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Resequencing of LPL in African Blacks and
associations with lipoprotein–lipid levels

Dilek Pirim1, Xingbin Wang1,2, Zaheda H Radwan1, Vipavee Niemsiri1, Clareann H Bunker3,
M Michael Barmada1, M Ilyas Kamboh*,1 and F Yesim Demirci*,1

Genome-wide association studies have identified several loci associated with plasma lipid levels but those common variants

together account only for a small proportion of the genetic variance of lipid traits. It has been hypothesized that the remaining

heritability may partly be explained by rare variants with strong effect sizes. Here, we have comprehensively investigated the

associations of both common and uncommon/rare variants in the lipoprotein lipase (LPL) gene in relation to plasma lipoprotein–

lipid levels in African Blacks (ABs). For variant discovery purposes, the entire LPL gene and flanking regions were resequenced

in 95 ABs with extreme high-density lipoprotein cholesterol (HDL-C) levels. A total of 308 variants were identified, of which 64

were novel. Selected common tagSNPs and uncommon/rare variants were genotyped in the entire sample (n=788), and 126

QC-passed variants were evaluated for their associations with lipoprotein–lipid levels by using single-site, haplotype and rare

variant (SKAT-O) association analyses. We found eight not highly correlated (r2o0.40) signals (rs1801177:G4A, rs8176337:

G4C, rs74304285:G4A, rs252:delA, rs316:C4A, rs329:A4G, rs12679834:T4C, and rs4921684:C4T) nominally (Po0.05)

associated with lipid traits (HDL-C, LDL-C, ApoA1 or ApoB levels) in our sample. The most significant SNP, rs252:delA,

represented a novel association observed with LDL-C (P=0.002) and ApoB (P=0.012). For TG and LDL-C, the haplotype

analysis was more informative than the single-site analysis. The SKAT-O analysis revealed that the bin (group) containing

22 rare variants with MAF≤0.01 exhibited nominal association with TG (P=0.039) and LDL-C (P=0.027). Our study indicates

that both common and uncommon/rare LPL variants/haplotypes may affect plasma lipoprotein–lipid levels in general African

population.
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INTRODUCTION

Plasma lipoprotein–lipid levels modulate the risk for atherosclerosis
and cardiovascular disease (CVD).1 Plasma lipid–lipoprotein levels are
under genetic control,2 and genome-wide association studies (GWAS)
have revealed several loci associated with plasma lipids.3–7 However,
most of the identified loci have small effect sizes and explain only
~ 30% of the genetic variance of lipid phenotypes.6 It has been
suggested that rare or low-frequency variants with moderate/strong
effects that are not captured by GWAS could explain a part of the
‘missing heritability’.8,9 An effective way to identify these rare/low-
frequency variants is to resequence the candidate genes in subjects
with extreme phenotypes.10 This strategy has already been successfully
employed for various candidate genes involved in lipid metabolism,
where multiple rare variants were found to contribute to inter-
individual variation in plasma lipid levels.11–16

Lipoprotein lipase (encoded by LPL) is an enzyme that hydrolyzes
triglyceride (TG) rich particles into free fatty acids and glycerol. High
LPL activity is associated with lower TG and higher high-density
lipoprotein cholesterol (HDL-C) levels.17 Several common LPL variants
were reported to modulate lipid levels and CVD risk.18 Resequencing of
LPL in patients with hypertriglyceridemia identified mutations asso-
ciated with extremely high TG levels.12–14,19 However, the impact of
rare LPL variants on plasma lipids in general population remains largely

unknown. In this study, we sequenced LPL in 95 African Blacks (ABs)
with extreme HDL-C levels and genotyped-selected variants in 788
subjects to test their association with lipid levels.

MATERIALS AND METHODS

Subjects
The study sample was comprised of 788 ABs from Benin City, Nigeria
(Table 1), recruited as part of a study on civil servants to investigate coronary
heart disease (CHD)-related lifestyle factors in this generally lean population.
Detailed information on the original study including the sample features and
methods used for plasma lipoprotein–lipid measurements can be found
elsewhere.20–24 Ninety-five subjects selected from the upper (n= 48) and lower
(n= 47) 10th percentiles of HDL-C distribution in the study sample were used
for LPL sequencing (Table 2).

