.6 µM (Figure 5b). Among the 10 molecules tested, only norbelladine and its
methylated forms significantly blocked BuChE activity using both acetylthiocholine and
butyrylthiocholine as the substrate (Figure 5c,d). Norbelladine was the most potent, with
IC50 values of 33.26 µM and 26.13 µM, respectively (Appendix A Table A1). The addition
of two methyl groups in the 3′- and 4′-O positions lead to a ~3-fold decrease in inhibition.

2.5. Molecular Docking of Norbelladine Derivatives with BuChE

To better understand the interactions between the norbelladine derivatives and BuChE,
we performed docking using the crystal structure of human BuChE (PDB: 4BDS) (Table 2,
Figure 6). The active site of BuChE is located at the bottom of a profound gorge (20 Å)
comprising six conserved aromatic residues and six aliphatic (Leu286 and Val288) and polar
residues [28]. It includes a catalytic triad (Ser198, Glu325, and His438) that mediates the choline
esters hydrolysis; an anionic site (Trp82, Tyr128, Phe329), which is essential for the reaction;
and an oxyanion hole (Gly116, Gly117, Ala199) that stabilizes the transition state through
hydrogen-bond interactions. Meanwhile, the acyl pocket (Ala199, Leu286, and Val288) is
responsible for substrate specificity [31], and the peripheral anionic site (PAS or P-site) (Asp70,
Tyr332) at the entry of the active gorge, which interacts with the cationic substrate guiding
them down the gorge to the catalytic triad, is implicated in interactions with beta-amyloid
and in the binding with many inhibitors [32,33] (Figure 6). The docking scores were very
similar for norbelladine and its derivatives, ranging from −6.68 to −7.03 kCal/mol (Table 2).
All the molecules interacted with the key residue of the anionic site Trp82. The hydrophobic
and H-bonds that interacted with Trp82 were stabilized by aromatic π-π stacking in the case
of norbelladine and 3′-O-methylnorbelladine, which is consistent with other inhibitors, such
as tacrine [34], while the docking conformation of the 4′-O-methylated compounds did not
allow for such an interaction. In the case of norbelladine and 3′-O-methylnorbelladine, the
interaction with BuChE was also supported with H-bonds with PAS amino acids (Tyr332 and
Asp70, respectively), and with other binding site residues (Tyr440 for norbelladine, Thr120 and
Trp430 for 3′-O-methylnorbelladine). In addition, 3′-O-methylnorbelladine was H-bonded to the
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catalytic residue His438. Thus, the docking results were consistent with inhibition mechanisms
like those of other previously reported inhibitor molecules, such as tacrine, and possibly reflected
a stronger and more stable inhibition potential for norbelladine and 3′-O-methylnorbelladine
compared with the 4′-O-methylated norbelladine derivatives (Figures 5 and 6).
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dine, 3′-O-methylnorcraugsodine, and 3′-O-methylnorbelladine. (b) Acetylcholinesterase inhibition
of 3′,4′-O-methylnorbelladine using acetylthiocholine as the substrate. (c) Butyrylcholinesterase
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(d) Butyrylcholinesterase inhibition of norbelladine and derivatives using acetylthiocholine (ATCh)
as the substrate. Galanthamine (10 µM) was used as the positive control for the AchE assays, while
rivastigamine (2 mM) was used for the BuChE assays (100% inhibition not shown on the graph).

Table 2. Predictions of norbelladine derivatives’ interactions with butyrylcholinesterase.

Score
(kCal/mol) Interaction

H-bonds Hydrophobic π stack
Norbelladine −6.6829 Trp82, Tyr332, Tyr440 Trp82, Tyr440 Trp82

3′-O-Methylnorbelladine −6.8174 Asp70, Trp82, Thr120, Trp430, His438 Trp82 Trp82
4′-O-Methylnorbelladine −6.8119 Trp82 Trp82 n.d.

3′,4′-O-Dimethylnorbelladine −7.0368 Thr120 Trp82, Tyr440 n.d.

n.d.: none detected.
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triad is in yellow, pre-anionic site (PAS) is in green, anionic site is in pink, oxyanion pocket is in
turquoise, and the acyl pocket is in dark grey). (a) Superimposition of docked ligands in the BuChE
active site (norbelladine is in green, 3′-O-methylnorbelladine is in purple, 4′-O-methylnorbelladine is
in yellow, and 3′,4′-O-dimethylnorbelladine is in turquoise). (b) Non-covalent (H-bond, hydrophobic,
and P-stack) interactions of norbelladine with Trp82 from the anionic site, Tyr332 from the PAS, and
Tyr440 from the binding site. (c) Non-covalent interactions of 3′-O-methylnorbelladine with W82
from the anionic site, Asp70 from the PAS, His438 from the catalytic triad, and Trp430 from the
binding site. (d) Non-covalent interactions of 4′-O-methylnorbelladine with Trp82 from the anionic
site. (e) Non-covalent interactions of 3′,4′-O-dimethylnorbelladine with Trp82 from the anionic site
and Thr120 and Tyr440 from the binding site.

