
cancers

Review

Ovarian Cancer Dissemination—A Cell
Biologist’s Perspective

Sadaf Farsinejad 1, Thomas Cattabiani 1, Taru Muranen 2 and Marcin Iwanicki 1,*
1 Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA;

sfarsine@stevens.edu (S.F.); tcattabi@stevens.edu (T.C.)
2 Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; tmuranen@bidmc.harvard.edu
* Correspondence: miwanick@stevens.edu

Received: 19 November 2019; Accepted: 4 December 2019; Published: 6 December 2019
����������
�������

Abstract: Epithelial ovarian cancer (EOC) comprises multiple disease states representing a variety of
distinct tumors that, irrespective of tissue of origin, genetic aberrations and pathological features,
share common patterns of dissemination to the peritoneal cavity. EOC peritoneal dissemination is
a stepwise process that includes the formation of malignant outgrowths that detach and establish
widespread peritoneal metastases through adhesion to serosal membranes. The cell biology associated
with outgrowth formation, detachment, and de novo adhesion is at the nexus of diverse genetic
backgrounds that characterize the disease. Development of treatment for metastatic disease will
require detailed characterization of cellular processes involved in each step of EOC peritoneal
dissemination. This article offers a review of the literature that relates to the current stage of
knowledge about distinct steps of EOC peritoneal dissemination, with emphasis on the cell biology
aspects of the process.

Keywords: ovarian cancer; fallopian tube secretory epithelial cells; peritoneal dissemination;
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1. Introduction

1.1. EOC Classification

EOC is the most common form of ovarian cancer, and it can be divided into two types based on
histology. Type I tumors include endometroid, mucinous, clear-cell, and low-grade serous carcinomas.
Type II tumors are high-grade serous ovarian carcinomas (HGSOCs) and represent the majority of
EOC cases. Mutational [1] analysis of EOC revealed diverse genetic landscapes that characterize
each tumor subtype (Table 1). Endometroid tumors are mainly characterized by phosphatase and
tensin homolog (PTEN) and catenin beta 1 (CTNNB1) mutations [2–5], whereas mucinous tumors
display a high-degree of tumor protein P53 (TP53) mutations (52%) [6–8] and additional mutations in
Kirsten rat sarcoma viral oncogene homolog (KRAS), serine/threonine protein kinase B-Raf (BRAF),
and cyclin-dependent kinase inhibitor 2A (CDKN2A). AT-rich interaction domain 1A (ARID1A) and
phosphatidylinositol-4,5-3-kinase catalytic subunit alpha (PIK3CA) mutations characterize a majority
of ovarian clear-cell carcinomas [4,5,9,10], while low-grade serous ovarian tumors predominantly
show alterations in KRAS [5,11–15]. In contrast to type I tumors, HGSOCs show relatively low
mutational burden with the exception of ubiquitous TP53 mutations and additional (10%) mutations in
DNA repair genes including breast cancer type susceptibility proteins 1/2 (BRCA1, BRCA2) [5,11–15].
These tumors are primarily characterized by the high frequency of gene copy number variation (CNV).
Despite genetic variability among EOC, these carcinomas can share a common metastatic location, the
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peritoneum, suggesting that genetic pathways that characterize each tumor subtype activate common
cell biology processes that drive EOC dissemination.

Table 1. EOC subtypes with reported mutations and metastatic sites.

EOC Main
Types EOC Subtypes Mutations [1] Metastatic Sites References

(PMID)

Type I

Endometroid

PTEN, CTNNB1,
PPP2R1α,

MMR-deficient,
ARID1A

Distant lymph node metastasis, liver
parenchymal metastasis, plural
effusion with positive cytology

[2–5]

Mucinous TP53, KRAS, HER-2
amplification

Peritoneum, omentum, appendix
gastrointestinal, pancreas, cervix,

breast, uterus Distant lymph node
metastasis, liver parenchymal

metastasis, plural effusion with
positive cytology

[6–8,16–19]

Clear cell PIK3CA, KRAS,
PTEN, ARID1A

Peritoneal cavity, paraaortic lymph
node, distant metastasis in

parenchymal organ; Pleura, liver,
lung, may initially present with bone
metastases, and skin metastases very

rarely

[4,5,9,10,20–22]

Low-grade serous BRAF, KRAS,
NRAS, ERBB2

Distant lymph node metastasis, liver
parenchymal metastasis, plural

effusion with positive cytology, bone
[5,23–25]

Type II High-grade serous TP53, BRCA1,
BRCA2, CDK12

Distant lymph node metastasis, liver
parenchymal metastasis, plural
effusion with positive cytology,
omentum, falciform ligament,

sigmoid serosa, appendix, pelvic side
wall, paracolic gutter, bladder serosa

[5,11–15]

1.2. EOC Peritoneal Dissemination

EOC dissemination rarely follows an invasion–metastasis cascade where single cells or collective
cell populations break through the basal lamina, penetrate surrounding tissues, and intravasate into
the vasculature [26,27]. EOC can form loosely attached outgrowths that extend the apical boundary of
the tissue mucosa [28]. Outgrowths can completely detach (release) from the mucosa, transit through
the peritoneal fluids, and attach to new sites [29] (Figure 1). This unusual route of dissemination
is associated with tumor heterogeneity [30], development of resistant disease [31], and abdominal
organ obstruction, which is the leading cause of patient morbidity and mortality [32]. Each step of
EOC dissemination reflects a unique molecular mechanism and cellular phenotype. Understanding
the molecular and cellular determinants of outgrowth formation, release, and interaction with the
microenvironment will provide a fundamental framework that is required for the discovery of new
therapies aimed at targeting peritoneal dissemination. In the sections below, we provide a description
of known cellular and molecular processes that support distinct steps of EOC dissemination (refer to
Table 2).
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Figure 1. EOC outgrowth formation, dissociation, and colonization.