DNA sequencing and genotyping
The entire LPL gene (27 993 bp) plus 1196 bp in 5ʹ flanking and 1 kb in 3ʹ
flanking region were sequenced in both directions (see Supplementary Data for
details). After quality filtering, the sequence chromatograms were individually
inspected and variants were manually reviewed by at least two researchers.
In addition to selecting all relevant common and rare variants for follow-up
genotyping (see section Follow-up genotyping of selected LPL variants in the
entire sample), any singleton novel variant surrounded by moderate-quality
sequences (with some level of background noise) was treated as 'suspicious' and
also included in follow-up genotyping for confirmation. Selected variants were
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genotyped in total sample using TaqMan (Applied Biosystems, Waltham, MA,
USA) or iPLEX Gold (Sequenom, San Diego, CA, USA) methods (see
Supplementary Data for details), except for HindIII (rs320:T4G) polymorph-
ism genotyped by restriction fragment length polymorphism analysis in an
earlier study.16

Statistical analyses
Haploview25 was used to test the concordance with Hardy–Weinberg equili-
brium (HWE) and to determine the allele frequencies, linkage disequilibrium
(LD) patterns and pairwise correlations (r2). An additive linear regression
model was used to test the effects of genotypes on the means of plasma lipid–
lipoprotein traits. The nominal P-value of o0.05 was considered as suggestive
evidence of association. Benjamini–Hochberg procedure was applied to control
false discovery rate (FDR) in single-site analyses for each trait and FDRo0.20
was considered as statistically significant.26 A post hoc power analysis27 was
performed to evaluate the power of detecting significant single-site associations
for the observed proportions of the variance of lipid traits explained by tested
SNPs. For haplotype analysis, the generalized linear model28 was applied using
the Haplo.Stats R package (Rochester, MN, USA). Cumulative effects of
uncommon/rare variants were analyzed using the SKAT-O method29 and three
MAF thresholds (≤1%, ≤ 2% and o5%). Additional details on statistical
analyses can be found in Supplementary Data.

RESULTS

DNA resequencing results
A total of 308 variants were identified, of which 130 were common
(MAF≥ 0.05), 118 were uncommon (0.01≤MAFo0.05) and 60 were

rare (MAFo0.01; Figure 1a); 19 were indels and 2 triallelic SNPs
(Supplementary Table 1); 246 were identified in introns, 30 in 3ʹ-UTR,
14 in flanking regions, 12 in coding regions and 6 in 5ʹ-UTR (Figures
1b and c). All identified coding variants were known SNPs; seven
nonsynonymous and five synonymous. We successfully identified all
but three common variants (rs1470187:G4T, rs59184895:T4C and
rs328:C4G) reported in African-descent populations (dbSNP build
138); these variants were located at the beginning or end of
resequencing amplicons where the sequence read quality is usually
low in Sanger sequencing, which probably hampered their identifica-
tion in our sequencing sample, however, they were successfully
genotyped in our entire sample. Of 308 variants, 64 (2 common
and 62 uncommon/rare) have not been previously reported in dbSNP
and thus have been submitted to dbSNP database (http://www.ncbi.
nlm.nih.gov/SNP/snp_viewTable.cgi?handle=KAMBOH). Four of 64
novel variants were located in flanking regions, 3 in 5ʹ-UTR, 6 in 3ʹ-
UTR and 51 in introns; majority (69%) had MAFo0.01. We
identified nine novel indels (all located in introns) ranging in size
from 1 to 15 bases. In addition to ‘novel variants’, we identified ‘novel
uncommon/rare alleles’ at two nucleotide positions where common
diallelic variations were previously reported (rs7002728:G4T and
rs28599962:T4C), thus we detected triallelic variations at these
positions where the least frequently observed allele was unique to
our sample. Of 308 variants, 24 were found only in high HDL-C group
vs 54 only in low HDL-C group.