3. Discussion

Norbelladine and its O-methylated forms are mandatory intermediates in the biosyn-
thesis of Amaryllidaceae alkaloids [8,35], yet their biological properties remain poorly
studied. Norbelladine itself was shown to possess anti-inflammatory and cyclooxygenase
inhibitory effects [25], while 3′-O-methylnorbelladine and a few complex synthetic deriva-
tives of norbelladine and belladine were shown to display anti-cholinesterase activity [26].

We obtained the precursor imines norcraugsodine, 3′-O-methylnorcraugsodine, 4′-O-
methylnorcraugsodine, and 3′,4′-O-dimethylnorcraugsodine, from which we made norbella-
dine [9], 3′-O-methylnorbelladine, 4′-O-methylnorbelladine, and 3′,4′-O-dimethylnorbelladine
via catalytic hydrogenation. Their chemical synthesis was a straightforward process and the
products were generally obtained in good to excellent yields.

Cytotoxic assays revealed that 3,4-DHBA, norcraugsodine, and norbelladine were the
most cytotoxic compounds, both in monocytic leukemia THP-1 cells and hepatocarcinoma
Huh7 cells (Figure 2, Table 1). Interestingly, the 3′-O-methylnorbelladine was selectively
toxic to THP-1 cells, while 3′,4′-O-dimethylnorbelladine was selectively toxic to Huh7,
hinting toward different mechanisms of cytotoxicity between the two cell lines.

Norbelladine, norcraugsodine, and 3,4-DHBA also strongly impeded HIV-1GFP and
DENVGFP infections (Table 1, Figures 3 and 4). The concentrations required to inhibit HIV-1
infection were cytotoxic to THP-1 cells (Table 1, Figure 3). Hence, the decrease in HIV-1
infection caused by these alkaloids was more consistent with progressive depletion of cell
viability rather than a specific antiviral effect. In the case of DENV, viral inhibition was more
specific, occurring at non-cytotoxic doses. Some non-cytotoxic alkaloids, such as 3′- and 4′-
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O-methylnorbelladine, also efficiently inhibited DENVGFP replication at >100 µM. The 3′-O-
methylnorcraugsodine, 4′-O-methylnorcraugsodine, and 3′,4′-O-dimethylnorcraugsodine
showed little or no antiviral activity in contrast to norcraugsodine, revealing the importance
of O-methylation to the toxic and antiviral nature of alkaloids (Table 1, Figure 4).

Several studies demonstrated the antiviral effect of AAs against several types of
viruses [18–23,36–38]. Here, the virus used to perform DENVGFP infections corresponded
to dengue serotype 2. Recently, we also uncovered that the Amaryllidaceae alkaloids
haemanthamine, pancracine, and haemanthidine, which were isolated from Pancratium
maritimum, inhibited DENV-2 infection [23]. This study added to the growing evidence
that AA structures could be optimized to develop potent inhibitors against this potentially
fatal disease. Future studies should address the potency of these compounds toward other
serotypes (DENV-1, -3, and -4), and other flaviviruses [39,40].

Investigation of the inhibitory properties of alkaloids on POP, AChE, and BuChE activ-
ity confirmed that the O-methylation and reduction state of AAs significantly affected their
potencies. POP is a post-proline cleaving enzyme of the central nervous system, whose al-
teration is implicated in memory loss; Alzheimer’s, Parkinson’s, and Huntington’s diseases;
and other neurodegenerative diseases [41]. Norcraugsodine, 3′-O-methylnorcraugsodine,
and 3′-O-methylnorbelladine were the only compounds to inhibit POP at high concen-
trations >500 µM (Figure 5). Mamun et al. also reported limited efficiency of synthetic
norbelladine and belladine derivatives to inhibit this enzyme [26].