Table 2. EOC dissemination steps driven by cellular and molecular mechanisms.

Dissemination
Steps Cellular Process Molecular Process References

Outgrowth
Formation

Modulation of adhesion mediated by
cytoskeleton and cell-cycle regulators

-NMMII and ROCK [33–38]
-Cell arrest at G2/M

ECM remodeling -Activation of MMP, integrin B1, and Lamininγ1 deposition
on cell surface. [39–41]

Loss of apical–basal cell polarity -Loss of ParD6 (cell polarity regulator) [42,43]
-Inhibition of TGFBR1, downregulation of SMAD2

Release
Loss of adhesion to basement membrane -MT1-MMP by cleavage of integrin α3 [44]

Escaping anoikis -Detaching as clusters help bypassing anoikis [45]

Proximity of tubal mucosa to ovarian
surface epithelium favors direct adhesion [46,47]

Survival and
Growth of Detached

Tumors

LPA -induced survival signaling

-Activates MAPK, PI3K, PKC, Rho-GTPase, RAC, CDC24 [48–53]
-Downregulation of APC6 (LPA-degrading enzyme)

-Activation of FAK signaling [54–57]

-Rho–ROCK-mediated ECM remodeling and assembly of
Integrin adhesion [57,58]

Adhesion to ECM
-ECM deposition on cell surface with help of upregulated

integrins and suppressed anoikis [27,39,40,48,
59–61]-Required for growth factor-mediated signaling

Soluble immune-stimulating molecules

-IL6; inactivation of pro-apoptotic factors, i.e., JAK, RAS,
PDK1, AKT, and apoptotic factors, i.e., BAX, BAD [62–75]

-Expansion of cancer stem cells after chemotherapy

-TNFα; promotes tumor survival and growth, correlated
with other cytokines (IL6) and chemotactic factors, i.e., CCL2

and CCLX2
[76–85]

-EGF; secreted by TAM, promotes cell mobility. [86–88]

Adhesion and
Clearance of the

Mesothelium

Appropriate niche for adhesion of
suspended cancer cells through cell surface

receptors

-Cell-surface receptors; CD44, MUC16, placental cadherin,
integrins such as α5β1 [89–93]

-Requires activation of NMMII and ROCK
-Mediated by EMT; upregulation of vimentin

Metastatic Tumor
Microenvironment

Tumor cells reprogram non-malignant cells
such as fibroblasts, neutrophils, mesothelial

cells, adipocytes by secreting
pro-inflammatory molecules

-Fibroblasts reprogramed by cytokine-dependent regulation
of miRNAs, turn to CAF and secrete growth and

chemotactic molecules to support tumor progression
[94–96]

-Mesothelial cells reprogramed by TGFβ secreted from
tumor cells, secrete more fibronectin, facilitate tumor

attachment
[97]

-Tumor cells secrete cytokines to attract neutrophils and
promote their death and netosis, creating nets that capture

and reinforce adhesion and growth of tumor cells
[98]

-Adipocytes secrete adipokines to attract cancer cells to the
omental surface. Activate lipolysis in cancer cells which

provide energy for cancer growth. Adipocytes also activate
kinases, including SIK2, leading to PI3K/AKT axis, which

regulates cell survival, proliferation, and motility.

[95,99]
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2. Outgrowth Formation

Progression of transformed fallopian tube secretory epithelial cells (FTSEC) toward serous tubal
intraepithelial carcinoma (STIC) is considered to be an initiating event in a significant proportion of
EOC cases [100]. Some regions of STIC lesions can form multicellular loosely attached outgrowths that
extend apically into the peritoneal cavity [28]. Immunohistochemical analysis of STICs suggests the
possibility that molecular pathways associated with proliferation, DNA repair, cytoskeletal dynamics,
and matrix adhesion contribute to outgrowth formation [39,101,102]. Due to limited availability of
transformed FTSEC culture models that would faithfully capture outgrowth dynamics, the role of
these pathways in EOC outgrowth formation remains unknown. However, experiments involving a
combination of live-cell imaging of transformed epithelial cells, other than FTSEC, provided valuable
information on how proliferation and regulation of cytoskeletal dynamics and basement membrane
adhesion modulate the initiation of apical outgrowths. In this sub-section, we briefly discuss studies
that implicate apical extrusion or apical “budding” in malignant outgrowths and the formation of
peritoneal metastases.