Follow-up genotyping of selected LPL variants in the entire sample
LD and Tagger analyses were performed on 130 common variants
(MAF≥ 0.05) to identify and select the tagSNPs for follow-up
genotyping in the entire sample; 92 common tagSNPs were selected
using the r2 cut-off of 0.9 (Supplementary Table 2). We also compared
our Tagger results with those from the HapMap YRI population. All
common tagSNP bins identified in HapMap YRI data for the same
genomic region using the same parameters were also captured in our
data. In addition to common tagSNPs, we selected the following
variants for follow-up genotyping: (i) variants located in exons or
intron–exon junctions, (ii) uncommon/rare variants (MAFo0.05)
present in ≥ 2 individuals included in sequencing and (iii) suspicious
(borderline quality) novel variants identified in sequencing. Addition-
ally, three known common LPL SNPs that were not detected in our
sequencing (see section DNA resequencing results) were also included
in follow-up genotyping. In total, 163 variants were selected for
follow-up genotyping in addition to 1 variant (rs320:T4G) that was
already genotyped as part of an earlier study.16 Of 164 variants (92
tagSNPs, 72 others) advanced into next stage, 30 failed the assay design
for genotyping (23 tagSNPs, 7 others) and 2 suspicious variants turned
out to be monomorphic after genotyping (indicating sequencing
artifacts). Of 132 successfully genotyped variants (Supplementary
Table 3), one was triallelic and not included in downstream analyses.
As a part of QC, five additional SNPs (two tagSNPs, three others) were
excluded from downstream analyses; two had low call rate and three
did not meet the HWE. Thus, a total of 126 variants (67 common and
59 uncommon/rare variants based on their frequency in our entire
sample) were included in downstream association analyses. The LD
bins of these 126 variants are shown in Supplementary Table 4.

Association of common variants (MAF≥ 0.05) with lipid/
lipoprotein levels
Table 3 summarizes the single-site analyses results for 17 common
variants that showed nominal associations (Po0.05) with one or more
of four lipid traits (HDL-C, LDL-C, ApoA1 or ApoB) in 788 ABs.

Table 1 Biometric and quantitative data of the study sample

Variable

African Blacks (n=788)

number or mean±SD

Male/female (n) 495/293

Age (years) 40.95±8.39

BMI (kg/m2) 22.87±4.04

LDL-C (mg/dl) 109.25±34.40

HDL-C (mg/dl) 47.88±12.87

TG (mg/dl) 72.96±39.32

TC (mg/dl) 172.01±38.47

ApoB (mg/dl) 66.98±22.19

ApoA1 (mg/dl) 137.03±28.46

Abbreviations: ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoproten cholesterol; TC, total cholesterol;
TG, triglycerides.

Table 2 Demographics and characteristics of the sequencing

sample (95 African Blacks)

Variable

High HDL-C (n=48)

number or mean±SD

Low HDL-C (n=47)

number or mean±SD P-valuea

Male/female 24/24 23/24 1

Age (years) 41.29±8.72 40.87±7.12 0.8

BMI (kg/m2) 22.06±4.70 23.91±5.51 0.08

TC (mg/dl) 201±39.68 141.68±31.03 o0.001

LDL-C (mg/dl) 112.55±39.75 95.04±28.28 0.02

HDL-C (mg/dl) 76.05±7.53 25.51±5.66 o0.001

TG (mg/dl) 61.98±19.85 95.79±73.21 0.004

ApoB (mg/dl) 66.00±20.22 69.64±21.46 0.4

ApoA1 (mg/dl) 166.04±28.19 103.84±27.23 o0.001

Abbreviations: ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoproten cholesterol; TC, total cholesterol; TG,
triglycerides.
aP-values were calculated based on the original values by using t-test. No covariates were
included.
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The results for all 67 common SNPs for all five tested lipid traits are
summarized in Supplementary Tables 5. A post hoc power analysis
showed that our power to detect a causal SNP would be 78–92%,
given the proportion of the variance of the lipid traits explained
by these SNPs (ranging from 1.0% to 1.4%) and a significance
level of 0.05.
The most significant SNP, rs252:delA (intronic variant), was