AChE activity is dominant in regulating acetylcholine levels in healthy brains, while
in an Alzheimer’s disease (AD) patient’s brain, the activity of BuChE is increased [42].
Thus, both enzymes are considered major therapeutic targets that can be used to fight
AD. With the exception of 3′,4′-O-dimethylnorbelladine, none of the molecules inhibited
AChE activity in our experiments. The use of DMSO as a solvent could have masked their
activity up to a certain level. However, norbelladine and O-methylated derivatives consis-
tently inhibited the BuChE-catalyzed hydrolysis of both butyrylcholine and acetylcholine.
Norbelladine was the most potent, while there was a 3-fold loss of inhibition in the case
of 3′,4′-O-dimethylnorbelladine. These results, which were in line with Mamun et al.’s
screening [26], emphasized the interest in norbelladine as a backbone when developing
butyrylcholinesterase inhibitors.

BuChE is a serine hydrolase enzyme that can hydrolyze several choline esters, includ-
ing acetylcholine, succinylcholine, and butyrylcholine [28]. Although its role is not fully
understood, its levels are increased in AD patients and it could promote amyloid plaque
formation [43]. The active site of this enzyme consists of (1) the catalytic site composed
of Ser198, His438, and Glu325 [44]; (2) an acyl pocket with Ala199, Leu286, and Val288
interacting with an acyl group of the esters [45]; (3) an anionic site with Trp82 that binds
to a quaternary nitrogen of choline; and (4) an enzyme gorge lip consisting of Asp70 and
Tyr332 guiding substrate toward the catalytic site [46].

In a study conducted by Nachon et al. (2013), human BuChE was crystalized in
a complex with tacrine, which is a strong inhibitor of BuChE. According to this study,
aromatic π-π stacking between tacrine and Trp82 is essential for its inhibitory effect [47].
A similar interaction was predicted by docking norbelladine and its O-methylated forms
with BuChE, which was consistent with the relatively strong inhibitory effect observed in
our in vitro enzymatic assays (Figure 6). Furthermore, an additional interaction between
Tyr332 and the hydroxyl group of norbelladine ring was obtained in our model that can
potentially reduce the accessibility of BuChE to the substrate since Tyr332 was proposed
to direct the substrate to the active site of the enzyme. It should be noted that a weak
interaction between Tyr332 and tacrine was also observed [47].

4. Materials and Methods
4.1. Chemical Synthesis and Purification of Alkaloids

The starting material, reactant, and solvents were obtained commercially and used as
such or purified and dried using standard methods [48]. The infrared spectra were recorded
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on a Nicolet Impact 420 FT-IR spectrophotometer. Nuclear magnetic resonance (NMR)
spectra were recorded on a Varian 200 MHz NMR apparatus. Samples were dissolved in
dimethyl sulfoxide (DMSO)-d6 for data acquisition using the residual solvent signal as an
internal standard (δ 2.49 ppm for 1H NMR and 39.95 ppm for 13C NMR). Chemical shifts (δ)
are expressed in parts per million (ppm), whereas the coupling constants (J) are expressed
in hertz (Hz). Multiplicities are described using the following abbreviations: s for singlet, d
for doublet, t for triplet, m for multiplet, and bs for broad singlet.

Two-step synthesis of norbelladine and methylated analogs:
Norcraugsodine, norbelladine, 3′-O-methylnorcraugsodine, 3′-O-methylnorbelladine,

4′-O-methylnorcraugsodine, 4′-O-methylnorbelladine, 3′,4′-O-dimethylnorcraugsodine,
and 3′,4′-O-dimethylnorbelladine were obtained using organic synthesis following a two-
step reaction sequence as described below. The products were characterized via infrared
(IR) spectroscopy, as well as proton (1H NMR) and carbon nuclear magnetic resonance (13C
NMR) spectroscopy.

Step 1: General procedure for the preparation of the imine intermediates.
An equimolar quantity of the relevant benzaldehyde and tyramine were added as

powders to a flask containing dichloromethane (20 mL). The solution was stirred gently
overnight (about 12 h) at room temperature to yield the imine intermediate. The solvent was
evaporated under reduced pressure using a rotatory evaporator, followed by mechanical
pumping to remove the residual solvent and water. The resulting imines were obtained in
excellent yields and were sufficiently pure to be used as such in the hydrogenation step.

Norcraugsodine: Step 1 with 3,4-dihydroxybenzaldehyde (537 mg, 3.88 mmol), tyra-
mine (533 mg, 3.88 mmol), and dichloromethane (20 mL). Norcraugsodine (0.99 g, 99%). IR
(cm−1): 3345 (OH), 3038 (aromatic), and 1648 (C=N); 1H NMR (200 MHz, DMSO-d6) δ: 7.98
(1H, s, CH imine), 7.15 (1H, d, J = 2.0 Hz, CH-Ar), 6.99 (2H, d, J = 8.6 Hz, CH-Ar), 6.90 (1H,
dd, J1 = 2 Hz and J2 = 8.2 Hz, CH-Ar), 6.65 (1H, d, J = 8.6 Hz, CH-Ar), 6.63 (2H, d, J = 8.6 Hz,
CH-Ar), 3.63 (2H, t, J = 7.2 Hz, CH=NCH2CH2), 2.73 (2H, t, J = 7.4 Hz, CH=NCH2CH2);
13C NMR (200 MHz, DMSO-d6) δ: 160.9, 155.9, 149.5, 146.1, 130.5, 130.1, 127.8, 121.9, 115.8,
115.4, 113.9, 62.4, and 36.8.