Epithelial cell sheets maintain an appropriate cell number and healthy tissue function through the
apical extrusion of apoptotic or live cells [103–105]. Apical epithelial cell extrusion is associated with
the activation of non-muscle myosin II (NMMII)-dependent contractility that, through pulling forces
on cell–cell and cell–matrix adhesion, facilitates cell de-adhesion from basal lamina and subsequent
translocation of cells to the apical portion of the epithelial sheet [33,34]. Not only do normal cells
undergo apical extrusion, but oncogene-transformed cells can also translocate on top of the apical
surface of the epithelium, forming outgrowths [106]. Src- or Ras-transformed epithelial cell extrusion
requires activity of Rho-associated kinase (ROCK) and NMMII [35,36] and is coupled to gap 2/mitosis
(G2/M) transition [37], indicating that different oncogenic factors use common pathways that involve
the regulation of cell-cycle- and cytoskeleton-mediated modulation of adhesion that is critical for
outgrowth formation. Because STICs are proliferative [107] and G2/M progression is associated with
reduced adhesion to the basement membrane [38], we suggest that rapidly dividing FTSECs, through
the loss of basement membrane adhesion, undergo apical extrusion and continue to proliferate while
remaining attached to apical surfaces of the epithelial layer. STIC lesions deposit laminin γ1 on apical
and cell–cell junctional surfaces [39]; thus, it is possible that re-attachment of extruded cells to the
apical surface of the epithelium is mediated by laminin-binding integrins, such as integrin β1. In favor
of this possibility, there are studies implicating integrin β1 activation and extracellular matrix (ECM)
deposition along apical and cell–cell junctional surfaces of detached transformed FTSECs and tumors
isolated from ascites [40]. Simultaneous examination of integrin β1 activation and surface deposition
of laminin γ1 in STICs would provide further information about whether outgrowths, through ECM
adhesion, maintain cell-to-cell attachment.

In contrast to apical extrusion, where single cells extrude and give rise to malignant outgrowths,
apical budding involves collective translocation of a group of carcinoma cells that colonize peritoneal
tissues through their apical surfaces [42]. Live-cell imaging and immunofluorescence analysis of
tumors collected from peritoneal fluids of colorectal cancer (CRC) patients revealed that peritoneal
dissemination was supported by tumor clusters that underwent apical budding collectively [43].
Similar to apical extrusion of single cells, collective apical budding required NMMII and ROCK activity,
further reinforcing a crucial role for cell contractility and ECM remodeling in mediating early steps of
peritoneal dissemination. Loss of a cell polarity regulator partitioning defective homolog D (ParD6),
inhibition of tumor growth factor beta receptor 1 (TGFBR1), and attenuation of mothers against
decapentaplegic homolog 2 (SMAD2) expression accelerates the generation of CRC cell populations
capable of apical budding, suggesting that interference with apical–basal polarity drives peritoneal
dissemination. The attachment of CRC budding tumor cell populations to the peritoneal wall or an
artificially assembled ECM occurs through the engagement of these tumor cell apical surfaces. Because
STIC apical surfaces face the peritoneal cavity, it is possible that, similar to CRC, STIC peritoneal
dissemination involves collective budding, and apically localized integrins meditate attachment of
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STIC to proximally located serosal surfaces. It remains to be established, by using appropriate markers
of myosin activation, cell polarity, and integrin activation, whether transformed FTSECs that form
peritoneal outgrowths activate myosin contractility and use apically localized integrins to adhere
to metastatic sites, such as ovarian mesothelium or omentum. Development of new models that
recapitulate malignant outgrowth formation by transformed FTSECs would provide opportunities
to examine whether apical extrusion or apical budding initiates EOC dissemination, and whether
extrusion mechanisms such as ROCK/NMII activation and remodeling of integrin β1 adhesion are
required for the initiation of EOC dissemination.

