

Contents lists available at ScienceDirect

Food Chemistry: X

journal homepage: www.sciencedirect.com/journal/food-chemistry-x

Effect of Chinese bayberry residue on quality of Chinese quinoa (*Chenopodium quinoa* Willd.) Rice wine

Jian Ma^{a,b,c,1}, Wuyang Huang^{a,1}, Yanhong Ma^{a,b,e,*}, Jian Li^c, Naihong Feng^d, Bo Wen^{a,e}, Feihong Jia^{a,e}, Yu Wang^e, Zhiqiang Gao^b

^a Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China

^b Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Agriculture College of Shanxi

Agricultural university, Taigu, Shanxi 030801, PR China

^c Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing, 100048, PR China

^d Institute of Economic Crops, Shanxi Agricultural University, Taiyuan, Shanxi 030031, PR China

^e College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China

ARTICLE INFO

Chinese quinoa rice wine

Chinese bayberry residue

Keywords:

Metabolism

Antioxidant

Taste trait

Aroma

ABSTRACT

Chinese bayberry residue (CBR) is a by-product of processing, which can be used as an auxiliary material during the processing of quinoa rice wine. In this study, the effects of CBR on the chemical profile, bioactive function, taste traits, and flavor of Chinese quinoa rice wine (CQRW) were investigated. The results showed that adding CBR increased the total phenolics, the total flavonoids, and antioxidant capacity. Malic acid content was the highest in Chinese rice wine (CRW), while the total content of components detected in HPLC-MS/MS was the highest in 10%CBR + CQRW. The CQRW exhibited the highest amino acid content, followed by 20%CBR + CQRW. *E*-tongue analysis results showed that 10%CBR + CQRW, 20%CBR + CQRW, and CQRW had the closest taste traits. Moreover, GC–MS analysis identified 72 aroma compounds in 10%CBR + CQRW sample, more than other samples. In summary, adding 10% CBR significantly improved the quality of CQRW.

1. Introduction

Quinoa, scientifically known as *Chenopodium quinoa* Willd., is an ancient grain native to the Andes Mountains in South America (Sharma, Kataria, & Singh, 2022). It was introduced to China in 1987 and is now extensively cultivated in the provinces of Shanxi, Yunnan and Qinghai (Tang & Tsao, 2017). Despite its ancient origins, quinoa is still considered a supergrain due to its exceptional nutritional value (Kataria, Sharma, & Dar, 2021). Surpassing regular grains in protein content, amino acids, vitamins, and minerals, quinoa offers remarkable antioxidant, anticancer, hypolipidemic, and antihypertensive properties (Bogdan, Kordialik-Bogacka, Czyzowska, Oracz, & Zyzelewicz, 2020; Nickel, Spanier, Botelho, Gularte, & Helbig, 2016). The Food and Agriculture Organization (FAO) of the United Nations recognizes quinoa as a "complete nutritional food" capable of fulfilling the basic nutritional requirements of the human body (Ruiz, Xiao, Boekel, Minor, & Stieger, 2016).

Huangjiu, a traditional Chinese fermented beverage, is made from grains, yeast, and Qu (a special saccharification starter in China). Characterized by its low alcohol content (<20% v/v), vibrant color, fragrant aroma, abundant nutrients, and potential health benefits, Huangjiu is highly popular among consumers (Varela et al., 2015; Xie et al., 2021; Yu, Ding, & Ye, 2012; Zhao, Wang, Zhao, Ma, & Sun, 2018). Quinoa, containing significant starch levels (58.1–64.2%), promotes the growth of fermenting microorganisms, such as yeast and mold, and facilitates ethanol synthesis (Lanza, 2013; Okamoto et al., 2020; Paucean et al., 2019; Varela et al., 2015). Consequently, it serves as an effective raw material for producing Huangjiu (Duan et al., 2023). During Huangjiu processing, the raw materials undergo gelatinization under high temperature and humidity, which not only reduces the content of bitter saponins in quinoa, improving the taste of its products (Li et al., 2022; Suarez-Estrella et al., 2021; Wei et al., 2016), but also enhances food safety by inactivating a toxic protein known as quinoin (He, Wang, Zhao, & Yang, 2022).

https://doi.org/10.1016/j.fochx.2024.101584

Received 6 February 2024; Received in revised form 12 June 2024; Accepted 18 June 2024 Available online 20 June 2024 2590-1575/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

^{*} Corresponding author at: No. 50 Zhongling Street, Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China. *E-mail address:* ma_yhhyy@126.com (Y. Ma).

