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Copper (Cu) is an essential trace element in the production of swine. This study was conducted to
investigate the effect of 3 different sources of Cu on growth performance, Cu metabolism, and intestinal
microorganisms of finishing pigs, so as to estimate the bioavailability of the 3 sources for pigs. A total of
42 male finishing pigs (88.74 ± 5.74 kg) were randomly allocated to 7 treatments. The factors were 3
sources (CuSO4, Cu-glycine, Cu-proteinate) and 2 levels (5 and 20 mg/kg) of Cu, plus one negative control
treatment (0 mg/kg added Cu level) for the entire 28-d experiment. The average daily gain (ADG) and
feed to gain ratio (F:G) both increased when Cu was added. The Cu level in liver, bile, kidney, serum, lung,
urine and feces rose (P < 0.001) with increasing dietary Cu level regardless of the source. Meanwhile, pigs
receiving organic Cu (glycinate or proteinate) retained more Cu and excreted less Cu than those receiving
inorganic Cu (CuSO4), which showed that organic forms were more bioavailable. At the transcriptional
level, changes in the level and source of dietary Cu resulted in modulation of transporters. In the jejunal
mucosa, import transporter high affinity copper uptake protein 1 (CTR1) and export transporter ATPase
copper transporting alpha (ATP7A) in supplemental Cu treatments were down-regulated compared to the
control. Also, peptide transporter 1 (PepT1) and lanine-serine-cysteine transporter, type-2 (ASCT2) were
significantly (P < 0.01) up-regulated in 20 mg/kg Cu-proteinate and Cu-glycinate treatments, respec-
tively. Microbial diversity was lowest in the 20 mg/kg CuSO4 treatment, and the ratio of Firmicutes to
Bacteroidetes was higher in added Cu treatments, especially Cu-glycinate treatment. These results
indicate that uptake of different Cu forms is facilitated by different transporters and transport mecha-
nisms, and compared with inorganic Cu, organic Cu provides benefits to intestinal microflora and reduces
Cu excretion.
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1. Introduction

Copper (Cu) is an essential trace element, which plays an
important part in maintaining healthy and productive swine
(Gaetke et al., 2014). It also prevents oxidative stress and diarrhea
and promotes the growth of pigs and supports immune system
function (Ian and Beattie, 1995). Because of these crucial functions,
Cu is typically supplemented to piglets at high levels (125 to
250mg/kg) (Coble et al., 2017; Shelton et al., 2011; Zhao et al., 2008;
Guo et al., 2001). However, negative effects of high Cu are becoming
more apparent. For example, chronic supplementation of high Cu
may lead to a risk of Cu accumulation in pigs leading to damage of
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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Table 1
Analyzed copper concentrations (mg/kg)1 of complete diets 2.

Dietary copper source Added copper level, mg/kg

5 20

Copper sulfate 12.16 26.39
Copper glycinate 15.04 27.08
Copper proteinate 11.25 25.89

1 Copper element content.
2 Intrinsic copper level of feedstuffs is 7.2 mg/kg.
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the liver, kidneys, and intestinal mucosa (Sanchez et al., 2005).
Simultaneously, high residual Cu accumulation in edible animal
tissues can be a hazard to human health, like Alzheimer's disease
(Brewer, 2015). High Cu levels in excrement can also cause serious
environmental risks (Zhang et al., 2011; Sanchez et al., 2005; Miles
RD,1998). To address these potential problems, China has regulated
that dietary Cu for finishing pigs (＞25 kg) should not exceed
25 mg/kg in feed (China, 2018). It is worth noting that the NRC
(2012) set the dietary Cu requirement at 5 to 10 mg/kg for pigs.

In the swine industry, the most commonly used Cu supplements
are Cu sulfate (CuSO4) and Cu oxide which are inorganic sources.
However, because of the poor Cu bioavailability of these sources,
many alternatives have been found. Many studies have demon-
strated that organic Cu from copper glycine (Cu-Gly) and copper
proteinate (Cu-Pro) have greater bioavailability compared to inor-
ganic Cu (Huang et al., 2010; Veum et al., 2004). For example, Cu-
Pro is a number of Cu complexes with oligopeptides (3 to 10
amino acids) by the chelation of a soluble Cu salt with enzymati-
cally hydrolyzed soy protein, which appeared to be more effective
in enhancing the growth rate of weanling piglets, and reducing Cu
excretion (Lin et al., 2020). At present, organic Cu is popular for use
in swine diets because there are fewer negative consequences
compared with feeding inorganic trace minerals (Ma et al., 2018).

Absorption of organic Cu in pigs is different from inorganic Cu,
though the exact metabolic pathways for absorption are still
debated. In general, the Cu compound enters the digestive tract and
is hydrolyzed on the brush border of the intestine. Cu ions are then
absorbed into the blood through intestinal epithelial cells. After
processing, Cu is bound to albumin and transferred to other tissues.
Excess Cu is excreted mainly through the biliary tract (Miyayama
et al., 2010). Cu homeostasis is maintained by many chaperone
proteins and transport carriers (Kim et al., 2008). For example, high
affinity copper uptake protein 1 (CTR1) is a high-affinity Cu trans-
porter which is located on cell membranes to uptake extracellular
Cu ions (Lee et al., 2002). Antioxidant 1 copper chaperone (ATOX1)
encodes a Cu chaperone that plays a role in Cu homeostasis by
binding and transporting cytosolic Cu to ATPase proteins in the
trans-Golgi network for later incorporation to ceruloplasmin
(Pereira et al., 2016; Fontaine and Mercer, 2007). Additionally,
peptide transporter 1 (PepT1) and the lanine-serine-cysteine
transporter, type-2 (ASCT2) are closely related to the transport of
Cu ligands, which may affect the transport of Cu.