3. Release

Cells detach because they lose adhesion to a basement membrane [108]. Upon release from the
basement membrane, detached transformed cells either die [109] or continue to grow [110]. EOC
outgrowths are often associated with the nearby presence of histologically and molecularly similar
free-floating multicellular tumor clusters [111], indicating that outgrowths undergo detachment.
The mechanisms responsible for detachment are not well understood. Early experiments utilizing
two-dimensional monolayer cultures of ovarian cancer cell lines provided evidence that constitutively
active membrane type 1 matrix metalloproteinase (MT1-MMP), through integrin α3 cleavage, promoted
EOC monolayer sheet detachment [44]. Al Habyan et al. [45] demonstrated, using live-cell imaging,
that ovarian cancer cells detached from a cellular cluster collectively or as single cells. Interestingly,
most of the single cells died upon release, indicating that multicellular clusters that detach from
spheroids bypass death associated with the loss of adhesion contact. Both of these studies indicated
that mechanisms of adhesion regulation intrinsic to tumor cells are essential for the release of tumor
clusters into the peritoneum. Microenvironmental factors could also influence how tumor outgrowths
are released from the primary site. For instance, the close proximity of tubal mucosa to ovarian surface
epithelium allows FTSECs to form adhesions with the mesothelium and grow directly on the surface
of the ovary [46]. Recent evidence [112] suggests that individuals who underwent salpingectomy
(removal of Fallopian tubes), for reasons other than ovarian cancer, possessed microscopic tubal tissue
on the surface of the ovary, indicating the possibility that fallopian tube mucosa naturally comes in
contact with the ovarian surface. Thus, it is conceivable to think that malignant outgrowths adhere
to ovarian mesothelium before release. Supporting this possibility, there are ex vivo experiments
demonstrating collective adhesion of transformed FTSECs to the surface of the ovary [47]. This mode
of dissemination would lead to adhesion formation between the ovary and the fallopian tube. Due to
fallopian tube movement, the nature of this attachment would be transient, leading to the rupture of
tubo-ovarian tissue and release of tumor clusters into the peritoneum. Experiments in mice indicated
that oophorectomy significantly decreased peritoneal dissemination, further reinforcing the idea that
interplay between the fallopian tube and the ovary constitutes an important factor in supporting
detachment and peritoneal dissemination [113]. A combination of tissue-engineering approaches
focused on the development of organotypic co-culture systems that incorporate FTSECs and ovarian
mesothelium would be required to study, in detail, the mechanism of tubo-ovarian adhesion and its
importance in promoting transformed FTSEC detachment.

4. Survival and Growth of Detached Tumors in the Peritoneal Cavity

Thirty percent of newly diagnosed ovarian cancer patients, and nearly all recurrent cases present
with the abdominal accumulation of multicellular tumor cell clusters, suspended in peritoneal fluids
(ascites) [114]. Abdominal ascites accumulates as a result of increased vascular permeability, poor
fluid reabsorption through the mesothelium and the lymphatics, and increased peritoneal oncotic
pressure. Some of detached tumor cellular clusters suspended in ascitic fluid maintain viability and
colonize abdominal organ surfaces through peritoneal fluid movement [115]. Thus, understanding
survival mechanisms of detached clusters could potentially help development of new therapeutic
approaches that target free-floating carcinoma cell clusters. Early studies explored the hypothesis



Cancers 2019, 11, 1957 6 of 21

that ascitic fluid contains biologically active factors that contribute to the survival of detached
clusters [116–118]. Examination of non-cellular fractions of peritoneal fluid isolated from ovarian
cancer patients revealed the presence of mitogenic factors, extracellular matrix components, and
a variety of pro-inflammatory molecules [114]. Below, we direct the reader to several studies that
highlighted the role of lysophosphatidic acid (LPA), extracellular matrix (ECM) fragments, interleukin
6 (IL-6), and tumor necrosis factor alpha (TNFα), in the regulation of detached tumor survival. We
chose to focus on these molecules for two reasons: (i) their concentration levels are higher in EOC
malignant ascites as compared to ascites caused by non-cancer-related diseases; (ii) in addition to
supporting detached tumor cell survival and growth, these molecules, though regulation of vascular
growth factor (VEGF) expression [62,119,120], impact lymphatic and mesothelium permeability [121]
and, thus, regulate ascites accumulation and overall ovarian cancer progression [122]. For a more
focused review of soluble factors present in the ascitic microenvironments of ovarian cancer patients,
we direct the reader to a recently published review by Muller et al. [123].

4.1. Role of Lysophosphatidic Acid

Data from multiple laboratories demonstrated a critical pro-survival role for lysophosphatidic
acid (LPA), a major mitogen found in ascites and blood of ovarian cancer patients [124,125]. LPA
is a water-soluble phospholipid that binds to the LPA receptor, an endothelial differentiation gene
family member 2,4,7 (Edg2,4,7) [126,127]. LPA binding to Edg activates heterotrimeric guanine
nucleotide binding regulatory proteins (G-proteins). G-proteins are classified into Gs, Gi, Gq, and
G12/13 and LPA was shown to couple Edg to Gi, Gq, and G12/13 [48,128–130]. The LPA-mediated
engagement of G-proteins triggers activation of an array of pro-survival signaling pathways including
mitogen-activated protein kinase (MAPK) [49], phosphoinositide 3 kinase (PI3K) [50], protein kinase
C (PKC) [51], and small Rho family GTPases Rho [52], Rac [48], and CDC42 [53]. Experiments
demonstrated that, in comparison to normal ovarian epithelium, ovarian cancer cell lines displayed
increased production of LPA, implicating an intrinsic, oncogene-driven program that regulates autocrine
secretion of LPA [131–134].