¹ These authors contributed equally to this work.

As the by-product of bayberry processing, CBR retains significant quantities of functional components such as phenolics, anthocyanins, and dietary fiber, making it highly valuable for utilization (Zhu et al., 2020; Zhu et al., 2022). Consequently, CBR can be used as a fermentation aid in CQRW production. This application not only enhances the content of bioactive functional substances in CQRW but also improves the utilization rate of bayberry residue as a resource.

Although CBR contains biologically active substances and retains some economic value, CBR has not yet been introduced as an auxiliary material in the processing of CQRW before. The levels of phenolics, flavonoids, and antioxidant capacity during the CQRW fermentation process were dynamically monitored and analyzed in this study. Additionally, the overall quality of the prepared CQRW and the effects of adding CBR on CQRW quality were evaluated.

2. Materials and methods

2.1. Materials and reagents

Quinoa and rice were purchased from Jiaqi Agricultural Technonlogy Co., Ltd. (Taiyuan, China), and stored in a room-temperature dry warehouse. The CBR was acquired from ChengYouWangJiShanYuan Food Co., Ltd. (Guizhou, China), separated from the bayberry juice, lyophilized, crushed, and stored in a dryer (Jiancheng Biotechnology Co., Ltd. Nanjing, China). Highly active yeast (*Saccharomyces cerevisiae*) and Huangjiu Qu were purchased from Angel Yeast (Yichang, Hubei, China).

The 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) was purchased from Tengchun Biotechnology Development Co., Ltd. (Nanjing, China). Tripyridinyl triazine (TPTZ) was purchased from Jiancheng Biotechnology Co., Ltd. (Nanjing, China). Standards for phenolics (> 99.0%), organic acid (> 99.0%), and amino acids (> 99.0%) were purchased from Yuanye Biological Technology Co., Ltd. (Shanghai, China). All other reagents used were food grade or analytical grade or high performance liquid chromatography (HPLC) grade.

2.2. Preparation of Huangjiu samples

Rice and quinoa were each washed 1 to 2 times to remove dust. The rice (100 g) was soaked in water at room temperature for 12 h and then steamed at 100 °C for 50 min (Lv et al., 2015; Wei et al., 2016). After cooling to room temperature, it was mixed with traditional starter (Highly active yeast and Huangjiu Qu). The mixture was transferred to conical bottles and fermented for 12 days to produce CRW. Similarly, the quinoa (100 g) was soaked in water for 2 h at room temperature and steamed at 100 °C for 30 min. The subsequent steps were identical to those for CRW, resulting in the production of Chinese quinoa wine (CQW). To prepare CQRW, 50 g of rice and 50 g of quinoa were subjected to their respective gelatinization processes, cooled, thoroughly mixed with the starter, and then fermented.

Take 45 g rice and 45 g quinoa, subject them to different gelatinization processes, cool down, mix rice, quinoa, CBR (10 g), and starter evenly. Ferment the mixture to produce 10% CBR Chinese quinoa rice wine (10%CBR + CQRW). Using the same process, prepare 20% CBR Chinese quinoa rice wine (20%CBR + CQRW) and 30% CBR Chinese quinoa rice wine (30%CBR + CQRW), with respective increases in CBR content.

The starter amounts added during the fermentation process are as follows: 0.2% highly active yeast and 0.5% Huangjiu Qu. Fermentation was terminated after 12 days, with samples collected on days 0, 1, 2, 3, 6, 9, and 12. Subsequently, the supernatant was obtained by centrifuging at 6000g for 15 min and filtrating through a 0.22 μ m membrane to remove bacteria and impurities. The wine samples were then stored in a refrigerator at 4 °C. The fermentation process had been optimized beforehand.

2.3. Determination of yeast count

Yeast count were measured by the dilution plate method, and the medium was YPD agar medium according to the national standard GB 4789.15–2016.

2.4. Chemical composition analysis

The alcohol content in Huangjiu adopted the method of GB 5009.225–2016 (China). An alcohol meter (0–20%, Glass factory, Hejian, China) was used to measure alcohol count, and the data was expressed as volume percent (vol%). The total sugar content of Huangjiu was detected by phenol-sulfuric acid method (Evstigneyev, 2017). The standard curve was linear at 490 nm, total sugar was expressed as g of glucose equivalents per liter of Huangjiu (g/L).

