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Abstract

Background: Mesenchymal stem cells (MSCs) hold promising potential to treat systemic inflammatory diseases
including severe acute pancreatitis (SAP). In our previous study, placental chorionic plate-derived MSCs (CP-MSCs)
were found to possess superior immunoregulatory capability. However, the therapeutic efficacy of CP-MSCs on SAP
and their underlying mechanism remain unclear.

Methods: The survival and colonization of exogenous CP-MSCs were observed by bioluminescence imaging and
CM-Dil labeling in rodent animal models of SAP. The therapeutic efficacy of CP-MSCs on SAP rats was evaluated by
pathology scores, the levels of pancreatitis biomarkers as well as the levels of inflammatory factors in the pancreas
and serum. The potential protective mechanism of CP-MSCs in SAP rats was explored by selectively depleting M1
or M2 phenotype macrophages and knocking down the expression of TSG-6.

Results: Exogenous CP-MSCs could survive and colonize in the injured tissue of SAP such as the lung, pancreas,
intestine, and liver. Meanwhile, we found that CP-MSCs alleviated pancreatic injury and systemic inflammation by
inducing macrophages to polarize from M1 to M2 in SAP rats. Furthermore, our data suggested that CP-MSCs
induced M2 polarization of macrophages by secreting TSG-6, and TSG-6 played a vital role in alleviating pancreatic
injury and systemic inflammation in SAP rats. Notably, we found that a high inflammation environment could
stimulate CP-MSCs to secrete TSG-6.
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SAP rats.

Conclusion: Exogenous CP-MSCs tended to colonize in the injured tissue and reduced pancreatic injury and
systemic inflammation in SAP rats through inducing M2 polarization of macrophages by secreting TSG-6. Our study
provides a new treatment strategy for SAP and initially explains the potential protective mechanism of CP-MSCs on

Keywords: Mesenchymal stem cells, Placenta, Severe acute pancreatitis, Macrophage polarization, TSG-6

Introduction

Severe acute pancreatitis (SAP) is a deadly inflammatory dis-
ease caused by local pancreatic lesions, and excessive hyper-
inflammation caused by immune imbalance is an important
cause of systemic inflammatory response syndrome (SIRS)
and secondary organ dysfunction [1, 2]. Despite intensive
care treatment of SAP has improved significantly during the
past few decades, the therapeutic efficacy of SAP remains un-
satisfactory, with severe complications and a high mortality
rate [3]. Until now, the clinical treatment strategy of SAP is
still mainly based on symptomatic supportive treatment and
anti-inflammatory treatment, but these treatment strategies
cannot effectively correct immune imbalance that leads to
excessive hyperinflammation. Therefore, it is urgent to seek
for a new therapeutic strategy to re-shape the body’s immune
balance in SAP.

Mesenchymal stem cells (MSCs) retain promising potential
in the treatment of various inflammatory and immune dis-
eases due to their remarkable anti-inflammatory and immu-
noregulatory capabilities [4—7]. However, numerous studies
have demonstrated that MSCs derived from different tissues
have some unique biological characteristics [8—11]. Most
thrilling of all, some studies have confirmed that placental-
derived MSCs (P-MSCs) not only have the advantages of rich
tissue sources, easy noninvasive access, and few ethical re-
strictions, but also possess stronger immunoregulation and
proliferation capacity. For instance, Talwadekar et al. found
that P-MSCs were superior in terms of their expansion abil-
ity and immunoregulatory properties to that of umbilical
cord-derived MSCs (UC-MSCs) [12]. In our prior research,
we isolated and expanded three kinds of P-MSCs from dif-
ferent parts of the placenta, including chorionic plate-derived
MSCs (CP-MSCs), chorionic villi-derived MSCs (CV-MSCs),
and decidua-derived MSCs (D-MSCs), and found that CP-
MSCs had stronger proliferation and migration ability than
other P-MSCs and UC-MSCs [13]. Excitingly, we found that
CP-MSCs expressed CD106 higher than the other three
MSCs and showed stronger ability in regulating macrophage
polarization from M1 to M2 [13]. Consistent with this, a
study showed that CD106" MSCs possessed stronger prolif-
eration and immunoregulation capabilities than CD106~
MSCs [14]. Considering that a superior source of MSCs is
crucial for cell therapy, we thus chose CP-MSCs for the
treatment of SAP.

During SAP, immune imbalance triggers inflammatory
cascades that lead to SIRS, multiple organ dysfunction, and

even death. As a critical participator in the immune system,
macrophages play a vital role in the occurrence, develop-
ment, and evolution of SAP [15-17]. Intriguingly, macro-
phages possess strong plasticity and change their functional
phenotype dependent on the local microenvironment. Some
studies have confirmed that the transformation of macro-
phages from M1 phenotype to M2 phenotype could reduce
tissue damage in various inflammatory diseases [18—20]. For
instance, human bone marrow-derived MSCs (BM-MSCs)
alleviate lung injury by inducing M2 polarization of macro-
phages in acute respiratory distress syndrome [21]. Further-
more, our group previously demonstrated that regulating the
M2 polarization of peritoneal macrophage through abdom-
inal paracentesis drainage could ameliorate systemic inflam-
mation and pancreatic injury in SAP rats [22]. Therefore,
inducing the M2 polarization of macrophages might help
prevent the progression of SAP. In the present study, we
transplanted exogenous CP-MSCs into rodent animal
models of SAP and systematically evaluated the protective ef-
fects of CP-MSCs on SAP rats; meanwhile, we explored the
regulation and potential mechanism of CP-MSCs on macro-
phage polarization.