The vast majority of EOC cells that initiate from fallopian tube epithelium carry p53 mutations,
and, more recently, Chryplewicz et al. [54] elegantly demonstrated that mutant p53 (m-p53)-dependent
transformation of FTSECs led to the increased secretion of LPA. The oncogene’s effect on LPA
production was associated with downregulation of an LPA-degrading enzyme, lysophosphatidic acid
phosphatase type 6 (APC6), and activation of focal adhesion kinase (FAK) signaling. Survival of
ovarian cancer cells suspended in a murine peritoneal cavity depended on lower APC6 expression,
suggesting the possibility that autocrine production of LPA, through modulation of ECM adhesion,
mediates dissemination of detached carcinoma cells. Activation of LPA receptors induces G12/13

Rho/ROCK-mediated remodeling of ECM adhesion and increased phosphorylation of FAK [55–57].
Therefore, it is possible that engagement of the LPA receptor in suspended EOC cells further reinforces
already existing integrin-dependent signaling that is required to sustain survival of detached cells.
In favor of this possibility, there are studies implicating LPA-mediated Rho/ROCK activation in the
assembly of integrin adhesion in an ovarian cancer model [58]. The evaluation of LPA effects on
ECM adhesion under anchorage deprivation and subsequent measurement of suspended cell survival
would require a long-term imaging platform capable of simultaneous acquisition, reconstruction, and
quantification of ECM adhesion and cellular viability in multiple Z-planes of three-dimensional (3D)
cellular clusters.

4.2. Role of Extracellular Matrix

One of the characteristics of ascites-derived tumors is their high degree of cell-to-cell adhesion, cell
surface deposition of ECM, and integrin activation [40,59,135]. Ascites contain soluble ECM [136,137],
and EOC deposits ECM on cell surfaces [27,39,59–61], suggesting that, in the suspended environment
of a peritoneal cavity, EOC cells engage integrins to organize ECM adhesion and, thus, suppress
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cell death associated with anchorage deprivation (anoikis). ECM adhesion is required for growth
factor-mediated signaling [138]. Therefore, it is possible that ECM adhesion in suspension is vital for
mitogenic and pro-survival effects of growth factors present in ascites. Studies from our laboratory
used live-cell imaging approaches to examine the role of integrins and integrin-mediated adhesion in
ovarian cancer cluster survival in suspension cultures supplemented with epidermal growth factor
(EGF) and insulin [27]. We found that de novo engagement of integrins with a self-deposited matrix
on the surface of suspended ovarian cancer cells or transformed FTSECs was required for survival and
cell-to-cell attachment. Live-cell imaging of EOC cellular clusters treated with various concentrations of
integrin β1 or integrin α5 function-blocking antibodies induced cell death within hours, implying that
blocking formation of new ECM adhesion in suspended cells leads to rapid cell death. Interestingly,
when we performed the same experiment on tumor cells that had formed tightly adhered clusters, cell
death was dramatically decreased. These observations indicate that inhibition of integrins would likely
affect cells that dynamically remodel ECM adhesion, for instance, cell populations that undergo apical
budding. Because not all ascites-derived EOC cells survive in suspension, it remains to be evaluated
whether the degree of ECM deposition by the detached cells correlates with the survival of EOC in
ascitic environments.

4.3. Role of Soluble Immune-Stimulating Molecules

Profiling of cytokines in ascitic fluids isolated from patients uncovered the presence of pro-
inflammatory molecules [63,64], among which IL-6 and TNFα were suggested as critical mediators
of tumor cell survival [62,65–69]. The concentrations of these cytokines appeared to be significantly
higher in ascites than in serum, indicating that the dissemination of EOC is linked to widespread
peritoneal inflammation [139,140].

4.3.1. IL-6 and EOC

Increased IL-6 expression in tumor tissues from EOC patients with disease progression
predicts chemotherapy resistance and poor patient survival [65,141,142]. Studies from Coward
et al. [143] revealed that inhibition of IL-6 with a function-blocking antibody (siltuximab) significantly
decreased intraperitoneal tumor burden in mouse xenograft models. IL-6 inhibition decreased
macrophage-mediated inflammation and increased apoptosis, suggesting the possibility that IL-6
controls disease progression through modulation of the microenvironment and/or direct effect on
tumor cells. Direct regulation of tumor cell survival by IL-6 involves inactivation of pro-apoptotic
molecules and regulation of anti-apoptotic protein expression [144–148]. IL-6 binds to a non-signaling
alpha receptor (IL-6R) that dimerizes with a beta receptor (gp130) [149]. This association activates Janus
kinases (JAKs) that, through phosphorylation of gp130, couple Ras and phosphatidylinositides [70,71].
IL-6-induced activation of phosphoinositide-dependent kinase-1 (PDK1) promotes protein kinase B
(Akt) phosphorylation, and subsequent phosphorylation and suppression of pro-apoptotic proteins
Bax (Bcl-2-associated X, apoptosis regulator) and Bad (Bcl-2-associated agonist of cell death) [72,73].
In addition to inactivating Bad, IL-6/JNK-mediated activation of the signal transducer and activator of
transcription 3 (STAT3) pathway led to increased expression of anti-apoptotic proteins including Bcl-2
and Bcl-Xl [74]. IL-6-mediated STAT3 signaling is supported by the engagement of matrix receptor
integrin β1 [150], suggesting the possibility that maintaining ECM adhesion by detached cellular
clusters defines anti-apoptotic programs evoked by IL-6.