2.4.1. Determination of total phenolics content

The total phenolics content (TPC) in Huangjiu was measured by the Folin-Ciocalteu method (Zhu et al., 2020). Using an iMake microplate reader (D-Epoch, Bio Tek Instruments, Inc., USA) to measure absorbance at 760 nm, the standard curve was linear at 760 nm (Y = 4.3893 X + 0.0273, $R^2 = 0.998$), and TPC was calculated according to the standard curve linear and expressed as mg of gallic acid equivalents per liter of Huangjiu (mg/mL).

2.4.2. Determination of total flavonoids content

The total flavonoids content (TFC) was determined by the aluminum chloride colorimetric assay (Duan et al., 2023). Using an iMake microplate reader to measure absorbance at 510 nm, the standard curve was linear at 510 nm ($Y = 1.2151 \ X + 0.0032$, $R^2 = 0.999$). TFC was calculated according to the standard curve linear at 510 nm and expressed as mg of rutin equivalents per liter of Huangjiu (mg/mL).

2.4.3. Determination of total ester content

The total ester content in Huangjiu was determined using the colorimetric method (Ma et al., 2022). Using an iMake microplate reader to measure absorbance at 525 nm, the standard curve was linear at 525 nm (Y = 0.3214 X - 0.167, $R^2 = 0.998$), and total ester was calculated according to the standard curve linear and expressed as mg of ethyl acetate equivalents per liter of Huangjiu (mg/mL).

2.5. Composition analysis of Huangjiu samples

Based on previous studies on Huangjiu, quinoa, and CBR, the quantitative analysis of myricetin, procyanidin, tartaric acid, malic acid, homogentisic acid, cyanidin-3-*O*-glucoside, chlorogenic acid, catechin, catechol, hydroxybenzene propanoic, vanillic acid, caffeic acid, epicatechin, rutin, *p*-coumaric acid, ferulic acid, and salicylic acid in CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW were carried out by high performance liquid chromatography-mass spectrometry-mass spectrometry (HPLC-MS/MS) (Chen, Ren, Li, & Ma, 2020; Tang & Tsao, 2017; Zhu, Ren, et al., 2020).

For the HPLC-MS/MS, an Agilent 1260 Infinity II (Agilent Technologies, Germany) was coupled to an Agilent Technologies 6420 Triple Quad MS/MS (G6420) system equipped with an Agilent Phoroshell 120 EC-18 column (100 mm \times 3 mm; 2.7 µm, Agilent, USA), an automatic sampler (G7129A), a binary pump (G1312B), and a column oven (G7130A). The HPLC-MS/MS was performed under the following conditions: electrospray ionization (ESI), capillary voltage 3.5–4.0 kV; nebulizer temperature, 45 psi; gas flow rate of 10 L/min with a temperature of 350 °C, MS mode is multiple reaction monitoring (MRM). Samples were filtered (0.22 µm) and analyzed by injecting 2.0 µL that were eluted through the column with a binary mobile phase that consisted of A (formic acid 0.1%) and B (acetonitrile (ACN) (Merck, Germany)), the flow rate was 0.3 mL/min with a gradient of 9.10 min which consisted of: 0–2 min, 90% A to 80% A; 2–6 min, 80% A to 10% A; 6–9

min, 10% A; 9–9.10 min, 10% A to 90% A. The components of Huangjiu samples were calculated by the standard curve in the Table S2, the total ion chromatogram of the standard is shown in Fig. S1, and the results were expressed as mg/L.

2.6. Quantitative analysis of amino acids in Huangjiu samples

The amino acids of Huangjiu samples were analyzed by HPLC-MS/ MS according to the method reported by Zhang et al. (2021) with slight modification.

Each sub-sample was diluted with 0.5 M hydrochloricacid at the ratio of 1:10 (v:v) to extraction in tube. The tubes were vortexed for 20 min, sonicated in a 25 °C water bath for 20 min, and then centrifuged at 28489g for 20 min. Finally, dilute 250 μ L of the extracted supernatant to 1 mL with acetonitrile. For the HPLC-MS/MS, an Agilent 1260 Infinity II (Agilent Technologies, Germany) was coupled to an Agilent Technologies 6420 Triple Quad MS/MS (G6420) system equipped with an Agilent Poroshell 120 HILIC-Z column (100 mm \times 3 mm; 2.7 μ m, Agilent, USA), an automatic sampler (G7129A), a binary pump (G1312B), and a column oven (G7130A).