Materials and methods

Establishment of the SAP model

Healthy wild-type male Sprague Dawley (SD) rats weigh-
ing 200~220 g were purchased from Chengdu Dossy Ex-
perimental Animal Co., Ltd. (Chengdu, China) and fed
in a suitable environment with 25°C and 12 h dark/light
cycle, given free access to water and food. Experimental
procedures were approved by the Institutional Animal
Care and Use Committee at the General Hospital of
Western Theater Command and carried out in accord-
ance with the established International Guiding Princi-
ples for Animal Research. The rats were fasted for 12 h
before all surgical procedures. All experimental animals
were anesthetized with isoflurane (RWD Life Science,
Shenzhen, China) during the operation. The SAP models
were induced by retrograde injection of 4% sodium
taurocholate (TCA, 1 ml/kg body weight, Sigma, USA)
into the common biliopancreatic duct as previously de-
scribed [23].

Isolation, expansion, and identification of CP-MSCs
CP-MSCs derived from the human placental chorionic
plate and were cultured in MSC serum-free media
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(Yocon, China). The specific experimental methods of
CP-MSC isolation, expansion, and identification are de-
tailed in our previous research [13]. Immunophenotypic
analysis and osteogenic and adipogenic differentiation
experiments confirmed that CP-MSCs isolated from hu-
man placental chorionic plate MSCs meet the criteria of
MSCs proposed by the International Society for Cellular
Therapies (Fig. S1).

Bioluminescence imaging

First, CP-MSCs were infected with lentivirus carrying a
luciferase gene, and then CP-MSCs stably expressing lu-
ciferase were selected. Kunming mice were anesthetized,
and 4% sodium taurocholate was injected through the
pancreaticobiliary duct to prepare the SAP model. At 6
h after the operation, 1 x 10° CP-MSCs expressing lucif-
erase were infused through the tail vein. Observe the
survival and distribution of CP-MSCs in SAP mice at 1
h, 24 h, 72 h, 5 days, and 7 days after exogenous CP-
MSC transplantation. D-Luciferin (150 mg/kg body
weight) was administered i.p. to each mouse 10 min
prior to imaging. Mice were then placed in an In Vivo
Imaging System (IVIS) and the photons/second emitted
from the tissues were quantified using Living Image soft-
ware v3.2 (Caliper Life Sciences, Alameda, CA).

CP-MSCs in vivo tracking

Add 5pg Cell Tracker™ CM-Dil Dye (Invitrogen, USA) to
4 x 10° CP-MSCs, incubate at 37°C for 5 min, and then
incubate at 4°C for 15 min. After the incubation, wash
twice with 1 x PBS buffer to remove unbound CM-Dil
Dye, then resuspend the cell pellet in PBS buffer, and ad-
just the cell concentration to 2 x 10° cells/ml. Ten SD rats
were randomly divided into 2 groups: control group and
SAP group (5 per group). CP-MSCs labeled with CM-Dil
(1 x 10° cells/100g) were transplanted into rats via the tail
vein at 6 h and 30 h after the operation. All rats were
sacrificed 72 h after the first CP-MSC transplantation; the
lung, heart, liver, pancreas, spleen, kidney, duodenum, and
colon were collected and then fixed in 4% paraformalde-
hyde for 24 h and dehydrated in 30% sucrose solution.
Subsequently, the tissues were embedded in Tissue Freez-
ing Medium and cut into 8-um-thick sections. The slides
were washed with PBS and stained with DAPI to visualize
the nuclei. The distribution of CP-MSCs in different
organs was observed under a fluorescence microscope.

CP-MSC transplantation in SAP rats

Thirty-two SD rats were randomly divided into 4 groups:
control group, control + CP-MSC group, SAP group,
and SAP + CP-MSC group (8 per group). In the CP-
MSC intervention group, CP-MSCs (1 x 10° cells/100g)
were delivered through tail vein 6 h and 30 h after the
operation. All rats were sacrificed 72 h after the first CP-
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MSC transplantation, serum, liver, and pancreas tissues
were collected.

Histopathology

Pancreas samples were fixed in 10% buffered formalde-
hyde, embedded in paraffin, and sectioned. The 4-um-
thick deparaffinized sections were stained with H&E for
routine histology. According to the scoring criteria re-
ported by Schmidt et al. [24], the degree of pancreatic
edema, acinar cell necrosis, hemorrhage, and inflamma-
tory infiltrate were scored. Five different fields were ran-
domly observed under the microscope each slide.

Cell Counting Kit-8 (CCK-8) assay

The CCK-8 assay was used to detect the effect of CM-
Dil on the proliferation of CP-MSCs. The detailed oper-
ating steps were seen in supplementary materials.

Enzyme-linked immunosorbent assay (ELISA)
Inflammatory factors (IL-1p, IL-6, TNF-a, TGF-p, IL-4,
and IL-10), amylase, and lipase in rat serum were de-
tected by ELISA kits (Shanghai Jianglai Biotech, China).
In addition, the human tumor necrosis factor-a-induced
gene/protein 6 (TSG-6) ELISA kit (Shanghai Jianglai
Biotech, China) was used to detect the concentration of
TSG-6 in the culture supernatant of CP-MSCs. Detailed
operating steps were according to the manufacturer’s
instructions.

Detection of myeloperoxidase (MPO) activity in

pancreatic tissue

Accurately weigh pancreatic tissue of the same quality,
then grind it into a homogenate, and follow the manu-
facturer’s instructions in the kit to detect MPO activity
in the pancreatic tissue of each group.