The effect of intestinal microbiota on nutrient uptake and
maintaining healthy growth is broadly known (Keenan et al., 2018).
The gut microbiota changes that occur are related to animal pro-
duction phase and feed composition. Some studies indicate that
high Cu diets can change the gut microenvironment and affect the
composition and abundance of bacteria (Di Giancamillo et al., 2018;
Zhang et al., 2017). Moreover, antibacterial properties of high levels
of dietary Cu can alter intestinal microbial diversity and composi-
tion in pigs (Di Giancamillo et al., 2018; Shurson et al., 1990). The
effect of organic Cu on the intestinal microbiome is less studied, but
the dissociation of Cu from the organic carrier molecule(s) is likely
to result in alterations.

It is vital to maximize the biological efficacy of Cu and ensure
the safety of animal products under the new Cu limit regulation
for pigs in China. To our knowledge, the differences in specific
metabolic processes and related mechanisms among organic and
inorganic Cu sources in pigs have not been reported. The objective
of this experiment was to study the effect of 3 different Cu sources
(CuSO4, Cu-glycine, Cu-proteinate) on growth performance,
carcass yield, meat quality, Cu residues, microflora community and
the expression of various genes in finishing pigs, and further
explore the metabolic pathways that cause their differential
function.
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2. Materials and methods

All animals used in this study were managed according to the
Chinese Guidelines for Animal Welfare. The experimental protocol
was approved by the Animal Care and Use Committee of the China
Agricultural University (Beijing, China).

2.1. Animal, diets and experimental design

Forty-two barrows (Duroc � [Landrace � Large White]) with an
average body weight of 88.74 ± 5.74 kg were distributed randomly
into 7 treatment treatments (n¼ 6) for a 28-d experimental period.
The experiment used a 3 � 2 þ 1 treatment structure. A corn-
soybean meal diet (Appendix Table 1) and a vitamin mineral pre-
mix were prepared with no added Cu. Three supplemental Cu
sources: CuSO4 (cupic sulfate anhydrous, analytical reagent 99%,
Aladdin, Shanghai, China), Cu-Gly (Cupic glycine chelate, 24% Cu,
Pancosma, Shanghai, China) and Cu-Pro (10% Cu, Bioplex Cu, Alltech
Inc., Nicholasville, KY, USA) were used. The control treatment
(0 mg/kg Cu) was fed this basal diet. Test dietary treatments were
supplemented with CuSO4, Cu-Gly, or Cu-Pro at 5 or 20 mg added
Cu/kg feed, resulting in 7 diets. The target supplementary low di-
etary Cu level was 5 and 20 mg/kg for high Cu (Table 1). Water was
freely available from a low-pressure drinking nipple. All pigs were
given ad libitum access to feed and water.

2.2. Housing and metabolism measurements

Pigs were housed individually in metabolism cages
(1.4 m � 0.7 m � 0.6 m). Five days before harvest, complete
collection of feces and urine was used to analyze Cu excretion. At
28 d, all 42 pigs were sacrificed, and the following samples were
collected: tissue samples (liver, kidney, heart, spleen, lung, long-
issimus dorsi); serum and bile were collected to determine Cu
concentrations; liver and jejunum mucosa were used to determine
the expression of transporters; digesta from the proximal colonwas
used to analyse microbiota and short chain fatty acids.

2.3. Growth performance

Pigs were weighed individually on d 0, 24 and 28. Surplus feed
was recorded per cage, and the total feed intake (FI), average daily
feed intake (ADFI), average daily gain (ADG), and feed to gain ratio
(F:G) were calculated.

2.4. Carcass characteristics measurement

Hot carcass weight was recorded to calculate the dressing
percent. The loin eye muscle area and backfat thickness were
measured by a Vernier caliper (Mitutoyo, NTD13-P15M). The loin
eye muscle area was determined at the 10th rib. The backfat
thickness was determined as the mean of measurements taken at
the 10th rib, shoulder and lumbar vertebra.
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2.5. Meat quality analysis

Meat quality was detected on the longissimus dorsi of the 10th
rib. The pH was measured at 45 min and 24 h postmortem with a
pH meter (Testo 205). The measurements of drip loss percentage
and cooking loss were performed as the methods described by Xu
et al. (2020).

2.6. Chemical analysis

The organs, tissues, blood, feces, urine and diets were analyzed
for Cu content using inductively coupled plasma-mass spectros-
copy (ICP-MS, Agilent) according to methods described by Li et al.
(2020). The short-chain fatty acids in colonic digesta were deter-
mined by an ion chromatographic analyzer (ICS-3000, Dionex, U.S.)
according to the methods described by Han et al. (2019).

2.7. Real-time quantitative PCR

Primers were designedwith Primer 5.0 software using Sus scrofa
sequences from the NCBI database and synthesized by Beijing
Sunbiotech Co. Ltd. The primers used for quantifying selected genes
are listed in Appendix Table 2. Firstly, 30 to 40 mg of sample were
homogenized at 4 �C. The system for RNA extraction, reverse
transcription and real-time quantitative PCR was performed ac-
cording to Li et al. (2020). In addition, b-actin was used as an
endogenous control. Relative gene expressionwas calculated by the
2�DDCt method.

2.8. Western blots

Total tissue protein lysates were extracted with radio-
immunoprecipitation assay (RIPA) tissue lysis (Solarbio) that con-
tained protease inhibitor and protein phosphatase inhibitor.
Approximately 50 mg of total tissue lysates were loaded per tube.
The relative protein expression of CTR1 and PepT1 was analyzed by
Western blots.

Samples (50 mg of total protein) were separated by 12% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
followed by electrotransfer to polyvinylidene fluoride (PVDF)
membrane (GE Health Care). Themembranes were blockedwith 5%
skimmilk in Tris-buffered saline containing 0.05% Tween-20 (TBST)
and incubated overnight at 4 �C with the antibodies: rabbit anti-
CTR1 (1:1,000, Genetex, GTX30642), rabbit anti-PepT1 (1:1,000,
Bioss, bs-0689R) and rabbit anti-actin (1:1,000, Absin, abs132001).
After washing 3 times with TBST, the membranes were incubated
with goat anti-rabbit horseradish peroxidase (HRP) conjugated
antibody (CST, 5151S) at 37 �C for 1 h. After washing 3 times with
TBST, membranes were detected using clarity-enhanced chem-
iluminescence (ECL) reagent (Thermo Fisher Scientific). Photoshop
software was used to analyze the gray value of protein bands and
target proteins.