associated with LDL-C (β=− 1.037; P= 0.002; FDR= 0.134) and
ApoB (β=− 2.364; P= 0.012; FDR= 0.328) levels. This is a novel
association given that the rs252:delA SNP was not in high LD
(r2≤ 0.20) with other nominally associated SNPs (Figure 2), including
two functional LPL variants rs1801177:G4A (p.(Asp36Asn)) and
rs13702:C4T (resides in 3ʹ-UTR and disrupts a microRNA-410
recognition element seed site).30 One additional SNP, rs74304285:

G4A, which again was not highly correlated (r2≤ 0.11) with other
relevant SNPs, was also associated with both LDL-C (β= 0.995;
P= 0.019; FDR= 0.627) and ApoB (β= 3.014; P= 0.010;
FDR= 0.328). In addition, four other weakly correlated (r2≤ 0.20)
SNPs (rs1801177:G4A, rs8176337:G4C, rs329:A4G and
rs12679834:T4C) were nominally associated with ApoB levels, of
which rs12679834:T4C was also associated with ApoA1 levels.
Two of these SNPs (rs1801177:G4A and rs8176337:G4C) were
previously reported to be associated with TG,31,32 but showed only
0.05oPo0.20 for TG levels in our study.
The second most significant SNP, rs316:C4A (synonymous

variant), was associated with HDL-C (β= 0.68; P= 0.003; FDR=
0.178) and ApoA1 (β= 1.292; P= 0.022; FDR= 0.288) levels.
The rs316:C4A SNP was in LD with four intronic SNPs, including
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Figure 1 (a) Minor allele frequency distribution of LPL variants identified in African Blacks (n=95). (b) Distribution of LPL variants by location in the gene
and comparison with size distribution of those locations. (c) Number and locations of LPL variants identified in African Blacks (n=95).
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rs279:C4G (P= 0.029; FDR= 0.233; r2= 0.54) and rs295:A4C
(P= 0.043; FDR= 0.291; r2= 0.46) associated with HDL-C, and
rs301:T4C (P= 0.008; FDR= 0.212; r2= 0.69) and rs320:T4G
(P= 0.018; FDR= 0.212; r2= 0.62) associated with HDL-C and
ApoA1. The rs320:T4G SNP (HindIII polymorphism) has been
well-known and consistently associated with HDL-C and TG levels
in several studies.18,32,33 Five more SNPs located in 3ʹ-UTR or 3ʹ
flanking region and in LD (r240.40) with each other or with above
five SNPs, also yielded nominal associations with HDL-C: rs1059507:
C4T (β= 0.689; P= 0.031; FDR= 0.233), rs13702:C4T (β=− 0.490;
P= 0.011; FDR= 0.212), rs3916027:G4A (β= 0.421; P= 0.028 FDR=
0.233), rs4921683:T4A (β= 0.757; P= 0.019; FDR= 0.212) and
rs4921684:C4T (β= 0.869; P= 0.016; FDR= 0.212). Of 10 SNPs
associated with HDL-C in our sample, 7 (rs301:T4C, rs316:C4A,
rs320:T4G, rs1059507:C4T, rs13702:C4T, rs3916027:G4A and
rs4921683:T4A) exhibited suggestive evidence of association with
HDL-C also in a recent meta-analysis.34 Six of them (rs301:T4C,
rs316:C4A, rs320:T4G, rs1059507:C4T, rs4921683:T4A,
rs4921684:C4T) were also nominally associated with ApoA1 in our
study. Another widely studied LPL variant, rs328:C4G/p.(Ser474Ter)
(p.(Ser447Ter) in mature protein excluding the signal peptide),
occurred at lower frequency (4.2%) in our African sample (410%
in Europeans) and its established association with TG and HDL-C in
Europeans was not replicated here.
All together, we found eight nominally associated (Po0.05) and not

highly correlated (r2o0.40) signals; rs1801177:G4A, rs8176337:
G4C, rs74304285:G4A, rs252:delA, rs316:C4A, rs329:A4G,
rs12679834:T4C and rs4921684:C4T. To our knowledge,

rs74304285:G4A and rs252:delA have not been tested before for
association with lipids.