Real-time quantitative PCR (RT-qPCR)

Total RNA was extracted using Trizol reagent (Invitrogen
Inc., USA), according to the products’ instructions. The
RNA was quantified by measuring the absorbance at
260nm and 280nm using a spectrophotometer (NanoDrop
Technologies, USA). RT-qPCR was performed with a
CFX96 Real-Time PCR Detection System (Bio-Rad, USA)
using one-step SYBR PrimeScript RT-PCR Kit (TaKaRa,
Japan). The sequences of primers are listed in supplemen-
tary Table S1.

Immunofluorescence staining

Immunofluorescence staining is used to detect the polar-
izing phenotype of macrophages in pancreas and liver
tissues, and the detailed method is described in supple-
mentary materials.



Huang et al. Stem Cell Research & Therapy (2021) 12:337

Preparation and polarization induction of bone marrow-
derived macrophages
Bone marrow (BM)-derived macrophages were isolated
from SD rats by flushing the BM with DMEM (Hyclone,
USA) as previously described [25, 26]. Bone marrow
macrophage induction medium was used to induce dif-
ferentiation of precursor cells into macrophages. After
7-10 days in culture, nonadherent cells were removed
and adherent cells were ready for experiment. Macro-
phages were induced with an M1 or M2 polarization in-
duction medium for 24 h and then collected for
subsequent experiments.

Bone marrow macrophage induction medium: DMEM +
10% FBS (Gibico, USA), 10 ng/ml M-CSF (Peprotech, USA).

Macrophage M1 polarization induction medium:
DMEM + 10% FBS, 100 ng/ml LPS (Sigma, USA), 50
ng/ml IEN-y (Peprotech, USA).

Macrophage M2 polarization induction medium:
DMEM + 10% FBS, 10 ng/ml IL-10 (Peprotech, USA),
10 ng/ml IL-13 (Peprotech, USA).

Selective depletion of M1 or M2 macrophages

In vitro experiment

Unpolarized-induced macrophages (M0), M1 polarization-
induced macrophages (M1), and M2 polarization-induced
macrophages (M2) were inoculated into six-well plates at 1 x
10° cells/well. After attachment of macrophages, GACI3 (100
uM, Sigma, USA) or mannosylated clodronate-encapsulated
liposomes (MCLs, Encapsula Nano Sciences, USA) were
added to the macrophage medium. The volume ratio of
MCLs to the culture medium is 1:100. Macrophages were
collected for apoptosis analysis after 48 h of intervention.

In vivo experiment

Thirty-six SD rats were randomly divided into 6 groups:
SAP group, SAP + CP-MSC group, SAP + GdCI3 group,
SAP + GdCI3 + CP-MSC group, SAP + MCLs group,
and SAP + MCLs + CP-MSC group (6 per group). In
the GdCI3 intervention group, the GdCI3 solution (0.5%,
20 mg/kg) was infused via the tail vein immediately after
the operation. In the MCL intervention group, 1 ml of
MCL solution was infused via the tail vein immediately
after the operation. In the CP-MSC intervention group,
CP-MSCs (1x 10° cells/100g) were delivered through the
tail vein 6 h and 30 h after the operation. All rats were
sacrificed 72 h after the first CP-MSC transplantation,
and serum, liver, and pancreas tissues were collected.

Flow cytometric analysis of macrophage apoptosis
Macrophage apoptosis was detected using Annexin V-
FITC Apoptosis Detection Kit (Beijing Solarbio Science
& Technology Co., Ltd., China), and the detailed operat-
ing steps are described in supplementary materials.
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TSG-6 shRNA transfection

CP-MSCs were transfected with TSG-6-specific or non-
specific control short hairpin A (shRNA, Shanghai Gene-
chem Co., Ltd., China) using transfection reagent in
shRNA transfection media according to the manufac-
turer’s protocol. Puromycin (Sigma, USA) was employed
to select stable knockdown cells for at least three
passages.

CP-MSC intervened with SAP rat serum

To simulate the microenvironment of CP-MSCs in SAP
rats, CP-MSCs were cultured in MSC serum-free media
containing 0%, 25%, and 50% SAP rat serum. After 12 h of
cultivation, CP-MSCs were collected for RT-qPCR assay.

Macrophages and CP-MSC noncontact co-culture

To explore the effects of different polarized phenotype
macrophages on CP-MSCs, CP-MSCs and macrophages
(M1 or M2 macrophages) were co-cultured at 2:5
through transwell chamber (0.4-pm pore size; Corning,
USA), where CP-MSCs and macrophages were located
in the lower and upper compartment of the chamber re-
spectively. After 24 h of co-cultivation, CP-MSCs were
collected for RT-qPCR assay.

To explore the mechanism of CP-MSCs regulating
macrophage polarization, M1 macrophages were inocu-
lated in six-well plates, and then CP-MSCs (TSG-6
shRNA) or CP-MSCs (scr shRNA) were inoculated in
the upper layer of the transwell chamber (0.4-pm pore
size; Corning, USA); the ratio of macrophages to CP-
MSCs is 5:1. After 24 h of co-cultivation, the
polarization phenotype of macrophages was detected by
flow cytometry and RT-qPCR.

Flow cytometry analysis

The polarized phenotype of macrophages was analyzed
using the following antibodies: FITC-conjugated CD163
(Bio-Rad, USA), PE-conjugated CD86 (BD Biosciences,
USA), and Alexa-Flour647-conjugated CD68 (Bio-Rad,
USA). Nonspecific isotype-matched antibodies served as
controls. The cells were analyzed using a flow cytometry
instrument (BD Cantoll, USA) and the data were ana-
lyzed using FlowJo V10.