2.9. Analysis for microbial community by 16S rRNA sequences

Twenty-four fresh colonic digesta samples of pigs in 4 dietary
treatments (control, 20 mg/kg CuSO4, 20 mg/kg Cu-Gly, 20 mg/kg
Cu-Pro) were used to evaluate the microflora community (n ¼ 6).
Total genomic DNA was extracted from colonic digesta using a
QIAamp DNA Stool Mini Kit (Qiagen, Germany) according to the
manufacturer's instructions. Final DNA concentration and purifi-
cation were determined by NanoDrop (2000) UVevis spectropho-
tometer (Thermo Scientific,Wilmington, USA), and DNAquality was
checked by 1% agarose gel electrophoresis. The V3 to V4 region of
the bacterial 16S ribosomal RNA gene was amplified by PCR that
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used the bacterial universal primers of 338F (50- ACTCCTACGG-
GAGGCAGCAG-30) and 806R (50-GGACTACHVGGGTWTCTAAT-30)
with an eight-base sequence unique to each sample as a barcode.
The resulting PCR products were extracted from a 2% agarose gel
and further purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA) and quantified using
QuantiFluor-ST (Promega, USA) according to the manufacturer's
protocols. Purified amplicons were pooled in equimolar and paired-
end sequenced on an Illumina MiSeq platform (Illumina, San Die-
go,USA) according to standard protocols (Majorbio Bio-Pharm
Technology Co. Ltd., Shanghai, China). Raw fastq files were
quality-filtered by Trimmomatic andmerged by FLASH. Operational
taxonomic units (OTU) were defined as a similarity threshold of
0.97 using UPARSE. The taxonomy of each 16S rRNA gene sequence
was analyzed by RDP Classifier algorithm (http://rdp.cme.msu.edu/)
against the Silva (SSU123) 16SrRNA database using a confidence
threshold of 70%. According to the guidance of R software, we used
standardized OTU reads to analyze bacterial diversity by principal
co-ordinates analysis (PCoA). We used the method of
KruskaleWallis to analyze populations of the bacterial community
in fecal samples of pigs at the phylum and family levels.

2.10. Statistical analysis

Data organization, scientific graphing, and statistical analyses
were performed using Microsoft Excel (Redmond, WA, USA),
GraphPad Prism (v.6; La Jolla, CA, USA), and SAS (version 9.2; SAS
Inst. Inc., Cary, NC), respectively. Data for performance, Cu content,
and meat quality were analyzed as a randomized complete block
design using the MIXED model procedure of SAS version 9.2 (with
the individual pig as the experimental unit). For responses inwhich
the interaction was significant, only the interaction is discussed,
whereas main effects means are discussed in cases where the
interaction was not significant. Data for q-PCR and SCFA concen-
trations were subjected to ANOVA using the GLM procedure of SAS.
Significantly different means (for interaction effects) were sepa-
rated using Tukey. Significant differences were declared at P < 0.05.

3. Results

3.1. Growth performance and carcass characteristics

There was no significant source � level interaction or main ef-
fect of source on any of the growth performance parameters. Added
Cu level significantly affected ADG (P ¼ 0.004) and F:G (P ¼ 0.009)
(Table 2) such that ADG and F:G improved with added Cu, though
there was not a significant difference between the 5 and 20 mg/kg
Cu levels. Likewise, there were no significant main effects or in-
teractions in carcass characteristics. However, the fat cover at the
tenth rib (P ¼ 0.058) tended to be higher when Cu was added at
either 5 or 20 mg/kg as compared to the control. In addition, a
significant main effect of level onmarbling score and intramuscular
fat increased when Cu was added (Appendix Table 3).

3.2. Cu distribution and deposition

There was no significant source � level interaction on Cu con-
tent except for a trend (P ¼ 0.078) for fecal Cu (Table 3). The
interaction shows that there was no significant difference for fecal
Cu content among the control and all sources of Cu at 5 mg/kg
treatments. When Cu was added at 20 mg/kg, fecal Cu excretion
was elevated for all sources and reached the highest level with
20 mg/kg CuSO4. Further, a significant main effect of Cu sources on
the Cu contents in fecal, bile and liver samples was observed. Fecal
Cu concentration in pigs receiving organic Cu (Cu-Pro, Cu-Gly) was

http://rdp.cme.msu.edu/


Table 2
Effects of different copper (Cu) sources and levels on growth performance and carcass characteristics of finishing pigs.

Cu source Added Cu level,
mg/kg

ADFI, kg ADG, kg F:G Dressing
percentage, %

Eye muscle
area, cm2

Shoulder,
cm

Tenth rib,
cm

Lumbar
vertebra, cm

Average
backfat, cm

CuSO4 0 2.91 0.93 3.18 82.00 34.10 4.43 2.44 1.44 2.78
5 3.02 1.04 2.92 82.00 37.60 4.31 2.71 1.91 2.98
20 3.01 1.06 2.88 81.00 36.32 4.39 2.95 1.83 3.05

Cu-Gly 0 2.91 0.93 3.18 82.00 34.10 4.43 2.44 1.44 2.78
5 2.91 1.03 2.82 80.00 32.52 4.34 2.86 1.68 2.96
20 3.02 1.01 3.01 84.00 31.76 4.40 2.73 1.77 2.95

Cu-Pro 0 2.91 0.93 3.18 82.00 34.10 4.43 2.44 1.44 2.78
5 3.12 1.08 2.92 82.00 33.48 4.67 2.85 1.62 3.04
20 3.10 1.04 3.00 82.00 33.01 4.40 2.77 1.80 2.99