3′-O-methylnorcraugsodine: Step 1 with 4-hydroxy-3-methoxybenzaldehyde (vanillin)
(561 mg, 3.68 mmol), tyramine (506 mg, 3.68 mmol), and dichloromethane (20 mL). 3′-O-
Methylnorcraugsodine (0.98 g, 98%). IR (cm−1): 3008 (OH) and 1639 (C=N); 1H NMR
(200 MHz, DMSO-d6) δ: 8.37 (1H, s, CH imine), 6.99 (4H, m, CH-Ar), 6.69 (3H, m, CH-Ar),
3.73 (2H, m, CH=NCH2CH2 and 3H, s, OMe), 2.79 (2H, t, J = 7.03 Hz, CH=NCH2CH2); 13C
NMR (200 MHz, DMSO-d6) δ: 166.4, 156.1, 152.6, 148.6, 130.1, 129.7, 123.5, 118.5, 117.8, 115.5,
114.9, 59.9, 56.1, and 36.3.

4′-O-methylnorcraugsodine: Step 1 with 3-hydroxy-4-methoxybenzaldehyde (iso-
vanillin) (561 mg, 3.68 mmol), tyramine (506 mg, 3.68 mmol), and dichloromethane (20 mL).
4′-O-methylnorcraugsodine (1.00 g, 100%). IR (cm−1): 3508, 2900 (OH), and 1638 (C=N); 1H
NMR (200 MHz, DMSO-d6) δ: 8.8 (1H, OH), 8.04 (1H, s, CH imine), 7.19 (1H, d, J = 1.56 Hz,
CH-Ar), 6.97 (4H, m, CH=Ar), 6.65 (2H, d, J = 8.2 Hz, CH-Ar), 3.77 (3H, s, OMe), 3.64 (2H,
t, J = 7.03Hz, CH=NCH2CH2), and 2.74 (2H, t, J = 7.03 Hz, CH=NCH2CH2); 13C NMR
(200 MHz, DMSO-d6) δ: 160.8, 155.9, 150.4, 147.1, 130.5, 130.1, 129.8, 121.2, 115.4, 113.6,
111.9, 62.8, 55.9, and 36.7.

3′,4′-O-dimethylnorcraugsodine: Step 1 with 3,4-dimethoxybenzaldehyde (582 mg,
3.50 mmol), tyramine (481 mg, 3.50 mmol), and dichloromethane (20 mL). 3′,4′-O-dimethyl-
norcraugsodine (1.00 g, 100%); IR (cm−1): 2938 (OH) and 1638 (C=N); 1H NMR (200 MHz,
DMSO-d6) δ: 9.05 (1H, OH), 8.13 (1H, s, CH imine), 7.32 (1H, s, CH-Ar), 7.15 (1H, d,
J = 7.81 Hz, CH-Ar), 6.99 (3H, m, CH-Ar), 6.66 (2H, d, J = 8.2 Hz, 3.77 (6H, s, 2 x OMe), 3.67
(2H, t, J = 7.03 Hz, CH=NCH2CH2), and 2.77 (2H, t, J = 7.03 Hz, CH=NCH2CH2); 13C NMR
(200 MHz, DMSO-d6) δ: 160.7, 155.9, 151.4, 149.4, 130.4, 130.1, 129.6, 122.8, 115.4, 111.6,
109.4, 62.9, 55.9, 55.8, and 36.7.

Step 2: General procedure for the preparation of the final amine products.
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The relevant imine was dissolved in a mixture of ethylacetate/methanol (9:1, 10 mL)
and hydrogenated to the amine using 30 mol% palladium on carbon (Pd/C 10%) under
a H2 atmosphere using a balloon. The hydrogen was bubbled three times (t = 0, 30, and
60 min) during the hydrogenation process. The mixture was agitated for 2 to 3 h (or until
the disappearance of the starting material via TLC) and then filtered on a silica gel using
ethylacetate/methanol (4:1 mixture) to remove the Pd/C. The solvent was evaporated
under reduced pressure using a rotatory evaporator, followed by mechanical pumping to
yield the desired amine. The final amines were obtained in yields ranging from 43% to 98%.