The HPLC-MS/MS was performed under the following conditions: electrospray ionization (ESI), capillary voltage 3.5–4.0 kV; nebulizer temperature, 45 psi; gas flow rate of 10 L/min with a temperature of 350 °C, MS mode is MRM. Samples were filtered (0.22 μ m) and analyzed by injecting 1.0 μ L that were eluted through the column with a binary mobile phase that consisted of A (H₂O, pH = 3.0) and B (premixed ACN (90%)-H₂O (10%), pH = 3.0), the flow rate was 0.5 mL/min with a gradient of 9.10 min which consisted of: 0–7 min, 5% A to 45% A; 7–12 min, 45% A; 12–12.10 min, 45% A to 5% A. The amino acid of Huangjiu samples were calculated by the standard curve in the Table S3, the total ion chromatogram of the standard is shown in Fig. S1, and the results were expressed as mg/L.

2.7. In vitro antioxidant capacity

The in vitro antioxidant capacity of Huangjiu was evaluated using three assays.

2.7.1. DPPH radical scavenging capacity assay

The DPPH radical scavenging capacity (DPPH-RSC) was determined by the previous method of Zhu et al. (2020). The absorbance at 517 nm was measured using the iMake microplate reader. DPPH scavenging percentage value was calculated based on the following formula:

$$DPPH - RSC(\%) = \left(1 - \frac{A_1 - A_2}{A_0}\right) \times 100\%$$

where A_0 was the absorbance (Abs) of the mixed solution of absolute ethanol and DPPH; A_1 was the mixed solution of sample and DPPH's Abs; A_2 was the Abs of the mixed solution of sample and absolute ethanol.

2.7.2. Hydroxyl radical scavenging capacity assay

Hydroxyl radical scavenging capacity (OH-RSC) was measured by the method of Ma et al. (2022). The absorbance at 526 nm was measured using the iMake microplate reader. Hydroxyl radical scavenging percentage value was calculated using the following formula:

$$\mathrm{OH}-\mathrm{RSC}(\%) = \left(1 - \frac{A_1 - A_2}{A_0}\right) \times 100\%$$

where A_0 was the Abs of distilled water instead of Huangjiu, A_1 was the sample's Abs, and A_2 was the Abs of distilled water instead of H_2O_2 solution.

2.7.3. Ferric ion reducing antioxidant power assay

Ferric ion reducing antioxidant power (FRAP) reagent is a mixture

(10:1:1, $\nu/\nu/\nu$) of acetate buffer (0.1 M, pH 3.6), TPTZ (10 mM), and ferric chloride (20 mM) (Sharma et al., 2022). Using an iMake microplate reader to measure absorbance at 593 nm, the standard curve was linear at 593 nm (Y = 0.007 X + 0.585, $R^2 = 0.998$). The FRAP was expressed as mmol of per liter of Huangjiu (mmol/L).

2.8. Determination of taste trait of Huangjiu by E-tongue

Analysis was obtained from Huangjiu samples, using the Taste-Sensing System SA 402B (Intelligent Sensor Technology Co. Ltd., Atsugi, Japan). Huangjiu sample is a liquid sample, no sample pretreatment is required, and it can be analyzed directly on the equipment. E-tongue detection conditions: 30 mm KCl and 0.3 mm C4H6O6 are prepared as a reference solution simulating the human oral cavity, and the sensor is activated in the reference solution 24 h in advance. Each sample is compared to a reference solution. According to the characteristics of the sample to be tested, the basic taste of sample is measured digitally such as: sweet, sour, bitter, astringent, salty, umami and richness. Sensor cleaning time is 6 min, sample determination time is 30 s, measurement aftertaste is 30 s. For this study 6 detecting sensors (AAE, CT0, CA0, C00, AE1, and GL1) and 2 reference electrodes were used. The "taste values" were calculated by multiplying sensor outputs for appropriate coefficients based on the Weber-Fechner law, which gives the intensity of sensation considering the sensor property for tastes (Guo, Zhang, Long, Fu, & Ren, 2023).