SEM 0.09 0.05 0.12 0.01 1.60 0.24 0.21 0.21 0.20
P-value for source � level 0.809 0.943 0.899 0.896 0.503 0.914 0.918 0.954 0.997
Main effect of source
CuSO4 2.98 1.01 2.99 81.67 36.01 4.38 2.70 1.73 2.94
Cu-Gly 2.95 0.99 3.00 82.00 32.79 4.39 2.68 1.63 2.90
Cu-Pro 3.04 1.02 3.03 82.00 33.53 4.50 2.68 1.62 2.94

SEM 0.05 0.03 0.07 0.01 1.22 0.14 0.12 0.12 0.11
P-value for source 0.399 0.780 0.914 0.889 0.087 0.805 0.991 0.782 0.958
Main effect of level

0 2.91 0.93b 3.18a 82.00 34.10 4.43 2.43 1.44 2.78
5 3.02 1.05a 2.89b 81.33 34.53 4.44 2.81 1.74 2.99
20 3.04 1.04a 2.96ab 82.33 33.70 4.40 2.80 1.80 3.00

SEM 0.05 0.03 0.07 0.01 0.92 0.14 0.12 0.12 0.11
P-value for level 0.152 0.004 0.009 0.251 0.814 0.986 0.058 0.118 0.997

ADFI ¼ average daily feed intake; ADG ¼ average daily gain; F:G ¼ feed to gain ratio; CuSO4 ¼ copper sulfate; Cu-Gly ¼ copper glycinate; Cu-Pro ¼ copper proteinate;
SEM ¼ standard error of the mean.
a,bMeans in the same column with different superscripts differ (P < 0.05, n ¼ 6).

Table 3
Effects of different copper (Cu) sources and levels on excrement, serum, bile and different tissues copper contents of finishing pigs.

Cu source Added Cu level,
mg/kg

Feces,
mg

Urine,
mg

Serum,
mg/kg

Bile,
mg/kg

Heart,
mg/kg

Kidney,
mg/kg

Spleen,
mg/kg

Muscle,
mg/kg

Liver,
mg/kg

Lung,
mg/kg

CuSO4 0 163.32c 1.72b 1.89b 5.30c 14.61 16.32b 4.33 1.59 101.00d 4.21
5 166.87c 2.09ab 2.16ab 6.12c 14.49 23.88ab 4.79 1.79 101.76cd 4.47
20 427.37a 3.8a 2.67a 6.87bc 14.24 29.63a 4.46 1.72 122.49bc 5.76

Cu-Gly 0 163.32c 1.72b 1.89b 5.30c 14.61 16.32b 4.33 1.59 101.00d 4.21
5 158.65c 1.51b 1.86b 7.35abc 14.33 25.32a 4.48 1.8 124.41ab 4.42
20 348.94b 2.68ab 2.13ab 9.21a 15.73 26.45a 4.84 1.97 137.88a 5.13

Cu-Pro 0 163.32c 1.72b 1.89b 5.30c 14.61 16.32b 4.33 1.59 101.00d 4.21
5 171.54c 2.47ab 2.13b 7.06bc 14.43 24.57a 4.57 1.96 105.75bcd 4.99
20 333.21b 2.93ab 2.33ab 8.53ab 16.47 26.95a 4.72 1.73 133.71a 4.52

SEM 19.56 0.39 0.13 0.45 1.01 1.69 0.31 0.14 4.47 0.36
P-value for source � level 0.078 0.376 0.208 0.157 0.777 0.712 0.857 0.654 0.091 0.174
Main effect of source
CuSO4 252.52a 2.53 2.24 6.01b 14.45 23.28 4.53 1.70 108.42b 4.81
Cu-Gly 223.64b 1.97 1.96 7.29a 14.89 22.70 4.55 1.79 121.10a 4.59
Cu-Pro 222.69b 2.37 2.12 6.88ab 15.17 22.61 4.54 1.76 113.49ab 4.57

SEM 11.29 0.22 0.07 0.26 0.58 0.98 0.18 0.08 2.58 0.21
P-value for

source
0.047 0.195 0.059 0.008 0.675 0.873 0.995 0.741 0.005 0.659

Main effect
of level

0 163.32b 1.72b 1.89b 5.30c 14.61 16.32b 4.33 1.59 101.00c 4.21b

5 165.69b 2.02b 2.05b 6.84b 14.42 24.59b 4.61 1.85 110.64b 4.63ab

20 369.84a 3.14a 2.38a 8.20a 15.48 27.68a 4.67 1.81 131.36a 5.14a

SEM 11.29 0.22 0.07 0.26 0.58 0.98 0.18 0.08 2.58 0.21
P-value for level <0.001 <0.001 <0.001 <0.001 0.395 <0.001 0.364 0.654 <0.001 0.011

CuSO4 ¼ copper sulfate; Cu-Gly ¼ copper glycinate; Cu-Pro ¼ copper proteinate; SEM ¼ standard error of the mean.
a,b,c,dMeans in the same column with different superscripts differ (P < 0.05, n ¼ 6).
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lower than those receiving CuSO4. The contents of Cu in liver and
bile were in the order of Cu-Gly > Cu-Pro > CuSO4 treatment. In
addition, there was a significant main effect of supplemental Cu
level on the Cu content in feces, urine, serum, bile, kidney, liver, and
lung samples (Table 3). Supplemental Cu at 20 mg/kg feed
increased the Cu content of feces, urine, serum, and kidney samples
over both the control and 5 mg/kg treatments. The Cu contents in
bile and liver increased gradually with 5 and 20 mg/kg supple-
mentation. Similarly, the lung had the highest Cu content with
20 mg/kg supplementation and the lowest with the control diet.
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3.3. mRNA expression of genes