Norbelladine: Step 2 with norcraugsodine (150 mg, 0.58 mmol), under a H2 atmosphere,
10% Pd/C (40 mg), and ethyl acetate/methanol (10 mL). Norbelladine (130 mg, 86%). IR
(cm−1): 3021 (-OH and NH); 1H NMR (200 MHz, DMSO-d6) δ: 6.94 (2 H, d, J = 8.6 Hz,
CH-Ar), 6.63 (4 H, m, CH-Ar), 6.52 (1H, dd, J1 = 1.7 Hz and J2 = 7.7 Hz, CH-Ar), 3.49 (2H, s,
Ar-CH2-NH), and 2.58 (4 H, m, NH-CH2CH2-Ar); 13C NMR (200 MHz, DMSO-d6) δ: 155.8,
145.4, 144.3, 132.1, 130.9, 129.8, 119.2, 116.0, 115.6, 115.5, 53.1, 51.1, and 35.4.

3′-O-methylnorbelladine: Step 2 with 3′-O-methylnorcraugsodine (182.5 mg, 0.67 mmol),
under H2 atmosphere, 10% Pd/C (40 mg), and ethyl acetate/methanol (10 mL). 3′-O-methylnorb-
elladine (182.5 mg, 99%). IR (cm−1): 2934 (OH and NH); 1H NMR (200 MHz, DMSO-d6) δ:
6.98–6.65 (7H, m, CH-Ar), 3.81 (2H, s, Ar-CH2-NH), 3.71 (3H, s, OMe), and 2.64 (4H, m, NH-
CH2CH2-Ar); 13C NMR (200 MHz, DMSO-d6) δ: 160.8, 152.7, 151.8, 134.8, 134.6, 129.1, 126.0,
123.2, 120.3, 116.4, 60.8, 55.2, 55.1, and 39.4.

4′-O-methylnorbelladine: Step 2 with 4′-O-methylnorcraugsodine (266 mg,), under H2
atmosphere, 10% Pd/C (40 mg), and ethyl acetate/methanol (10 mL). 4′-O-methylnorbelladine
(114 mg, 43%). IR (cm−1): 2989 (OH and NH); 1H NMR (200 MHz, DMSO-d6) δ: 6.96–6.62 (7H,
m, CH-Ar), 3.71 (3H, s, OMe), 3.55 (2H, s, Ar-CH2-NH), and 2.60 (4H, br s, NH-CH2CH2-Ar);
13C NMR (200 MHz, DMSO-d6) δ: 155.9, 146.8, 146.7, 133.6, 130.7, 129.8, 119.0, 115.9, 115.5,
112.4, 56.1, 52.9, 51.0, and 35.3.

3′,4′-O-dimethylnorbelladine: Step 2 with 3′,4′-O-dimethylnorcraugsodine (404 mg,
1.41), under H2 atmosphere, 10% Pd/C (70 mg), and ethyl acetate/methanol (10 mL).
3′,4′-O-dimethylnorbelladine (400 mg, 98%). IR (cm−1): 3261 (OH) and 2953 (OH and NH));
1H NMR (200 MHz, DMSO-d6) δ: 6.97–6.55 (7H, m, CH-Ar), 3.69 (6H, s, OMe), 3.60 (2H, br
s, Ar-CH2-NH), and 2.61 (4H, br s, NH-CH2CH2-Ar); 13C NMR (200 MHz, DMSO-d6) δ:
155.9, 149.0, 147.9, 133.9, 130.9, 129.8, 120.2, 115.4, 112.1, 111.9, 55.9, 55.8, 53.0, 51.1, and 35.4.

4.2. Preparation of Lycorine, 3,4-DHBA, Tyramine, and other Commercial Inhibitor Stocks

Lycorine was isolated from Crinum jagus according to the method reported in [49]
and was provided by Antonio Evidente (Universita di Napoli Federico II, Naples, Italy).
3,4-DHBA (purity: 97%, formula: C7H6O3, molar mass: 138.12, CAS number: 139-85-
5) was obtained from Acros Organics. Tyramine (purity: ≥98%, formula: C8H11NO,
molar mass: 137.18, CAS number: 51-67-2) was obtained from Sigma Aldrich. Raltegravir
(purity: 99.85%, formula: C20H20FN6O5K, molar mass: 482.52, CAS number: 871038-
72-1) was obtained through the NIH HIV Reagent Program, Division of AIDS, NIAID
(Isentress; MK-0518). Each compound was dissolved in dimethylsulfoxide (DMSO) at a
final concentration of 100 mM and stored at −20 ◦C until subsequent use. Rivastigmine
and galanthamine hydrobromide were purchased from Millipore Sigma (Sigma-Aldrich,
Oakville, ON, Canada) and solubilized in water at 20 mM just before the experiments.