4.3.2. TNFα and EOC

Another pro-inflammatory molecule present in peritoneal fluids isolated from EOC patients is
TNFα [151]. In spite of its name, “tumor necrosis factor”, which would indicate tumor-suppressive
activities, there is mounting evidence that TNFα can promote tumor survival and growth through
its pro-inflammatory effects [76–83]. Notably, in EOC models of peritoneal dissemination, where
human tumor cells grown in mouse peritoneum constitutively secrete TNFα, genetic attenuation of
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TNFα expression in tumor cells significantly decreased carcinoma burden [84]. The effect of TNFα
produced by cancer cells correlated with increased expression levels of other cytokines including IL-6
and chemotactic factors such as C–C motif chemokine ligand 2 (CCL2) and C–X–C motif chemokine
ligand 12 (CXCL12). These results support the hypothesis that TNFα-producing EOC cells regulate
cytokine/chemokine networks that directly, or through the microenvironment, support tumor survival
and growth. To address the contribution of the microenvironment, Charles et al. [85] examined
peritoneal tumor growth under conditions of intact or TNF receptor 1 (TNFR1)-null mutant bone
marrow-derived immune microenvironment. The study provided compelling evidence that co-culture
of tumor cells and TNFR1-null bone marrow-derived leukocytes, within the peritoneum of a syngeneic
murine host, resulted in a significant suppression of carcinoma growth. Interestingly, re-expression
of TNFR1 in cluster of differentiation 4-positive (CD4+), IL-17-secreting T helper cells, but not
macrophages or dendritic cells, rescued carcinoma progression indicating a role for immunologic
tolerance in driving EOC progression. Yin et al. [86], however, made a case for tumor-associated
macrophages (TAMs) in supporting carcinoma cell proliferation within suspended cellular clusters.
The tumor-promoting activities of TAMs depended on direct interaction with EOC cells and local
production of EGF. Interestingly, immunofluorescent evaluation of cancer cells and macrophages
confined to the same cellular clusters revealed that macrophages occupied central areas of a cellular
cluster, and that proliferating carcinoma cells were predominantly present at the cluster periphery.
These results suggested that, in addition to proliferation, TAMs promote tumor cell motility through
EGF secretion. What would be the advantage of tumor cell motility within a suspended cellular cluster?
The effect of TAMs on cancer cell translocation could possibly contribute to tumor cell budding, where
cells translocate out of the epithelial mass to initiate new metastatic outgrowths. Previous studies
utilized two-photon live-tissue microscopy to capture the effect of EGF-secreting TAMs on tumor
cell phenotypes [87,88]. The data suggest that TAMs promote motility of carcinoma that eventually
intravasate into the vasculature. In summary, the suspended, pro-inflammatory environment of ascites
provides a rich soluble and cellular environment to support EOC survival, growth, and colonization of
secondary organs within the peritoneal cavity. Development of imaging approaches to capture the
behavior of tumor and stromal cells, in time and space, confined to suspended cellular clusters will
broaden our mechanistic understanding of detached tumor biology and help identify molecules that
perturb tumor–microenvironment interactions.

5. Clearance of the Mesothelium

The hallmark of disseminated EOC is the presence of carcinoma deposits on the serosal (outermost
lining) surfaces of the omentum, peritoneal wall, and bowel [94]. Mesothelial cells are the major cellular
components of the serosa, and the attachment of tumors to mesothelial cell layers is associated with the
absence of mesothelial cells beneath the tumor mass, hinting at carcinoma-mediated displacement or
clearance of the mesothelium [152–155]. Tumor-associated cell surface receptors including CD44 [89–91],
mucin 16 (MUC16) [92,93], placental cadherin [156], and various integrins [89,155,157–159] were all
shown to mediate initial adhesion of cancer cells to mesothelial cell layers. More recently, studies
indicated a critical role for α5β1 integrin signaling in mediating colonization of the omentum [155,158]
and mesothelial clearance [160–168]. Live-cell imaging approaches of EOC and mesothelial cells
revealed that tumor-mediated mesothelial clearance was regulated by α5β1 integrin-dependent
coupling of the tumor cell actomyosin network to the mesothelial cell-derived fibronectin matrix. EOC
associated with lateral surfaces of the mesothelial cells and, through physical pulling on fibronectin,
induced mesothelial cell movement that resulted in clearance of mesothelial cells from beneath the EOC
cells. The carcinoma’s ability to pull on a fibronectin matrix was mediated by NMMII activity, where
signaling pathways that activate NMMII are requisite regulators of mesothelial clearance. ROCK,
through phosphorylation of non-muscle myosin light chain (MLC), regulates NMMII activity [169],
and studies by Kwon et al. demonstrated the vital role of ROCK in ECM remodeling by EOC cells [170].
Interestingly, tumor cells that remodeled ECM in a ROCK-dependent manner also expressed markers
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of mesenchymal transcriptional programs, suggesting the possibility that mesothelial clearance is
regulated by tumor-associated programs that contribute to epithelial-to-mesenchymal transition (EMT).
Davidowitz et al. showed that a tumor’s ability to clear mesothelial cell monolayers correlated with
expression levels of mesenchymal markers, such as vimentin, and that attenuation of mesenchymal
transcription factor expression levels in EOC compromised mesothelial clearance [167]. These studies
further supported the role of EMT programs in EOC penetration of the mesothelium. In spite of
histologic and electron micrographic data providing evidence of mesothelial cell retraction in response
to tumor adhesion and absence of mesothelial cells under the tumor mass [152–155], a recent report
from Pakula and colleagues questioned a tumor’s ability to clear the mesothelium in vivo [171].
Their argument is supported by still images of peritoneal metastasis growing beneath the mesothelial
cell layer. These observations may report on a post-invasion event, which is the growth of tumors
at a secondary tissue. A plausible hypothesis could be that mesothelial cells, upon tumor cluster
invasion, close the cleared area and repair the tissue on top of tumor implants, creating a new
serosal layer. Application of in vivo live-tissue microscopy would be needed to capture and quantify
tumor–mesothelial cell dynamics and, thus, validate in vitro findings. Nevertheless, growing evidence
suggests that EOC cells interact with tissues that are normally covered by a mesothelial layer, indicating
that breaching the mesothelial cell layer allows EOC cells to remodel the underlying matrix and
initiate new heterotypic interactions with the microenvironment [172]. Cancer-associated fibroblasts,
neutrophils, macrophages, and T-cells were shown to play a definite role in providing support
for EOC growth at the metastatic sites [123]. Understanding the complexity of EOC and tumor
microenvironment interactions will provide new avenues for the development of strategies that restrain
tumor growth and survival through targeting tumor microenvironments.