Statistical analysis

Statistics as well as graphical representations were per-
formed using GraphPad Prism™ 7.0 (GraphPad Software
Inc., USA). All data are expressed as the means + SEM.
Comparisons between two groups were performed using
Student’s t-test. Comparisons between more than two
groups were analyzed by a one-way ANOVA test.
Results were considered statistically significant when P <
0.05.
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Results

Survival and distribution of exogenous CP-MSCs in rodent
animal models of SAP

The survival of exogenous CP-MSCs in the hyperinflam-
matory environment of SAP is the basis for therapeutic
effects. Therefore, the bioluminescence imaging was
used to monitor the survival status of CP-MSCs in SAP
mice. The results showed that the number of surviving
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CP-MSCs decreased significantly when CP-MSCs were
transplanted into SAP for 72 h, while no fluorescent sig-
nal could be detected in vivo after CP-MSCs were trans-
planted for 7 days (Fig. 1A). As CP-MSC migration and
recruitment are crucial to the success of CP-MSC-
mediated immune regulation, we determined whether
exogenous CP-MSCs may respond to signals of cellular
damage to the sites of injury after SAP. To track the

Liver

Lung

Spleen

Control

SAP

4.0+
3.54
3.04
§ 2.5
< 204
§ 1.5
1.04
0.54
0.0

72h

C D E F 150
"y

—— CP-MSCs
—=— CP-MSCs labled with CM-Dil

Duodenum Colon Pancreas

NS
3 Control

100 Bm SAP

CM-Dil labeled CP-MSCs / field

Incubation time(day)

Fig. 1 Survival and distribution of exogenous CP-MSCs in rodent animal models of SAP. A The bioluminescence imaging was used to monitor the survival
status of exogenous CP-MSCs in SAP at 7-day intervals continuously. B CP-MSCs were labeled with CM-Dil to track the distribution of CP-MSCs in SAP rats; all
rats were sacrificed 72 h after the first CP-MSC transplantation; and the lung, heart, liver, pancreas, spleen, kidney, duodenum, and colon were collected, then
observed the distribution of CP-MSCs in different tissues under a fluorescence microscope. Scale bars, 200 pum. € CP-MSCs without CM-Dil labeling. Scale bars,
50 um. D CP-MSCs labeled with CM-Dil were inoculated in a culture flask and placed in a cell culture incubator, and CM-Dil does not affect the proliferation of
CP-MSCs. Scale bars, 50 um. E The CCK-8 assay was used to evaluate the effect of CM-Dil on the proliferation of CP-MSCs. Data are represented as mean + SEM
(n = 6). F Distribution was assessed from the lung, liver, spleen, duodenum, colon, pancreas, heart, and kidney sections after CM-Dil-labeled with CP-MSC
injection in rats with or without SAP. The numbers of CM-Dil-labeled CP-MSCs represent the mean + SEM of at least 5 fields (n = 5). Significance is indicated as
follows: *p < 005, **p < 001, **p < 0.001; NS, no significant




Huang et al. Stem Cell Research & Therapy (2021) 12:337

distribution and colonization of CP-MSCs in SAP rats,
CP-MSCs were labeled with CM-Dil and adoptively
transferred into SAP rats via tail vein. Indeed, we found
that there were more CP-MSCs (red) colonized in the
liver, pancreas, duodenum, and colon of the SAP group
compared to the control group (Fig. 1B, F). Moreover, to
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observe whether CM-Dil affects the proliferation of CP-
MSCs, CP-MSCs were labeled with CM-Dil, inoculated
in the culture flask, and placed in a cell culture incuba-
tor. We found that CM-Dil had no significant effects on
the proliferation and morphology of CP-MSCs (Fig. 1C,
D). Meantime, we confirmed that CM-Dil had no
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significant effects on the proliferation of CP-MSCs by
CCK-8 assay (Fig. 1E).

CP-MSCs could alleviate pancreatic injury and systemic
inflammatory

To assess the therapeutic efficacy of CP-MSCs on pan-
creatic injury in SAP rats, we first performed pancreatic
histopathology scores and measured the activity of amyl-
ase and lipase in serum and pancreatic MPO activity
(Fig. 2A). Histologically, the SAP group showed obvious
morphological damage, such as edema, inflammation in-
filtrate, acinar necrosis, and hemorrhage, whereas the
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pancreatic tissue damage was significantly reduced in
the SAP + CP-MSC group (Fig. 2B). In addition, com-
pared with the SAP group, pancreatic MPO activity,
pancreas/body-weight ratio, and serum amylase and lip-
ase activity were significantly reduced in the SAP + CP-
MSC group (Fig. 2C-F). Meanwhile, RT-qPCR results of
inflammatory factor mRNA in pancreatic tissue showed
that CP-MSCs could significantly reduce the expression
levels of pro-inflammatory factors IL-1p and TNF-a and
increase the expression levels of anti-inflammatory fac-
tors IL-4 and IL-10 (Fig. 2G). Finally, we explored the ef-
fects of CP-MSCs on the systemic inflammatory in SAP
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(See figure on previous page.)

Fig. 4 GdCI3 and MCLs selectively induced apoptosis of M1 or M2 macrophages. To investigate the effects of GdCL3 and MCLs on macrophages with
different polarization phenotypes in vitro, we isolated and cultured macrophages from the bone marrow and induced the macrophages into M1 and
M2 phenotypes. A Flow cytometry analysis of the apoptosis of macrophages with different polarization phenotypes after 48-h intervention with
gadolinium (Il) chloride (GdCI3) or mannosylated clodronate-encapsulated liposomes (MCLs). B, C Quantitative results of the apoptosis rate when
macrophages with different polarization phenotypes were intervened by GdCI3 or MCLs (n = 3). The total apoptotic number of macrophages is from
AnV+ and Anv/Pl+. To confirm that we successfully induced bone marrow cells into M1 and M2 macrophages in vitro, the polarization phenotype of
macrophages was analyzed by flow cytometry (D) and RT-gPCR (G, H), CD163" macrophages are considered as M2 macrophages, and CD86*
macrophages are considered as M1 macrophages. E, F Flow cytometric analysis of macrophages with different polarization phenotypes (n = 3). G The
mMRNA expression levels of M1 marker genes (IL1-3, TNF-a, and iNOS) in macrophages (n = 3). H The mRNA expression levels of M2 marker genes (Arg-
1,1L-10, and CD163) in macrophages (n = 3). To observe the effect of CP-MSCs on macrophage polarization in vivo, all rats were sacrificed 72h after
the first CP-MSC transplantation, liver and pancreas tissues were collected, and then the polarization phenotype of macrophages was detected by
immunofluorescence staining. Representative immunofluorescence staining of the polarized phenotype of macrophages in the pancreas (I) and liver