Association of uncommon/rare variants (MAFo0.05) with lipid/
lipoprotein levels
For the SKAT-O analysis of 59 uncommon/rare variants with
lipid traits, 3 bins were generated using 3 MAF thresholds (bin 1
(59 variants with MAFo 0.05), bin 2 (32 variants with MAF≤ 0.02)
and bin 3 (22 variants with MAF≤ 0.01)) and test statistics were
calculated for each bin separately. Although bin 1 was associated with
ApoB (P= 0.016), bin 3 showed significant association with both TG
(P= 0.039) and LDL-C (P= 0.027; Table 4). In post hoc single-site
analysis of 22 rare variants in bin 3 (Supplementary Table 10),
7 (including 3 novel) showed nominal association with one or more
lipid/lipoprotein traits (TG, HDL-C, LDL-C or ApoA1).

Haplotype-based association analysis results
A total of 123 overlapping windows, each containing four SNPs, were
constructed using the sliding window approach (sliding one SNP at a
time) for haplotype analysis of 126 variants with lipid traits (Figure 3).
P-values were calculated based on the comparison of each haplotype
with the most common reference haplotype. The strongest haplotype
effects were observed on HDL-C, followed by ApoB, comprising
19 and 18 nominally significant (Po0.05) global P-values, respectively
(Supplementary Table 11). The most significant window (‘window 81’
containing rs313:A4G, rs314:A4G, rs77434393:G4A and rs316:
C4A) was associated with both HDL-C (global P= 2.32E-04) and
ApoA1 (global P= 0.021). The only SNP in this window that showed
association in single-site analysis was rs316:C4A (P= 0.003 with

Figure 2 LD structure of 17 LPL SNPs associated with one or more lipid/lipoprotein traits (HDL-C, LDL-C, ApoA1 or ApoB levels). The values in the cells are
the pairwise degree of LD indicated by r2×100. Shades of white indicate r2=0, shades of gray indicate 0or2o1 and shades of black indicate r2=1.
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HDL-C; P= 0.022 with ApoA1) and thus the observed haplotype
association seemed to be primarily driven by this SNP. Although the
haplotypes in intron 6–intron 8 region were associated with HDL-C
and ApoA1, those in intron 8–intron 9 were associated with ApoB.
Although no common LPL SNPs were associated with TG in single-
site analysis, seven haplotype windows showed nominal associations
with TG. Overall, haplotype analysis was more informative for TG and
LDL-C than single-site analysis.

Functional annotation of significant SNPs using RegulomeDB
ENCODE annotations were retrieved for all variants using
RegulomeDB35 (Supplementary Table 1). Of 10 of 17 nominally
associated SNPs scored in RegulomeDB (Table 3), 2 (rs316:C4A and
rs12679834:T4C) were cis-eQTL (expression quantative trait loci)
SNPs (score= 1f) but the remaining showed minimal evidence for
regulatory function (scores= 4–6).