2.9. Analysis of volatile aroma compounds in Huangjiu

The volatile aroma compounds of Huangjiu samples were analyzed by headspace solid-phase microextraction-gas chromatography–mass spectrometry (HS-SPME-GC/MS) according to the method reported by Wang et al. (2020) with slight modification.

Firstly, an extraction head filled with 50/30 μ m CAR/PDMS/DVB (Supelco, USA) was aged for 10 min at the inlet of the gas chromatograph at 250 °C. Secondly, 5.0 mL sample was placed in a 20 mL headspace bottle, and 20 μ L of 50 mg/L 2-octanol was added as internal standard. Add 2 g of NaCl to the sample, equilibrate at 50 °C for 30 min in a water bath, then put it into the sample bottle, insert the aged extraction head and absorb at 50 °C for 30 min, and finally desorb 3 min at the inlet of 250 °C gas chromatograph.

GC–MS analyses were performed on a Pegasus HRT 4D Plus (LECO, USA) equipped with a DB-5 MS (30 m × 0.25 mm, 0.5 µm, Supelco, USA) column. At a split ratio of 10:1, the samples were injected. High-purity helium (He) was used as carrier gas, whose flow rate was 1.0 mL/min. For the heating program, the temperature was kept at 40 °C for 3 min, and raised to 230 °C with a speed of 10 °C/min, then maintained for 6 min. Ionization used EI + mode. The electron energy was set up at 70 eV, while the temperature of ion source was at 200 °C. The mass scan ranged from *m*/*z* 33 to 500. Based on comparing retention time and MS data with MS database NIST1, the matched components were identified. Nalkanes of C6-C26 were analyzed under the same chromatographic conditions as samples, and the retention index RI of each substance was calculated by instrument operation software. Volatile aroma compound content was calculated using the following formula:

$$\mathbf{C}\left(\mathbf{mg}/\mathbf{L}\right) = \frac{C_{s}}{A_{s}} \times A_{f}$$

where C_S was the 2-octanol concentration (50 mg/L); A_S was the peak area of 2-octanol; A_f was the peak area of each volatile compound in Huangjiu samples.

2.10. Statistical analysis

Three replications were performed and all the data were described as mean values \pm standard deviation. The figures were plotted using Origin

2021 software (Chicago, IL, USA). Correlation analysis (Pearson correlation) and Analysis of variance (ANOVA) were conducted by IBM SPSS version 22.0 (Armonk, New York, NY, USA). As p < 0.05, it was considered to significant differences.

3. Results and discussion

3.1. Analysis of dynamic change of indexes in the fermentation process of Huangjiu

Different fermentation raw materials have a great influence on the quality of rice wine, such as alcohol content, taste, aroma and so on (Yang et al., 2020). Fig. 1 shows the changes in various indicators of Huangjiu with different raw materials during the fermentation process.

The alcohol content, a crucial measure of alcoholic beverages, is produced when yeast breaks down pyruvate via the EMP (Embden Meyerhof Parnas) pathway (Varela et al., 2015). It is directly related to the sugar content (can be converted from starch) and the yeast's growth rate during fermentation (Duan et al., 2018). When cooking at atmospheric pressure, rice starch gelatinizes easily (Lv et al., 2015), providing sufficient sugar for fermentation, resulting in CRW with the highest alcohol content (14.6 \pm 0.1%) (p < 0.05) (Fig. 1a). However, high alcohol levels can alter tartaric and butyric acid concentrations and inhibit the growth of other aroma-producing microorganisms (Jin et al., 2021; Wang et al., 2020). Under the same cooking conditions, the degree of hydrolysis for quinoa starch was low, resulting in an alcohol content of only 10.6 \pm 0.15% for CQW (p < 0.05). Except for those with a higher proportion of CBR (30%), the remaining Huangjiu samples showed no significant differences in alcohol content after fermentation (p > 0.05). These samples also had a total sugar content below 4 g/L at the end of fermentation (Fig. 1b), and the growth of yeast following a similar trend (Fig. 1c).