tissues (J). Scale bars, 50 um. K Quantification of M2 macrophages (CD163¥) and M1 macrophages (iNOS™) in the pancreas and liver tissue, the
numbers of immunopositive cells represent the mean + SEM of at least 5 fields (n = 5). All graphs show mean + SEM. Significance is indicated as
follows: *p < 0.05; **p < 0.01; ***p < 0.001; NS, no significant. MO represents unpolarization-induced bone marrow macrophages; M1 represents M1
polarization-induced bone marrow macrophages; M2 represents M2 polarization-induced bone marrow macrophages

rats. ELISA experimental data showed that compared
with the SAP group, in the SAP + CP-MSC group, the
serum concentrations of pro-inflammatory cytokines
(such as IL-1PB, TNF-q, and IL-6) significantly decreased,
while the concentrations of anti-inflammatory cytokines
(such as IL-10, IL-4, and TGE-P) increased significantly
(Fig. 2H). The above data fully illustrated that exogenous
CP-MSCs could reduce pancreatic injury and systemic
inflammation in SAP rats.

CP-MSCs induced M2 polarization of macrophages
Increasing evidence has shown that M2 polarization of
macrophages could mitigate tissue inflammatory and
damage [21, 27, 28], so exploring the regulation of CP-
MSCs on macrophage polarization would provide
strong evidence for revealing its potential therapeutic
mechanism in SAP rats. The results of immunofluores-
cence staining of the polarized phenotype of macro-
phages showed that there were only a few macrophages
(CD68") in the pancreas tissues of the Con group and
Con + CP-MSC group, and these macrophages were
mainly located in the lobular space of the pancreas, be-
side blood vessels or bile ducts (Fig. 3A). Compared
with the Con group, there were a large number of mac-
rophages in the pancreas and liver tissues of the SAP
group, and these macrophages highly expressed CD86
and iNOS, while very few expressed CD163 and Arg-1
(Fig. 3A-D). Compared with the SAP group, the num-
ber of macrophages in the pancreatic tissue of the SAP
+ CP-MSC group was slightly reduced, and the expres-
sion of CD86 and iNOS in the pancreas and liver tissue
macrophages were significantly decreased, while the ex-
pression of CD163 and Arg-1 were significantly in-
creased (Fig. 3A—D). Based on these results, we inferred
that CP-MSCs could induce the polarization of macro-
phages from M1 to M2 in the pancreas and liver tissues
of SAP rats.

CP-MSCs mitigated pancreatic injury and systemic
inflammatory mainly by inducing M2 polarization of
macrophages

To further explore whether CP-MSCs exerted a thera-
peutic role by regulating the polarization of macrophages
from M1 to M2 in SAP rats, we selectively deplete M1 or
M2 macrophages when CP-MSCs were administered, and
then observe the protective effects of CP-MSC on SAP
rats. We depleted M1 macrophages by administration of
GdCl3, which upon phagocytosis induces apoptosis of in-
flammatory macrophages (M1) via competitive inhibition
of Ca2" mobilization and damage to plasma membranes
[29]. We depleted M2 macrophages using mannosylated
clodronate liposomes (MCLs) that bind the mannose re-
ceptor which is upregulated following M2 polarization,
and induce apoptosis via clodronate-mediated depletion
of intracellular iron [30, 31]. First, we successfully ob-
tained macrophages from rat bone marrow (Figure S3)
and induced them into M1 and M2 macrophages
(Fig. 4D—H). Next, we confirmed that GdCI3 could rela-
tively selectively induce apoptosis of M1 macrophages
(Fig. 4A, B), and MCLs could relatively selectively induce
apoptosis of M2 macrophages in vitro (Fig. 4A, C). Finally,
GdCI3 or MCLs were infused into SAP rats through the
tail vein before CP-MSC transplantation (Fig. 5A), and
then the polarization phenotype of macrophages in the
liver and pancreas was detected by immunofluorescence
staining. We found that when SAP rats were given GdCI3
intervention, iNOS* macrophages in the pancreas and
liver tissues decreased significantly, while CD163" macro-
phages increased; when SAP rats were given MCL inter-
vention, CD163" macrophages in pancreas and liver
tissues decreased significantly, while iNOS" macrophages
increased (Fig. 41-K). Therefore, the above data mani-
fested that GACI3 selectively depleted M1 macrophages,
and MCLs selectively depleted M2 macrophages in the
pancreas and liver tissues of SAP rats.
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Moreover, through pancreatic H&E staining and
pathological scores (Fig. 5B, C), the pancreas/body-
weight ratio (Fig. 5D), pancreatic MPO activity (Fig. 5E),
RT-qPCR results of pancreatic inflammatory factors
mRNA (Fig. 5H), and ELISA data of serum inflammatory