DISCUSSION

To our knowledge, this is the first study of its kind that reports a
comprehensive catalog of sequence variation in the entire LPL gene in
African individuals in relation to plasma lipid traits. Resequencing of
95 ABs with extreme HDL-C levels identified 308 variants, of which
64 were novel. Recently, our group also reported the resequencing of
entire LPL gene in 95 non-Hispanic whites (NHWs) with extreme
HDL-C levels;36 176 variants were identified in 95 NHWs, of which
113 were also found in 95 ABs. As expected, we observed more
variation (especially more uncommon/rare variants) in ABs.
Nickerson et al37 sequenced a portion of LPL (9.7 kb) in 71 individuals
randomly selected from three populations, including African
Americans (AAs) from Jackson, Mississippi (n= 24).37 We observed
more variants (97 vs 78, of which 71 shared) in this 9.7 kb region in
ABs as compared with AAs in Nickerson et al.37 Observed differences
could be due to differences in genetic background (ABs vs AAs),
sample size (95 vs 24), selection criteria (subjects with extreme lipid
profiles vs randomly selected subjects) and/or software tools used for
variant analyses (Variant Reporter vs PolyPhred).
Following the discovery stage, 164 variants were selected for follow-

up in our entire sample (n= 788), of which 126 successfully passed all
genotyping steps (assay design, run and post-run QC) and were
analyzed for association with lipid traits. Single-site analysis of
common SNPs revealed 10 nominal associations (Po0.05) with
HDL-C, 3 with LDL-C, 6 with ApoB and 8 with ApoA1 levels. Our
observation of a higher number of associations with HLD-C is

consistent with the published data.32 In Europeans, several LPL SNPs
have been reported to be associated with lipid levels, including six
(rs268:A4G, rs326:G4A, rs320:T4G, rs328:C4G, rs1801177:G4A
and rs13702:C4T) consistently associated with HDL-C and/or
TG.32,38–41 Among these, rs268:A4G was absent in our African
sample and in HapMap YRI data. The rs326:G4A SNP has also been
shown to be associated with HDL-C in AAs.42 Although rs326:G4A
showed no association in our sample, it was in LD with HDL-
associated SNP rs13702:C4T (P= 0.011; FDR= 0.212; r2= 0.64). The
association of rs13702:C4T with HDL-C has also been reported in
AAs.43,44 Although rs13702:C4T was shown to be in LD with rs320:
T4G in Europeans,32 the correlation was weak in our African sample
(r2= 0.27). Replication of the association of rs13702:C4T with HDL-
C in multiple African-derived samples and its potential to disrupt a
microRNA recognition site30 support its functional role in HDL
metabolism in African-descent subjects. Common SNPs in/around
LPL have also been reported in several lipid GWAS conducted mostly
in European-descent subjects.45–47 A large GWAS conducted for CHD
and risk factors in AAs48 replicated 17 European loci, including two
HDL-C associated SNPs (rs10503669:C4A and rs10096633:C4T)
located downstream of LPL (outside of our target region).
The rs328:C4G (p.(Ser447Ter)) SNP has been shown to increase

LPL activity and cause lower TG and higher HDL-C levels.16,18,33,38

Although its frequency is relatively high in Whites (MAF410%), it is
low in our African sample (4.2%) and in HapMAP YRI population
(3.3%). Although the potential functional significance of rs328:C4G
is appreciated in Europeans, recent studies in AAs have sparked debate
on its role.43,44 An admixture mapping study of 3300 AAs determined
that the effect size of rs328:C4G on TG was dependent on ancestral
background and significantly diminished in subjects with African
background,43 suggesting that there might be other truly causal
undiscovered variant(s) in LD (or acting synergistically) with rs328:
C4G. A cross-sectional and longitudinal study found rs328:C4G to
be significantly associated with both HDL-C and TG in European
Americans but only with TG in AAs.44 A recent large GWAS in AAs
failed to show its association with HDL-C or TG.48 Consistent with
most reports in AAs, we did not observe association of this SNP with
HDL-C or TG in our sample. The HindIII (rs320:T4G) polymorph-
ism has been shown to have the same effects on TG and HDL-C as has
rs328:C4G, and there has been a debate over whether their effects are
independent.16,33,39,49–51 The rs320:T4G SNP is predicted to affect
the binding of a transcription factor and so may be functional by
itself.52 In our data, the association of rs320:T4G with HDL-C