6. Metastatic Tumor Microenvironment

It is well established that disseminated EOC adapts to metastatic environments by co-opting
non-malignant cells that support tumor attachment, growth, survival, and immune evasion [173].
One of the most frequent EOC metastatic sites is the omentum [94,95], a thin spongy fatty tissue that
covers abdominal organs. Studies using EOC patient omental tissue explants, adapted to ex vivo
3D culture conditions, documented the existence of an intimate relationship between omental cell
populations and tumors. Mitra et al. provided evidence that the secretory and pro-inflammatory
nature of ovarian tumors reprograms omental fibroblasts into cancer-associated fibroblasts (CAFs) that
secrete growth and chemotactic molecules to support tumor progression [96]. The reprograming of
normal fibroblasts occurred through the cytokine-dependent regulation of microRNAs (micRNAs)
that supported fibroblast cell association with tumors. In another study, Neiman et al. used omental
explants and genetically engineered mice to demonstrate that adipocytes that reside within the
omentum secrete adipokines to attract EOC to the omental surface [99]. Following EOC attachment
to the omentum, adipocytes were found to interact with EOC and subsequently activate fatty-acid
breakdown mechanisms (lipolysis). Adipocytes, through fatty acid-binding protein 4 (FABP4),
transferred processed fats to tumors for β-oxidation to generate energy required for carcinoma growth.
The hypothesis that omental adipocytes support tumor growth was also explored by Miranda and
colleagues [95]. Their studies elegantly demonstrated the effect of adipocytes on activation of the major
serine/threonine protein kinase, salt-inducible kinase 2 (SIK2), in EOC tumors. Activation of SIK2
led to stimulation of phosphoinositide 3 kinase (PI3K) and its target Akt, a major signaling pathway
involved in the regulation of cell metabolism, survival, proliferation, and motility.

Fibroblasts and adipocytes reside beneath a single layer of mesothelial cells covering the omentum.
In order to facilitate initial adhesion of tumor cells to omentum, EOC cells were shown to release
transforming growth factor β (TGFβ) and reprogram mesothelial cells to produce, secrete, and deposit
fibronectin that, in turn, facilitated tumor attachment [97]. Secretion of fibronectin by mesothelial
cells depended on activation of Rac-GTPase in mesothelial cells. In another study, a similar mode
of paracrine effect of tumor cells on omental immune microenvironment was observed. Lee and
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colleagues showed, using in vivo and in vitro models of omental microenvironment–EOC interactions,
that tumors secrete cytokines prior to dissemination to attract neutrophils and promote their death [98].
The death of neutrophils was associated with netosis: a process in which neutrophils expel chromatin
content into the extracellular space to create sticky neutrophil extracellular traps (nets) of a DNA and
protein matrix that is designed to capture and inactivate pathogens. However, in the case of EOC
dissemination, the nets successfully captured tumor cells; however, instead of killing, they reinforced
carcinoma adhesion and growth. Since the netosis occurred prior to EOC attachment to the omentum,
it remains to be answered whether, in response to EOC-secreted cytokines, neutrophils extrude through
the mesothelium and subsequently undergo netosis, or the nets are formed beneath the mesothelial
cells and directly impact mesothelial cell integrity. Both scenarios would suggest the hypothesis that
neutrophils, either before or after netosis, regulate cell–cell and cell–matrix adhesion of mesothelial
cells. Application of live-cell microscopy that would reveal the dynamics of mesothelial cell adhesion
in response to neutrophil activation or nets could test this hypothesis.

7. Limitations of the Review

In such a brief review of a vast subject, even devoid of clinical content and just from the perspective
of cell biology, we regret merely representing an exiguous portion of the many valuable contributions
from innumerable researchers in the field. We can only hope to invite a broader dialogue and
disseminate interest among the cell biology community to address this devastating disease.