factors (Fig. 5I), amylase (Fig. 5F), and lipase (Fig. 5G),
we found that pancreatic damage and systemic inflam-
mation were significantly reduced when M1 macro-
phages were depleted, and pancreatic damage and
systemic inflammation were significantly worsened when
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Fig. 6 CP-MSC-derived TSG-6 played a vital role in inducing M2 polarization of macrophages and reducing pancreatic injury and systemic
inflammation in SAP rats. A Flow cytometric analysis of the macrophage polarization phenotype after CP-MSCs (TSG-6 shRNA) or CP-MSCs (scr
shRNA) co-cultured with M1 macrophages for 24 h. B Quantification of macrophage polarization phenotype. CD86" macrophages are considered
as M1 macrophages, and CD163" macrophages are considered as M2 macrophages (n = 3). C The mRNA expression levels of M1 marker genes
(IL1-B, TNF-a, and iNOS) in macrophages (n = 3). D The mRNA expression levels of M2 marker genes (Arg1, IL-10, and CD163) in macrophages (n
= 3). TSG-6 protein (E) and mRNA (F) expression levels in CP-MSCs (TSG-6 shRNA), CP-MSCs (scr shRNA), and CP-MSCs (n = 3). G Representative
immunofluorescence staining of the polarized phenotype of macrophages in the pancreas and liver tissue. Scale bars, 50 pm. H Quantification of
M2 macrophages (CD163") and M1 macrophages (iNOS™) in the pancreas and liver tissue. The numbers of immunopositive cells represent the
mean + SEM of at least 5 fields (n = 5). | H&E staining of pancreas tissue. Scale bars, 50 um. J RT-gPCR analysis of TSG-6 expression level of CP-
MSCs after intervention by different concentrations of SAP rat serum (n = 3). K RT-gPCR analysis of the TSG-6 expression level of CP-MSCs after
CP-MSCs were co-cultured with M1 macrophages or M2 macrophages for 24 h (n = 3). L Histopathological scores for the pancreas showed the
degree of edema, inflammation infiltrate, hemorrhage, and acinar necrosis (n = 5). M The mRNA expression levels of pro-inflammatory factors (IL-
18 and TNF-a) and anti-inflammatory factors (IL-4 and IL-10) in the pancreas (n = 5). N The concentrations of pro-inflammatory factors (IL-13 and
TNF-a) and anti-inflammatory factors (IL-4 and IL-10) in rat serum (n = 5). Data are presented as mean + SEM. Significance is indicated as follows:

*p < 0.05; *p < 0.01; **p < 0.001; NS, no significant

M2 macrophages were depleted. Therefore, it is showed
that M1 macrophages aggravated tissue inflammation
and injury in SAP rats, while M2 macrophages promoted
the regression of tissue inflammation and repaired the
injured tissues. In addition, we found that the thera-
peutic efficacy of CP-MSCs was significantly enhanced
when M1 macrophages were depleted, while the thera-
peutic efficacy of CP-MSCs was significantly inhibited
when M2 macrophages were depleted in SAP rats.
Therefore, it is indicated that CP-MSCs attenuated pan-
creatic injury and systemic inflammation mainly by in-
ducing M2 polarization of macrophages in SAP rats.

CP-MSCs induced M2 polarization of macrophages by
secreting TSG-6

To verify that CP-MSCs regulate the polarization of
macrophages from M1 to M2 by secreting TSG-6, RNA
interference technology was used to inhibit the expres-
sion of TSG-6 in CP-MSCs. By measuring the concen-
tration of TSG-6 in the culture supernatant (Fig. 6E) and
the expression level of TSG-6 gene (Fig. 6F), it was con-
firmed that the expression of TSG-6 of CP-MSCs was
successfully inhibited. Flow cytometric analysis showed
that compared with the M1 + CP-MSC (scr shRNA)
group, CD163" macrophages were significantly reduced
and CD86" macrophages were significantly increased in
the M1 + CP-MSC (TSG-6 shRNA) group (Fig. 6A, B).
In addition, RT-qPCR results indicated that compared
with the M1 + CP-MSC (scr shRNA) group, the mRNA
expression levels of M1 macrophage marker genes (IL-
1B, TNF-a, and iNOS) were significantly increased, and
M2 macrophage marker genes (Arg-1, IL-10, and
CD163) were significantly reduced in the M1 + CP-MSC
(TSG-6 shRNA) group (Fig. 6C, D). The above data
manifested that TSG-6 secreted by CP-MSCs played an
important role in regulating the polarization of macro-
phages from M1 to M2.

CP-MSC-derived TSG-6 alleviated SAP by suppressing
pancreatic and systemic inflammation

In the preceding, we have shown that CP-MSC-derived
TSG-6 shifted the macrophages from a pro-
inflammatory phenotype (M1) to an anti-inflammatory
phenotype (M2) in vitro. Next, we explored whether CP-
MSC-derived TSG-6 is involved in the switch of anti-
inflammatory macrophages in SAP rats. Polarized
phenotype immunofluorescence staining of macrophages
showed that when the expression of CP-MSC-derived
TSG-6 was suppressed, iNOS™ macrophages (M1) in-
creased significantly and CD163" macrophages (M2) de-
creased significantly in the pancreas and liver tissues of
SAP rats (Fig. 6G, H).

To confirm that CP-MSCs exert a therapeutic role
mainly by secreting TSG-6, CP-MSCs (TSG-6 shRNA)
were transplanted into SAP rats to evaluate the thera-
peutic effect. Pancreatic HE staining and pathology
scores (Fig. 61, L), RT-qPCR results of inflammatory fac-
tors in pancreatic tissues (Fig. 6M), and ELISA data of
serum inflammatory factors (Fig. 6N) indicated that
when the expression of CP-MSC-derived TSG-6 was
suppressed, the therapeutic effect of CP-MSCs is signifi-
cantly weakened. Therefore, it showed that TSG-6 se-
creted by CP-MSCs played a vital role in reducing
pancreatic injury and systemic inflammation.