Table 4 Results of rare variant association analyses (SKAT-O) of the LPL gene

TG LDL-C HDL-C ApoB ApoA1

MAF threshold N.RVa
N.Sample_

RVb
N.Sample_

NoRVc Stat P Stat P Stat P Stat P Stat P

Bin 1 (MAFo0.05)
59 613 175 3.50E+05 0.170 2.26E+05 0.487 1.96E+05 0.265 2.08E+06 0.016 7.84E+05 0.128

Bin 2 (MAFp0.02)
32 223 565 1.92E+05 0.059 5.07E+05 0.103 1.20E+05 0.075 6.47E+04 0.706 1.08E+05 0.162

Bin 3 (MAFp0.01)
22 84 704 1.64E+05 0.039 4.57E+05 0.027 2.40E+05 0.086 4.81E+04 0.612 4.63E+04 0.332

Abbreviation: SKAT-O, optimal sequencing Kernel association test.
aN.RV: number of rare variants below the defined MAF threshold.
bN_Sample_RV: number of individuals carrying the rare allele with defined MAF threshold.
cN.Sample_NoRV: number of individuals who do not carry any rare alleles with defined MAF threshold.
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(β= 0.485; P= 0.018, FDR= 0.212) was independent of rs328:C4G;
however, it was in LD with four other HDL-associated SNPs: rs301:
T4C (P= 0.008; FDR= 0.212; r2= 0.81), rs316:C4A (P= 0.003;
FDR= 0.178; r2= 0.62), rs295:A4C (P= 0.043; FDR= 0.291;
r2= 0.59) and rs3916027:G4A (P= 0.028; FDR= 0.233; r2= 0.45)
that have also been reported to be associated with HDL-C.34,43,46

Further studies are needed to understand whether rs320:T4G
explains other observed associations or yet to be discovered functional
variant(s) exist in this region.

Associations of LPL SNPs with LDL-C have not been well
documented in the literature, albeit some contrasting results exist
for rs320:T4G.53,54 We have identified two independent (r2= 0)
LDL-associated common SNPs, rs252:delA (P= 0.002; FDR= 0.134)
and rs74304285:G4A (P= 0.019; FDR= 0.627), as novel observa-
tions that warrant further investigation in independent studies. We
have also detected a group of 22 rare variants (MAF≤ 0.01; 11 in UTR,
5 coding and 6 intronic) that showed significant association
with LDL-C (P= 0.027) and TG (P= 0.039), including 4 known

Figure 3 Haplotype association results for HDL (a), TG (b), LDL-C (b), ApoA1 (d) and ApoB (e) levels. The log of the global P-value is presented on the y axis
and SNPs are presented across the x axis in chromosomal order. Horizontal lines are 4-SNP haplotype windows. The red horizontal line shows the
significance threshold. A full color version of this figure is available at the European Journal of Human Genetics journal online.
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nonsynonymous variants with no previous report of association with
lipids and 10 novel variants. This association probably represents
cumulative effects of functional rare variants; however, further studies
are needed to understand the impact of these variants on plasma lipid
profile. The results of haplotype and single-site analyses were largely
comparable for HDL-C, ApoA1 and ApoB. However, for TG and
LDL-C, several haplotype windows (some of which harboring only
uncommon/rare variants) yielded significant associations despite the
absence of (TG) or only few (LDL) nominal associations in single-site
analyses.

To our knowledge, this is the first study that has comprehensively
evaluated LPL genetic variation in relation to lipid traits in ABs. Our
study provides new information in addition to supporting some
previous observations, but has some limitations. Our sequencing
sample was small (some relevant rare variants might have been
missed) but our selective resequencing of subjects with ‘extreme’
phenotypes still enabled us to identify several rare variants. Given the
known role of LPL in lipid metabolism and that several tested SNPs
were not completely independent, the strict Bonferroni correction was
not applied. After multiple testing correction using FDR, our top two

Figure 3 Continued.
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associations (rs252:delA with LDL-C and rs316:C4A with HDL-C)
still looked promising. However, given our modest sample size and
generally small effect sizes of lipid-associated variants, our new
observations warrant further evaluation in independent studies.
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