In the jejunal mucosa, the CTR1 mRNA expression for supple-
mental Cu treatments was down-regulation compared to that of
the control (Fig. 1A), and CTR1 mRNA expression was higher at
20 m/kg level Cu-pro treatment compared to 20 mg/kg CuSO4
treatment. The ATPase copper transporting alpha (ATP7A) gene
expression was down-regulated (P ¼ 0.042) in 20 mg/kg Cu treat-
ments (Fig. 1B). ASCT2 gene expression was up-regulated
(P ¼ 0.007) in 20 mg/kg Cu-Gly treatment (Fig. 1D). In addition,



Fig. 1. Effects of different copper sources and levels on the mRNA expression of CTR1(A), ATP7A(B), ATOX1(C), ASCT2(D) and PepT1(E) genes in jejunal mucosa. CuSO4 ¼ copper
sulfate; Cu-Gly ¼ copper glycinate; Cu-Pro ¼ copper proteinate; CTR1 ¼ high affinity copper uptake protein 1; ATP7A ¼ ATPase copper transporting alpha; ATOX1 ¼ Antioxidant 1
copper chaperone; ASCT2 ¼ lanine-serine-cysteine transporter, type-2; PepT1 ¼ peptide transporter 1. Data represent mean values ± standard error of the mean (n ¼ 6). Significant
differences between processing treatments are represented by different lowercase letters (P < 0.05).
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PepT1 gene expression in Cu-Pro supplementation at both levels
was higher (P ¼ 0.004) than that of the control and other Cu-
sources, and the expression level at 20 mg/kg Cu-Pro treatment
was significantly higher than at 5 mg/kg Cu-Pro treatment (Fig. 1E).

In the liver, down-regulation (P ¼ 0.047) of CTR1 gene expres-
sion for all treatments compared to the control was observed, and
the expression of CTR1 gene was the lowest in 20 mg/kg Cu-Gly
treatment (Fig. 2A). The ATP7A gene expression was down-
regulated (P ¼ 0.043) in all the other treatments compared to the
control and 5 mg/kg CuSO4 treatments (Fig. 2B). The ATPase copper
transporting beta (ATP7B) gene expression in 20 mg/kg CuSO4 and
Cu-Gly treatments was up-regulated compared to that in control
and 5 mg/kg treatments. Further, ATP7B gene expression in 20 mg/
Fig. 2. Effects of different copper sources and levels on the mRNA Expression of CTR1(A),
sulfate; Cu-Gly ¼ copper glycinate; Cu-Pro ¼ copper proteinate; CTR1 ¼ high affinity coppe
copper chaperone; ASCT2 ¼ lanine-serine-cysteine transporter, type-2; PepT1 ¼ peptide tran
differences between processing treatments are represented by different lowercase letters (
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kg CuSO4 was higher than both 20 mg/kg organic Cu treatments
(Fig. 2C). ATOX1was up-regulated (P ¼ 0.047) with all three 20 mg/
kg treatments compared with the control and the 5 mg/kg treat-
ments, regardless of Cu sources. ASCT2 gene expression was up-
regulated (P ¼ 0.038) in Cu-Gly treatments, with the expression
level at 20 mg/kg Cu-Gly treatment being significantly higher than
that at 5 mg/kg Cu-Gly treatment (Fig. 2E).

3.4. Protein expression in jejunal mucosa

Compared to the control, the down-regulation (P ¼ 0.038) of
CTR1 protein expression in jejunal mucosawas observed in 5mg/kg
Cu-Gly and Cu-Pro treatments at andwith all 3 Cu supplementation
ATP7A(B), ATP7B(C), ATOX1(D), ASCT2(E) and PepT1(F) genes in liver. CuSO4 ¼ copper
r uptake protein 1; ATP7A ¼ ATPase copper transporting alpha; ATOX1 ¼ Antioxidant 1
sporter 1. Data represent mean values ± standard error of the mean (n ¼ 6). Significant
P < 0.05).



Fig. 3. Effects of different copper sources and levels on the protein expression for
CTR1(A), and PepT1(B) in jejunal mucosa. CuSO4 ¼ copper sulfate; Cu-Gly ¼ copper
glycinate; Cu-Pro ¼ copper proteinate; CTR1 ¼ high affinity copper uptake protein 1;
PepT1 ¼ peptide transporter 1. Data represent mean values ± standard error of the
mean (n ¼ 6). Significant differences between processing treatments are represented
by different lowercase letters (P < 0.05).

Table 4
Effects of different copper sources on short chain fatty acid concentrations in the
colonic chyme of finishing pigs (mg/kg).

Item Control1 20 mg/kg
CuSO4

20 mg/kg
Cu-Gly

20 mg/kg
Cu-Pro

SEM P-value

Lactic acid 9.14b 5.77b 18.27a 12.42ab 1.345 <0.001
Acetate 625.44b 614.42b 677.04a 613.23b 20.50 0.022
Propionate 401.43 392.06 404.05 400.74 24.93 0.999
Formic acid 15.12 10.62 15.06 14.41 1.06 0.405
Isobutyrate 28.80 26.56 28.57 26.94 1.55 0.950
Butyrate 227.74 227.01 252.72 235.41 20.08 0.972
Valerate 53.32 50.63 57.96 50.85 2.20 0.652
Isovalerate 47.86 49.64 54.09 46.82 4.04 0.937

CuSO4 ¼ copper sulfate; Cu-Gly ¼ copper glycinate; Cu-Pro ¼ copper proteinate;
SEM ¼ standard error of the mean.
a,bMeans in the same row with different superscripts differ (P < 0.05, n ¼ 6).

1 Control, negative control diet without any copper addition.
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forms at 20 mg/kg, where Cu-Gly was significantly lower than the
other 2 forms (Fig. 3A). The protein expression of PepT1 (Fig. 3B)
was significantly up-regulated at both Cu-Pro treatments
(P ¼ 0.006), and significantly down-regulated at both CuSO4
treatments (P ¼ 0.046).