Moreover, we found that when SAP rat serum was
used to simulate the hyperinflammatory environment on
CP-MSCs in SAP rats, SAP rat serum significantly stim-
ulated CP-MSCs to express TSG-6 in a dose-dependent
manner (Fig. 6]). In addition, we found that when CP-
MSCs were co-cultured with macrophages, M1 macro-
phages stimulated CP-MSCs to express more TSG-6,
while M2 macrophages did not significantly affect the
expression of TSG-6 in CP-MSCs (Fig. 6K). Therefore,
the above results indicated that a hyperinflammatory en-
vironment could stimulate CP-MSCs to express more
TSG-6.
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Discussion

In the present study, we provided the first evidence that
exogenous CP-MSCs attenuated SAP by inducing
macrophage polarization from M1 to M2 via secreting
TSG-6. The important findings of this study are as
follows: (i) Exogenous CP-MSCs can survive in the
hyperinflammatory environment of SAP and tend to
colonize the injured tissue, such as the pancreas, lung,
liver, and intestine; (ii) CP-MSCs alleviate pancreatic in-
jury and systemic inflammatory by inducing macrophage
polarization from M1 to M2 in SAP rats; (iii) CP-MSCs
secrete more TSG-6 in the inflammatory environment of
SAP, thereby inducing macrophages to polarize from
M1 to M2; (iv) TSG-6 secreted by CP-MSCs play a vital
role in alleviating pancreatic injury and systemic inflam-
mation in SAP rats. These findings provide a safe and ef-
fective therapeutic strategy for SAP and also provide
new insights into the mechanisms responsible for the ef-
fectiveness of exogenous CP-MSCs.

Cell therapy is different from conventional drug ther-
apy, mainly relying on seed cells to secrete a variety of
cytokines and active molecules to exert a therapeutic
role. Hence, the survival of CP-MSCs was crucial to
exert better therapeutic efficacy in SAP. It is imperative
to observe the survival status before investigating the
therapeutic efficacy of CP-MSCs in SAP rats. The results
of bioluminescence imaging revealed that the vast ma-
jority of exogenous CP-MSCs survived approximately
for 72 h in the hyperinflammatory environment of SAP,
which provided a reference for the selection of CP-MSC
treatment endpoint.

Numerous studies have demonstrated that MSCs held
the characteristics of migration and colonization to the in-
jury site [32—34]. However, there is no consensus on
whether exogenous MSCs colonize the pancreatic injury
site in rodent animal models of SAP. Some studies be-
lieved that exogenous MSCs mainly resided in the lungs,
and almost no MSCs colonized the pancreatic injury site
[35]. Nevertheless, other studies suggested that MSCs
could colonize the pancreas injury site, and also found
that MSCs could differentiate into acinar-like cells [23, 36,
37]. In this study, we found that CP-MSCs partially colo-
nized the lungs, and we also observed a large number of
CP-MSCs in extrapulmonary organs, such as the liver,
spleen, and intestine, etc. SAP is often accompanied by
obvious intestinal and lung injury, while the heart and kid-
ney generally have no obvious organic injury. We ob-
served that plenty of CP-MSCs were colonized the
pancreas, liver, duodenum, and colon of SAP rats, but
only few CP-MSCs colonized the heart and kidney with
abundant blood flow (Fig. S2). Furthermore, the number
of CP-MSCs colonizing in the pancreas, liver, duodenum,
and colon of SAP rats was significantly higher than that of
control rats. Therefore, it showed that exogenous CP-
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MSCs owned the characteristics of colonization at the in-
jured tissue of SAP. The colonization of CP-MSCs at the
injury site will be more conducive to exert the therapeutic
efficacy in SAP. Although, in rodent animal models of ex-
perimental SAP, MSCs tended to migrate and colonize
the pancreas injury site, and some studies have confirmed
that MSCs colonized in the pancreatic injury site could
differentiate into acinar-like cells, the current mainstream
view is that MSCs rely on the secretion of various cyto-
kines or active molecules to play a protective role for SAP.

In the present study, one important discovery was that
CP-MSCs alleviate pancreatic injury and systemic in-
flammation by inducing macrophages to polarize from
M1 to M2 in SAP rats. Macrophages play a vital role in
the progression from local inflammation of the pancreas
to a systemic inflammation and multiple organ dysfunc-
tion, which makes macrophages an interesting thera-
peutic target for SAP. In this study, one interesting
finding was that macrophages mainly showed M1
phenotype in the pancreas and liver tissues of SAP rats,
and exogenous CP-MSCs could induce macrophage
polarization from M1 to M2 phenotype. Another inter-
esting finding was that when SAP rats were given simul-
taneously GdCI3 and CP-MSCs, the therapeutic efficacy
of CP-MSCs was significantly enhanced, while when
SAP rats were given simultaneously MCLs and CP-
MSCs, the therapeutic efficacy of CP-MSCs was signifi-
cantly weakened. This result might be explained by the
fact that when GdCI3 and CP-MSCs were administered
simultaneously in SAP rats, CP-MSCs promoted differ-
entiation of monocytes towards anti-inflammatory mac-
rophages and induced macrophage M2 polarization;
meanwhile, GACL3 depleted M1 macrophages by indu-
cing apoptosis of M1 macrophages, so the proportion of
M2 macrophages in the tissue obviously increased; when
MCLs and CP-MSCs were administered simultaneously,
CP-MSCs induced M2 polarization of macrophages;
meantime, MCLs depleted M2 macrophages by inducing
apoptosis of M2 macrophages, so the proportion of M2
macrophages in the tissues reduced significantly. M1
macrophages are pro-inflammatory macrophages, which
secrete a vast array of pro-inflammatory factors (such as
IL-1f, TNF-a, and iNOS) to aggravate the pancreatic
and systemic inflammatory response, and M2 macro-
phages are anti-inflammatory macrophages, which se-
crete large amounts of anti-inflammatory factors (such
as IL-10 and IL-4) to alleviate the pancreatic and sys-
temic inflammatory response [27, 38]. Therefore, we can
infer that CP-MSCs reduce pancreatic injury and
systemic inflammatory response by inducing M2
polarization of macrophages in SAP rats.