4.3. Cell Lines and Culture

The human hepatocarcinoma Huh7 cell line was kindly provided by Hugo Soudeyns
(University of Montréal, Montréal, QC, Canada). Huh7, Crandell-Rees Feline Kidney Cell
(CRFK), and Vero cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin solution
(all from Wisent, Inc., Saint-Jean-Baptiste, QC, Canada). The human leukemia monocytic
THP-1 cell line was maintained in Roswell Park Memorial Institute (RPMI) medium sup-
plemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin solution (all
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from Wisent, Inc., Saint-Jean-Baptiste, QC, Canada). All cell lines were kept in an incubator
at 37 ◦C and 5% CO2.

4.4. Cytotoxicity Assay

Cytotoxicity assays of norbelladine and its derivatives were performed on Huh7 and
THP-1 cells by measuring ATP levels using the Cell-Titer GLO assay kit (Promega, Madison,
WI, USA). Briefly, 7.5 × 103 Huh7 cells/well or 2 × 104 THP-1 cells/well were plated in black
96-well plates and incubated at 37 ◦C for 24 h. The next day, precursors, norbelladine, its
derivatives, DMSO, and lycorine were serially diluted by a factor of 2 in DMEM complete
medium (for Huh7) or RPMI complete medium (for THP-1) at room temperature. Each
dilution was added to the cell plates to obtain final concentrations of 6.25 µM to 200 µM for
alkaloids and DMSO, and 0.39 µM to 50 µM for lycorine. DMSO was used as a negative
control, while lycorine was used as a positive control since its cytotoxic effect was previously
demonstrated [50]. The plates were then incubated at 37 ◦C and 5% CO2 for 72 h. Cell-Titer
GLO reagent was added to the plates previously equilibrated to room temperature. The plates
were then mixed on an orbital shaker for 2 min and incubated for 10 min at room temperature.
The luminescence signal was measured with a microplate spectrophotometer (Synergy H1,
Biotek, Dorval, QC, Canada). Viability percentages were obtained by calculating the ratio of
the signal corresponding to each alkaloid concentration to the signal of the equimolar DMSO
control. All experiments were performed at least twice. Median cytotoxic concentrations
(CC50) were calculated using QuestGraph IC50 calculator software (MLA Quest Graph™ IC50
Calculator, AAT Bioquest, Inc., Sunnyvale, CA, USA).

4.5. Viral Vectors

To investigate the antiviral effect of norbelladine and its derivatives, we used a
dengue virus propagative vector (DENVGFP) and a non-propagative human immunod-
eficiency virus (HIV)-1 pseudotyped VSV-G vector (HIV-1GFP), both of which encoded
green fluorescent protein (GFP). The plasmid used to obtain the DENVGFP vector (pFK-
DVs-G2A) was provided by Ralf Bartenschlager (Heidelberg University, Heidelberg, Ger-
many) and Laurent Chatel-Chaix (Institut National de la Recherche Scientifique, Laval, QC,
Canada) [22,51]. The 2 plasmids used to obtain the HIV-1GFP vector were PMD2.G and
pNL4-3-GFP∆Env∆Nef [52]. For DENVGFP, viral titer was measured using a plaque assay
in Vero cells, as described in [53]. For HIV-1GFP, the viral titer was obtained by measuring
the infectivity of serially diluted vectors in CRFK cells, as described in [54].

4.6. Antiviral Assays

Briefly, 7.5 × 103 Huh7 cells/well or 2 × 104 THP-1 cells/well were plated in 96-well
plates at 37 ◦C for 24 h. The next day, norbelladine and its derivatives, as well as the
DMSO-dissolved lycorine (Huh7) or DMSO-dissolved raltegravir (THP-1), were serially
diluted by a factor of 2 in DMEM or RPMI medium, respectively. Each dilution was added
to the cell plates to obtain final concentrations of 1.56 µM to 200 µM for alkaloids and
matched concentrations of DMSO, and 0.05 µM to 6.4 µM for lycorine or 0.078 µM to
10 µM for raltegravir. Lycorine and raltegravir were used as DENV and HIV-1 inhibitor
controls, respectively [18,55]. DENVGFP and HIV-1GFP were then added at multiplicities
of infection (MOIs) of 0.025 and 0.1, respectively. Plates were placed in an incubator
at 37 ◦C and 5% CO2 for 72 h. Afterward, the cells were fixed in 3.7% formaldehyde
and the percentage of infection was measured using flow cytometry with an FC500 MPL
cytometer (Beckman Coulter, Inc., Brea, CA, USA). Data analysis was performed using
Flowjo software (BD, FlowJo LLC, Ashland, OR, USA). All experiments were performed at
least twice. EC50 values were calculated using QuestGraph IC50 calculator software (MLA
Quest Graph™ IC50 Calculator. AAT Bioquest, Inc. https://www.aatbio.com/tools/ic50-
calculator (accessed on 1 July 2022)).