3.5. Short chain fatty acids

Table 4 shows the results of the short chain fatty acids in colonic
digesta. Lactic acid was elevated in 20 mg/kg Cu-Gly treatment
compared to the control and 20 mg/kg CuSO4 treatments, with Cu-
Pro being intermediate. Acetate concentration of Cu-Gly treatment
was significant higher than that of the other treatments. Therewere
no statistical differences for the other SCFAs among the 4
treatments.
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3.6. Microflora community

The results of microbial community analysis for the 4 treat-
ments show that the 16S rRNA gene sequencing generated a total of
679, 945 quality sequences with an average of 415.3 sequences per
sample. There were statistical differences in the alpha diversity of
colonic digesta microbial communities among the 4 treatments
(Table 5). The observed richness (Sobs), the Chao1 estimator and
the ACE estimator of the microbial community in CuSO4 treatment
significantly decreased (P < 0.01, P ¼ 0.072, P < 0.05) in comparison
to the control treatment and Cu-Pro treatment. The Shannon index
of the microbial community in CuSO4 treatment was lower
(P < 0.05) compared with the control treatment. Furthermore, the
observed richness (Sobs), the Chao1 estimator and the ACE esti-
mator of the microbial community in Cu-Gly treatment tended to
decrease (P < 0.05, P ¼ 0.082, P ¼ 0.096) compared with that in the
control treatment. The observed richness (Sobs), Shannon index,
and ACE estimator of the microbial community in CuSO4 treatment
significantly decreased (P < 0.05, P < 0.05, P ¼ 0.069, respectively)
in comparison to the Cu-Pro treatment. Meanwhile, the Simpson
index of the microbial community for the CuSO4 fed treatment
tended to increase (P ¼ 0.092) compared with the Cu-Pro
treatment.

The relative abundances of bacteria in 3 phyla, 5 classes, 8 orders,
8 families and 22 genera were different among the 4 treatments. At
the phylum level, a total of 6 phyla were detected (Fig. 4A). Firmi-
cutes, Bacteroidetes, Spirochaetae and Actinobacteria were the
dominant bacterial phyla and their total relative abundance
accounted for 97% in all treatments. The control treatment had a
lower relative abundance of Firmicutes (P < 0.05) compared with
the Cu-Gly treatment (Fig. 4B). And the relative abundance of Bac-
teroidetes, and Spirochaetae in the control treatment tended to in-
crease compared with the Cu-Gly treatment (Fig. 4B). At the family
level, a total of 15 families were detected in 4 treatments (Fig. 4C).
Muribaculaceae, Clostridiaceae_1, Lactobacillaceae, Peptos-
treptococcaceae, Ruminococcaceae, Spirochaetaceae, Lachnospir-
aceae, Streptococcaceae and Prevotellaceae were the dominant
bacterial families. The control treatment had a higher relative
abundanceof Ruminococcaceae (P<0.05) comparedwith the CuSO4
treatment and Cu-Gly treatments. The relative abundance of Mur-
ibaculaceae, Christensenellaceae and Veillonellaceae treatment
tended to increase in the control treatment compared with other
treatments, especially the Cu-Gly treatment. In addition, the control
treatment tended to have a lower relative abundance of Clos-
tridiaceae_1, Peptostreptococcaceae and Lactobacillaceae compared
with other treatments (Fig. 4D).



Table 5
Effects of different copper sources on the a-diversity1 of microbial communities of finishing pigs in colonic digesta.

Item Control2 20 mg/kg CuSO4 20 mg/kg Cu-Gly 20 mg/kg Cu-Pro P-value

Sobs 473.75a 369.25c 432.75bc 448.75ab 0.032
Shannon 3.43a 2.78b 3.16ab 3.29a 0.022
Simpson 0.11 0.19 0.12 0.10 0.092
ACE 568.87a 463.22b 526.18a 547.69a 0.041
Chao1 572.50 485.03 522.89 555.20 0.072
Coverage 0.996 0.996 0.996 0.996 0.275

CuSO4 ¼ copper sulfate; Cu-Gly ¼ copper glycinate; Cu-Pro ¼ copper proteinate; SEM ¼ standard error of the mean.
a,b,c Means within the same row with different superscripts differ significantly (P < 0.05, n ¼ 6).

1 Alpha-diversity analysis for bacterial community determined by 16S rRNA gene sequencing.
2 Control, negative control diet without any copper addition.

Fig. 4. Microbial community diversity in colonic digesta of finishing pigs on the phylum and family levels in colonic digesta (n ¼ 6). (A) Microbial community bar plot on the phylum
level with the relative abundance higher than 0.01%. (B) The bar plot was used to represent the dominant populations at the phylum levels by KruskaleWallis H test. * represented
P < 0.05. (C) Microbial community bar plot on the family level with the relative abundance higher than 0.01%. (D) The bar plot was used to represent the dominant populations at
the family levels by KruskaleWallis H test. * represented P < 0.05. CuSO4 ¼ copper sulfate; Cu-Gly ¼ copper glycinate; Cu-Pro ¼ copper proteinate. Control, negative control diet
without any copper addition.
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4. Discussion