8. Conclusions and Future Directions

Significant progress was made in developing models that recapitulate phenotypes associated
with distinct steps of EOC peritoneal dissemination. Notably, 3D culture approaches that incorporate
multiple cell types or even whole-tissue explants proved to be crucial in studying complex molecular
mechanisms of mitogenic signaling, cell–cell and cell–matrix adhesion, metabolism, and immune
response. Furthermore, application of live-cell imaging brought a spatial–temporal dimension to
the study of phenotypes associated with EOC dissemination. These cell biology assays provide an
excellent tool for researchers to discover new molecular mechanisms and carcinoma cell behaviors.
In Figure 2, we present a graphical scheme of EOC dissemination from tubal surfaces, highlighting
regulators of outgrowth formation, detachment, survival, and colonization. In the era of single-cell
analysis of a tumor and its microenvironment, new regulators of distinct steps of EOC metastasis will
be identified. Thus, further development of cell biology organotypic assays will become an important
tool for the evaluation and validation of new targets.

There is still a gap in knowledge regarding the biology related to EOC-mediated obstruction
of organs within the peritoneal cavity. Bowel obstruction is a frequent cause of death among EOC
patients [174–176], yet the molecular and cellular mechanisms of EOC-mediated bowel obstruction
are unknown. The mesothelial cell layer directly covers smooth muscle cells of the small bowel.
EOC tumors that colonize small bowel serosa obstruct the function of intestinal smooth muscle cells
through unknown mechanisms. Development of new cell biology approaches that include co-culture of
mesothelial and intestinal smooth muscle cells or intestinal tissue explants will have to be engineered,
in order to investigate obstruction mechanisms. Moreover, the application of advanced imaging
technologies capable of quantification of tumor and stromal phenotypes, in real time and 3D space,
will be required to monitor carcinoma and its microenvironmental interactions.

Identification of FTSECs as cells of origin for a significant proportion of EOCs propelled research
toward understanding the natural history of the disease with hopes for discovering cell phenotypes
associated with mechanisms of outgrowth formation and tumor detachment. Using appropriate
organotypic models of FTSECs, we will be able to understand mechanisms of tumor initiation and find
strategies to detect and eliminate early tumors.
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Abbreviations

EOC Epithelial Ovarian Cancer
HGSOC High-grade serous ovarian carcinomas
PTEN Phosphatase and tensin homolog
CTNNB1 Catenin beta 1
TP53 Tumor protein P53
KRAS Kirsten rat sarcoma viral oncogene homolog
BRAF Serine/threonine protein kinase B-Raf
CDKN2A Cyclin-dependent kinase inhibitor 2A
ARID1A AT-rich interaction domain 1A
PIK3CA Phosphatidylinositol-4,5-3-kinase catalytic subunit alpha
BRCA1, BRCA2 Breast cancer type susceptibility proteins 1/2
CNV Gene copy number variation
FTSEC Fallopian tube secretory epithelial cells
STIC Serous tubal intraepithelial tubal carcinoma
NMMII Non-muscle myosin II
Src Src proto-oncogene
ROCK Rho-associated kinase
Erbb2 Erb-B2 receptor tyrosine kinase 2
ECM Extracellular matrix
CRC Colorectal cancer
ParD6 Partitioning defective 6 homolog alpha
TGFβ Tumor growth factor β
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TGFβR2 Tumor growth factor β receptor 2
SMAD2 Mothers against decapentaplegic homolog 2
MT1-MMP Membrane type 1 matrix metalloproteinase
LPA Lysophosphatidic acid
Edg 2,4,7 Endothelial differentiation gene family member 2,4,7
G-proteins Heterotrimeric guanine nucleotide binding regulatory proteins
PI3K Phosphoinositide 3 kinase
m-p53 Mutant p53
APC6 Lysophosphatidic acid phosphatase type 6
FAK Focal adhesion kinase
EGF Epidermal growth factor
VEGF Vascular endothelial growth factor
IL-6 Interleukin-6
IL-6R Interleukin-6 receptor
TNFα Tumor necrosis factor alpha
JAKs Janus kinases
PDK1 Phosphoinositide-dependent kinase-1
Akt also known as protein kinase B (PKB)
Bcl-2 Bcl-2 (B-cell lymphoma 2)
Bcl-XL B-cell lymphoma-extra large
Bax Bcl-2-associated X, apoptosis regulator
Bad Bcl-2 associated agonist of cell death
JNK c-Jun N-terminal kinase
STAT3 Signal transduction activation of transcription 3
MAPK Mitogen-activated protein kinase
CCL2 C–C motif chemokine ligand 2
CXCL12 SDF1 C–X–C motif chemokine ligand 12, also known as stromal cell-derived factor 1
TNFR1 TNF receptor 1
TAMs Tumor-associated macrophages
MLC Myosin light chain
EMT Epithelial-to-mesenchymal transition
CAF Cancer-associated fibroblasts
FABP4 Fatty acid-binding protein 4
SIK2 Salt-inducible kinase 2
NETs Neutrophil extracellular traps
CDC42 Cell division control protein 42
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