https://www.aatbio.com/tools/ic50-calculator
https://www.aatbio.com/tools/ic50-calculator
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4.7. Anti-acetylcholinesterase (AChE) and -Butyrylcholinesterase (BuChE) Activity

Pharmacological properties specific to AD were tested first on AChEs (electric eel)
according to the kit (ab138871, Abcam) that provides a colorimetric measure of enzyme
activity and inhibition. Briefly, the reaction was performed in a final volume of 100 µL in
96-well microplates. A preliminary screen to identify the most potent AChE inhibitors was
performed. For this, DMSO-dissolved test compounds were added to a final concentra-
tion of 1 mM (1% DMSO) in duplicates. Next, a 5 µL reaction mixture containing equal
amounts of acetylthiocholine (20X) and DTNB (20X) was added to each well. Ultimately,
the enzyme solution was added to a final concentration of 0.25 U/mL and the absorbance
was measured at 412 nm in kinetic mode for 10 min using a microplate reader (Synergy
H1, Biotek, Dorval, QC, Canada). The same procedure was utilized for the BuChE (equine,
Sigma-Aldrich) activity test, except that the enzyme concentration was 2 U/mL per reac-
tion. DTNB (Bis(3-carboxy-4-nitrophenyl) disulfide, Ellman’s Reagent), acetylthiocholine
iodide, and butyrylthiocholine iodide were purchased from Sigma-Aldrich (Oakville, ON,
Canada). Galanthamine (10 µM) and rivastigamine (2 mM) were used as positive controls
for the AChE and BuChE assays, respectively. Molecules showing inhibition during prelim-
inary screenings were selected for further assessment of IC50 values using serially diluted
concentrations. Experiments were performed at least twice. Inhibition was calculated as
follows [26]:

I = 100 × (1 − ∆i/∆e)

where ∆i is the difference in the absorbance between two time points in the presence of the
inhibitor, and ∆e is the difference in the absorbance using two time points in presence of
DMSO or an appropriate solvent.

4.8. Prolyloligopeptidase (POP) Inhibition Assay

POP enzyme activity was measured using the Fluorogenic POP Assay Kit (BPS Bio-
science Inc., San Diego, CA, USA). The reaction was carried out in a final volume of 50 µL in
a low-binding NUNC microtiter plate. All compounds were tested at a final concentration
of 250 µM in duplicate. A DPP substrate was added to a final concentration of 2.5 µM and
the POP enzyme solution was subsequently added to a final concentration of 1 ng/µL.
Optical densities at 440 nm were recorded using a microplate reader (Synergy H1, Biotek,
QC, Canada).

4.9. Docking of Norbelladine Derivatives with BuChE

Docking was performed using the crystal structure of human BuChE in a complex with
tacrine (PDB: 4BDS) using MOE 2020.09 software (Chemical Computing Group). Tacrine
was removed. Structure issues were corrected using the structure preparation tool and
amino acids were protonated using the protonate3D tool. Ligands were protonated at
pH = 7 using the protomer option. Ligands were protonated at pH = 7 using the protomers
tool. The active site (Asn68, Ile69, Asp70, Gln71, Ser72, Gly78, Ser79, Trp82, Tyr114, Gly115,
Gly116, Gly117, Gln119, Thr120, Gly121, Thr122, Leu125, Tyr128, Glu197, Ser198, Ala199,
Trp231, Glu276, Ala277, Val280, Gly283, Thr284, Pro285, Leu286, Ser287, Val288, Asn289,
Phe290, Ala328, Phe329, Tyr332, Phe398, Trp430, Met437, His438, Gly439, Tyr440, Ile442)
was predicted using the site finder tool of the MOE software and validated with literature
data. Dummy atoms across the active site were created and used as docking sites. Water
and solvent molecules were removed, residues further than 8 Å from dummy atoms were
fixed, and active site residues were tethered using the QuickPrep default parameters. The
triangle matcher method was used to place ligands in the active site using the London dG
score with 200 poses, and an induced fit was used as a refinement option with 10 poses
and the GBVI/WSA score. The first pose of the most abundant configuration was chosen
to be conserved for the ligand–protein interaction analysis. This corresponded to the 1st
pose for all ligands except 3′,4′-O-methylnorbelladine, for which the 1st pose displayed a
flipped structure; hence, the 2nd pose was selected. The Protein–Ligand Interaction Profiler
(PLIP) was used to analyze the interaction of the ligands with the binding site following
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the docking procedure [56]. Pymol (Schrödinger) was used to visualize and present the
PLIP results.