Cu is generally used as growth stimulators in the pig industry.
The effects of different Cu supplementations on growth perfor-
mance and carcass characteristics are controversial. Most existing
research has suggested that the growth-promoting effect of Cu
mainly occurs in the early finishing stage and only at high doses of
Cu. Hastad et al. (2004) found that pigs supplemented with
increased Cu (50, 100 and 200 mg/kg) had improved growth per-
formance of up to 61 kg and no effect observed thereafter. However,
Zhao et al. (2014) reported that ADG and G:F tended to increase
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from 101 kg to 118 kg when Cu inclusion was increased from 6 to
170mg/kg. In our study, ADG and G:F increased with addition of Cu
at both 5 and 20 mg/kg in finishing pigs, but there were no sig-
nificant differences in Cu sources and doses. However, converse
previous reports (Carpenter et al., 2019) stated that growth per-
formance is not affected by Cu source. Unexpectedly, in our study,
ADG and G:F increased with addition of Cu at both 5 and 20 mg/kg
in finishing pigs. Contradicting previous views (Zhou et al., 1994),
higher feed intake was not the reason for promoting growth per-
formance in this study as no intake differences were observed
among Cu intake levels. The suggested growth-promoting effects of
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supplementing weanling pigs with Cu has previously been linked
to alterations in the composition of intestinal bacteria (Zhao et al.,
2007). However, the development of intestinal bacterial pop-
ulations in finishing pigs may be relatively mature and unlikely to
be significantly altered, and subsequent testing has confirmed this.
However, the suggested growth-promoting effects of supple-
menting weanling pigs with Cu has previously been linked to al-
terations in the composition of intestinal bacteria (Zhao et al.,
2007). Combined with previous studies, the differences in results
may be related to the dose of Cu and the growth period of pigs.
Conversely, in contrast to previous reports, Carpenter et al. (2019)
stated that growth performance is not affected by Cu source. In
addition, the results show that the value of supplemental Cu,
minimal growth performance and carcass characteristics changes
were observed between 5 and 20 mg/kg of Cu supplementation.

Inclusion of high levels of dietary Cu in pigs can impair animal
health and performance through accumulation of Cu in the ani-
mal's tissues while simultaneously contaminating the environment
due to excessive Cu excretion. Zhai et al. (2006) reported that fecal
Cu content increased with increasing dietary Cu levels. Our study
drew a similar conclusion and additionally observed that use of
organic Cu treatment at 20 mg/kg can significantly reduce the
excretion of Cu, which was in accordance with previous research
(Lin et al., 2020). Cu concentrations in the liver increased with
increased Cu inclusion in the diet, and addition of Cu at 20 mg/kg
demonstrated higher levels in the liver of organic Cu treatments
than that in the inorganic Cu treatment. Our study results are
consistent with previous studies that observed higher concentra-
tions of Cu in the liver, kidney, brain, and heart, with lower con-
centrations found in the bones and muscles (Adams et al., 2019;
Pena et al., 1999). In addition, sustained high Cu intake may lead to
an excess Cu accumulation in the liver, which may affect the
transportation and storage capacity of Cu (Sternlieb, 1980), hence
leading to excess Cu leakage into the circulatory system
(Floria�nczyk, 2003). The present study found a link between serum
Cu levels and Cu levels in organs, suggesting that feeding 20 mg/kg
of supplementary Cu will exceed liver Cu thresholds in the
fattening period.

Like the previous studies (Lin et al., 2020; Huang et al., 2015),
biliary Cu concentrations had a similar change to liver Cu concen-
trations in the current study. Interestingly, considering that most of
the Cu in the diet is not absorbed but is excreted directly through
feces, the pigs in this study were sensitive to small changes in di-
etary Cu levels and Cu sources as evidenced by differences in the
deposition and excretion of Cu. Mahoney et al. (1955) indicated that
the excretion of endogenous Cu is mainly via the bile, thus the
biliary Cu may have had similar responses to fecal Cu. For our re-
sults, we found that compared with the content of Cu in feed
(397.39 mg), there was a significant enrichment of Cu in feces
(427.37 mg). We hypothesise that the increased excretion in Cu
from the pigs during fattening is potentially from endogenous Cu.
This may be one of the reasons why adding a small amount of Cu
during the fattening period can also cause serious Cu excretion. In
combinationwith the fecal Cu content results, this study highlights
that organic Cu may have a greater bioavailability to pigs. Organic
Cu's properties may reduce the amount of supplementary Cu
required in feed for pig production, and also reduce Cu wastage
through lower excretion.

Cu transporters are critical tools for absorption, utilization, and
maintenance of Cu homeostasis. The uptake of Cu by the intestine
and liver is mainly mediated through CTR1, a Cu import transporter.
When entering the cell, Cu can be transmitted to ATP7A and ATP7B
through the chaperone protein ATOX1 in the intestine and liver,
respectively. Huang et al. (2015) reported that themRNA expression
of CTR1 and ATP7A was not affected by Cu concentration or Cu
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source in the liver or any intestinal section. However in our study,
Cu import transporter CTR1 and Cu export transporter ATP7A were
down-regulated in 20 mg/kg treatments (except for 20 mg/kg
CuSO4 treatment) in the jejunummucosa and liver when compared
to the control, with similar results for CTR1 protein expression. The
results indicated that the cells decreased mRNA expression of these
2 genes in order to regulate cellular Cu flux, thus maintaining Cu
homeostasis.

ATOX1 is an important Cu chaperone protein that maintains Cu
homeostasis by binding and transporting cytosolic Cu to ATPase
proteins. ATOX1 is activated by the efflux of Cu from cells under
conditions of elevated extracellular Cu concentrations (Pereira
et al., 2016; Fontaine and Mercer, 2007). In our study, ATOX1
mRNA expression was up-regulated in the liver for treatments fed
20 mg/kg diet with the same Cu source. The upregulation of ATOX1
mRNA expression was also correlated to hepatic Cu concentrations,
possibly because higher intracellular Cu content stimulated the
mRNA expression of ATOX1 (Doguer et al., 2018). This study indi-
cated that both the level and source of added Cu could affect ATP7B
expression in the liver, with ATP7B expression in 20 mg/kg treat-
ments being higher than in 5 mg/kg treatments. Additionally, we
found that Cu-Gly and Cu-Pro treatments can significantly down-
regulate the mRNA expression of ATP7B compared with CuSO4

treatment. Combined with previous findings, the regulation of
ATP7B was contrary to liver Cu content and biliary Cu concentra-
tion. The role of ATP7B as a key Cu exporter may contribute to the
change observed in liver Cu content.