Another important discovery was that CP-MSCs in-
duced M2 polarization of macrophages by secreting
TSG-6, and TSG-6 played a vital role in alleviating
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pancreatic injury and systemic inflammation in SAP rats.
Tumor necrosis factor-a-induced gene/protein 6 (TSG-
6) is an inflammation-inducing protein that can reduce
tissue inflammation and promote damaged tissue repair
in inflammatory diseases. For instance, Choi et al. found
that human bone marrow-derived MSCs (BM-MSCs)
could attenuate zymosan-induced mouse peritonitis by
secreting TSG-6 to inhibit the production of pro-
inflammatory factors of macrophages [39]. Qi et al. find-
ings demonstrated that BM-MSCs accelerated wound
healing and reduced tissue fibrosis by secreting TSG-6
in murine full-thickness skin wounds [40]. Song et al.
revealed that BM-MSCs inhibited inflammatory neovas-
cularization in the cornea by suppressing pro-angiogenic
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monocyte/macrophage recruitment in a TSG-6-
dependent manner [41]. Meanwhile, some studies have
shown that TSG-6 could induce the polarization of mac-
rophages from a pro-inflammatory phenotype (M1) to
an anti-inflammatory phenotype (M2). For instance,
TSG-6 released from canine adipose tissue-derived
(cAT)-MSCs could alleviate dextran sulfate sodium-
induced colitis by inducing a macrophage phenotypic
switch to M2 in mice [42]. Moreover, another study
showed that TSG-6 secreted by human adipose tissue-
derived (hAT)-MSCs induced macrophages that infil-
trated into the colon to switch to the M2 phenotype,
thus regulating the expression of inflammatory cytokines
and the alleviation of DSS-induced colitis symptoms in
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Fig. 7 Schematic diagram depicting the potential therapeutic mechanism of CP-MSC to relieve SAP. During the occurrence of SAP, damaged
pancreatic acinar cells release a variety of chemokines and inflammatory mediators to induce the recruitment of circulating monocytes to the
pancreatic injury site and activate them into M1 macrophages, which in turn further aggravate pancreatic injury. When trypsin, damage-related
molecules, and inflammatory mediators return to the liver through the portal vein, they can stimulate liver macrophages to secrete a large
amount of pro-inflammatory factors, thereby further aggravating the systemic inflammatory. Therefore, liver macrophages play a “booster” role in
promoting the development of local pancreatic injury to SIRS and multiple organ dysfunction. When CP-MSCs are exposed to the
hyperinflammation environment of SAP, pro-inflammatory cytokines such as TNF-a stimulated CP-MSCs to secrete more TSG-6, TSG-6 regulated
the polarization of macrophages from M1 to M2, and M2 macrophages secreted a large number of anti-inflammatory cytokines (such as IL-10
and IL-4) to inhibit excessive hyperinflammation and accelerate the repair of damaged pancreatic tissue




Huang et al. Stem Cell Research & Therapy (2021) 12:337

mice [43]. Therefore, we speculated that CP-MSCs
might regulate macrophage polarization by secreting
TSG-6, thereby reducing pancreatic damage and sys-
temic inflammation in SAP rats.

To confirm this hypothesis, we used RNA interfer-
ence to knock down the expression of TSG-6 in CP-
MSCs, and then co-cultured CP-MSCs (TSG-6
shRNA) with M1 macrophages in vitro. Meanwhile,
CP-MSCs (TSG-6 shRNA) were transplanted into
SAP rats to observe their treatment effects. When
suppressing the expression of TSG-6 in CP-MSCs, we
found that the ability of CP-MSCs to regulate the
polarization of macrophages from M1 to M2 was sig-
nificantly inhibited, and the protective effect of CP-
MSCs on SAP rats was also significantly weakened.
Therefore, it is shown that TSG-6 secreted by CP-
MSCs exerted an important therapeutic role in SAP
rats. Furthermore, we found that the inflammatory
environment stimulated CP-MSCs to express TSG-6
higher. Meanwhile, studies have shown that when
MSCs are placed in the inflammatory microenviron-
ment, pro-inflammatory cytokines, such as TNF-q,
stimulate MSCs to secrete TSG-6 [44, 45]. Taken to-
gether, we speculated that pro-inflammatory cytokines
such as TNF-a stimulated CP-MSCs to secrete more
TSG-6 in the inflammatory environment of SAP and
TSG-6 regulated the polarization of macrophages
from M1 to M2 (Fig. 7).

Conclusion

In conclusion, our study provides a new treatment
strategy for SAP and initially explains the potential
protective mechanism of CP-MSCs on SAP rats. We
found that CP-MSCs secreted TSG-6 to induce mac-
rophages to polarize from M1 to M2, thereby redu-
cing pancreatic injury and systemic inflammation in
SAP rats. Despite the advancement in our under-
standing of the therapeutic effects of CP-MSCs in
SAP, further study should be taken up using different
animal models of SAP.
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