4.10. Statistical Analysis

All the analyses and related graphs were performed and produced, respectively, using
GraphPad Prism version 8.0.0 (GraphPad Software, San Diego, CA, USA).

5. Conclusions

In summary, precursors and norbelladine derivatives did not exhibit antiviral effects
against HIV-1GFP infections. However, they did possess appreciable inhibitory activity
against DENVGFP infections and butyrylcholinesterase.

The antiviral and inhibitory activities detected in this study were detected at doses
associated with some cytotoxicity. These compounds should be optimized to increase
their selectivity index. In future studies, viral targets should be identified to ascertain
the mechanism of the compounds’ antiviral activity. This would enable structure–activity
relationship analysis, which is necessary knowledge for designing optimal antiviral drugs
and preventing the development of a drug-resistant virus.

Some of the compounds could still have activity against HIV-1 that we would not have
detected, as the pseudotyped particles used in this study did not include HIV-1 entry and
release steps. In addition, the anti-flavivirus activity should be confirmed using wild-type
dengue and Zika viruses. Finally, considering the broad activity of Amaryllidaceae alkaloid
in general, other RNA viruses will be tested in future studies.

The results obtained in this study increased our knowledge of the structure–activity
relationship of alkaloids with a norbelladine backbone. They provide further insight
into the biological potency of norbelladine-type molecules, depending on the nature and
location of the different O-methyl groups. This new knowledge could help to better guide
the selection and optimization of AAs for the development of new inhibitors to fight
Alzheimer’s disease and infections caused by flaviviruses.
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Figure A1. Antiretroviral effects of four concentrations (25, 50, 100, and 200 μM) of norbelladine 
precursors and derivatives on HIV-1GFP in THP1 cells. Representative dot plots are presented. 
DMSO (200 μM) and raltegravir (10 μM) were included as the negative and positive controls, re-
spectively. 

Figure A1. Antiretroviral effects of four concentrations (25, 50, 100, and 200 µM) of norbelladine
precursors and derivatives on HIV-1GFP in THP1 cells. Representative dot plots are presented. DMSO
(200 µM) and raltegravir (10 µM) were included as the negative and positive controls, respectively.
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Figure A2. Antiflaviviral effects of norbelladine precursors and derivatives on DENVGFP. The anti-
viral activity against DENVGFP was evaluated 72 h post-infection using Huh7 cells via flow cytome-
try at four concentrations (25, 50, 100, and 200 μM) of norbelladine precursors and derivatives. Ly-
corine (5 μM) was included as the positive control and DMSO (200 μM) as the negative control. 
Representative dot plots are presented. 

  

Figure A2. Antiflaviviral effects of norbelladine precursors and derivatives on DENVGFP. The
antiviral activity against DENVGFP was evaluated 72 h post-infection using Huh7 cells via flow
cytometry at four concentrations (25, 50, 100, and 200 µM) of norbelladine precursors and derivatives.
Lycorine (5 µM) was included as the positive control and DMSO (200 µM) as the negative control.
Representative dot plots are presented.
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Table A1. Inhibitory properties (IC50 values) of norbelladine precursors and derivatives toward
enzymes implicated in Alzheimer’s disease.

POP AChE BuChE

DPP ATCh BuTCh ATCh

3,4-DHBA nid nid nid nid
Tyramine nd nid nid nid

Norcraugsodine 567.30 nid nid nid
Norbelladine nid nid 26.13 33.26

3′-O-Methylnorcraugsodine 1146.01 nid nid nid
4′-O-Methylnorcraugsodine nid nid nid nid

3′,4′-O-Dimethylnorcraugsodine nid nid nid nid
3′-O-Methylnorbelladine 1230.60 nid 58.95 40.22
4′-O-Methylnorbelladine nid nid 91.61 42.92

3′,4′-O-Dimethylnorbelladine nid 319.6 87.86 87.80
IC50 values are expressed in µM; nid stands for no inhibition detected at 1 mM. POP: prolyl oligopeptidase,
DPP: Ala-Pro-AMC dipeptide, AChE: acetylcholinesterase, ATCh: acetylthiocholine, BuTCh: butyrylthiocholine,
BuChE: butyrylcholinesterase.
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