The jejunal mucosa expression of PepT1 and ASCT2 were
significantly up-regulated in the Cu-Pro treatment and Cu-Gly
treated treatments. PepT1 protein expression was similarly signif-
icantly higher for both levels of Cu-pro treatments. Li et al. (2020)
also found similar results in IPEC-J2 cells. Two key considerations
have been drawn from the research findings here: firstly, that
glycine or small peptides carried Cu into the cell by endocytosis;
and secondly, Cu-Gly and Cu-Pro underwent dissociation before
transport by ASCT2 and PepT1. The dissociated glycine or small
peptides from Cu transporters results in increased Cu utilization (Li
et al., 2020; Ashida et al., 2002). Findings to date have not been able
to discern the relationship between elevated Cu bioavailability and
high mRNA expression of ASCT2 or PepT1. Further research is
required to determine if there is a link with the transporters of
organic Cu.

Intestinalmicrobiota composition and diversity affects intestinal
health (Blachier et al., 2017) and total tract digestion of nutrients
through a range of physiological functions (Seo et al., 2015). In our
experiment, there were statistical differences in the a-diversity
indices (Sobs, ACE estimator, Simpson index, Chao and Shannon
indexes) of themicrobiota community in colonic digesta samples of
pigs among the 4 Cu treatments. These results indicated that Cu
supplementation shaped microbiota diversity of pigs. There are
limited studies related to the microbiota community of finishing
pigs. Shurson et al. (1990) found that a 283mg/kg Cu diet indirectly
affected growth performance by inhibiting the gut microbiota, and
Miller et al. (1986) found that piglets receiving 250 mg/kg Cu had
reduced total fecal bacteria by 60%. This study had similar results on
the diversity of microbiota communities, with 20 mg/kg CuSO4

demonstrating significantly reduced diversity and 20 mg/kg Cu-Gly
tending to reduce diversity. There is no consensus on the effect of Cu
on microbial diversity as other studies have found differing results.
Perez et al. (2011) found that piglets receiving 250 mg/kg CuSO4 or
100 mg/kg Cu-Gly had no change in diversity of microbiota com-
munities. In our study, organic Cu treatments marginally reduced
the diversity of microbiota communities comparedwith the control
treatment. The inhibition effect of different Cu sources on bacteria
may be related to the chemical structure of Cu and its dissociation
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coefficient from the organic ligand. In general, if the gastrointestinal
microbiota of piglets was in equilibrium, the dominant bacteria
would be Lactobacillaceae, Peptostreptococcaceae, Streptococca-
ceae, Bifidobacteriaceae and Enterobacteriaceae (Alexandru et al.,
2009; Maxwell et al., 2004; Fuller et al., 1978). However, in our
study, the dominant bacteria in the colonic digesta of finishing pigs
were Muribaculaceae, Clostridiaceae_1, Lactobacillaceae, Peptos-
treptococcaceae, Ruminococcaceae, Spirochaetaceae, Lachnospir-
aceae and Streptococcaceae, although the dominant bacteria in the
small intestine was Lactobacillaceae. These differences may be
related to different intestinal segments and pig developmental
stage. In our study, the ratio of Firmicutes to Bacteroidetes in the
control treatment was significantly lower than that in other treat-
ments, especially Cu-Gly treatments. This is of interest as an
increased ratio of Firmicutes to Bacteroidetes is an important
occurrence marker of obesity (Mariat et al., 2009). However, Chris-
tensenellaceae can effectively prevent the body from getting fat
(Waters et al., 2019). The relative abundance of Christensenellaceae
in the control treatment pigs tended to be higher comparedwith the
Cu treatments. Given that both intramuscular fat andmarbling score
increased with the addition of Cu and that the tenth rib fat depth
(P¼ 0.058) tended to be higherwhenCuwas added, the effect of Cu-
mediated changes in the microbiome on finishing efficiency and
carcass composition in finishing pigs should be considered in future
research. In addition, we found that finishing pigs receiving Cu
supplementation tended to have lower relative abundance of
Streptococcaceae. These findings of this study were in agreement
with the results of Fuller et al. (1960) who reported that CuSO4 in
piglets' diets could significantly reduce the relative abundance of
Streptococcaceae. Alternative studies showed that Lactobacillaceae
were able to protect the host from pathogenic bacteria (Xian-Gang
et al., 2008). However, Jensen found that pigs receiving a high Cu
diet had reduced relative abundance of Lactobacillaceae (Jensen,
1998). In our study, the relative abundance of Lactobacillaceae in
the control treatment tended to be lower than that in the Cu-Gly
treatment. We also found that the change of lactic acid concentra-
tion was related to Lactobacillaceae. The results indicated that
20 mg/kg Cumay enhance the abundance of probiotics. In addition,
it was previously shown that Clostridiaceae_1 and Peptos-
treptococcaceawere associated with carbohydrate degradation and
greater feed utilization capacity (Mao et al., 2015). In our study, the
Cu-Gly treatment tended to have a higher relative abundance of
Clostridiaceae_1 compared with other treatments. However, we
couldn't connect this to carbohydrate digestion and feed efficiency
using the data from the current study.
5. Conclusions

In this study, we analyzed differences among organic and inor-
ganic Cu sources, regarding the amount of Cu deposited in tissues
and assessed the potential reasons for the higher bioavailability of
organic Cu. In the concentration range of this experiment, the
addition of Cu was able to increase the daily gain and G:F of fin-
ishing pigs. Unlike inorganic Cu (CuSO4) supplementation, use of
organic Cu (Cu-Pro and Cu-Gly) significantly lowered Cu excretion,
resulting in higher Cu retention. Moreover, the apparent meta-
bolism of Cu was closely related to the transport carrier, though the
transport mechanisms of organic Cu need to be further investi-
gated. Finally, while both organic Cu and inorganic Cu have the
same important effect on growth performance and characteristics,
organic Cu sources were superior to inorganic Cu as they amelio-
rated Cu excretion and improved microflora abundance. Therefore,
organic Cu supplementation may offer an effective alternative to
inorganic Cu supplementation in swine production.
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