Phenolics and flavonoids are broad-spectrum bioactive substances in Huangjiu, playing a crucial role in maintaining redox homeostasis and serving as important indicators of its nutritional quality (Jin et al., 2021; Liu et al., 2020). The variation in phenolics and flavonoids in Huangjiu is primarily influenced by the fermentation materials and microbial metabolism. As shown in Fig. 1d, during the fermentation process, the trend of TPC in each sample was increased first and then flat. The TPC for the prepared CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW were 0.611 \pm 0.008, 1.059 \pm 0.023, 0.831 \pm 0.008, 0.877 \pm 0.011, 1.023 \pm 0.010, and 0.784 \pm 0.012 mg/mL, respectively (Fig. 1d). These values significantly increased by 9.548 folds, 1.922 folds, 3.106 folds, 3.447 folds, 4.449 folds, and 3.482 folds (p < 0.05), respectively. Rice is rich in starch and B vitamins but contains low levels of phenolics and flavonoids. The CRW is mainly metabolized and synthesized by non-yeast microorganisms to increase TPC (TPC has the highest growth ratio and the lowest content) (Lu et al., 2021). The difference in TPC between the produced CQW and 20%CBR + CQRW was only 0.003 mg/mL, indicating that CBR played an important role in increasing TPC in Huangjiu (Table S1). This finding aligns with other studies demonstrating that microbial hydrolytic enzymes break down the cellulose backbone and phenolic structural branches during fermentation, resulting in higher levels of free phenolics and flavonoids (Chen, Ren, et al., 2020; Xie et al., 2021). The change in TFC during fermentation followed a similar trend to that of TPC, except in CQW and CQRW (Fig. 1e). Quinoa, rich in flavonoids, which are released by microbial enzymes during the initial day of fermentation, leading to an increase in TPC in CQW and CQRW (Chen, Ren, et al., 2020). During the middle stage of fermentation, the microbial activity capable of degrading flavonoids in Huangjiu intensified, resulting in a decrease in flavonoid content across all samples (Bogdan et al., 2020). However, this phenomenon was observed only in CQW and CQRW. Due to the presence of resistant starch, which serves as a substrate for bacterial flavonoid metabolism and promotes flavonoid synthesis, and CBR, which contains flavonoids, the TFC in other samples continued to increase (Paola Rodriguez-Castaño et al., 2019). Consequently, the TPC of 20%CBR + CQRW was the highest.

The antioxidant defense system in plants comprises both antioxidant enzymes and non-enzymatic antioxidants. However, the main protein components are typically inactivated during the production of Huangjiu raw materials (Cao et al., 2022; Sharma et al., 2022). As a result, the antioxidant capacity of Huangjiu is primarily derived from bioactive substances such as phenolics and flavonoids. During the fermentation process, the DPPH-RSC, OH-RSC, and FRAP of each sample increased first and then tended to be stable with the increase of fermentation time (Figs. 1g-i). The DPPH-RSC of CQW and 20%CBR + CQRW were highest (98.889 + 1.475%, 98.465 + 0.962%) (p < 0.05). The highest OH-RSC and FRAP of 20%CBR + CQRW were 95.350 + 0.616% and 2.606 + 0.010 mmol/L, respectively. This was due to the high content of phenolics and flavonoids in 20%CBR + CQRW.

The inclusion of CBR in the raw materials could enhance the alcohol content, phenolics, flavonoids, FRAP, and OH-RSC, demonstrating the effectiveness of CBR as a fermentation aid. With the appropriate addition of CBR, the nutritional and functional properties of Huangjiu were significantly improved.

3.2. Analysis of components of Huangjiu samples

3.2.1. Detection of components in Huangjiu

Fermentation increases bioactive substances, thus enhancing the nutritional quality of Huangjiu (Jin et al., 2021). The components in Huangjiu could be divided into two types: phenolic acids and analogs (homogentisic acid, chlorogenic acid, catechol, hydroxybenzene propanoic acid, vanillic acid, procyanidin, p-coumaric acid, ferulic acid, salicylic acid, tartaric acid, malic acid, caffeic acid), and flavonoids (flavonols (rutin and myricetin), anthocyanins (cyanidin-3-O-glucoside), and flavanonols (catechin and epicatechin)) (Huang, Cai, & Zhang, 2010). A total of 17 substances were detected in all samples, including 15 in CRW (no cyanidin-3-O-glucoside and procyanidin), 15 in CQW (no cyanidin-3-O-glucoside and caffeic acid), 16 in CQRW (no cyanidin-3-O-glucoside), 17 in 10%CBR + CQRW, 20%CBR + CQRW, and 30%CBR + CQRW (Table 1). The content of malic acid was the highest in CRW and lowest in CQW (p < 0.05), likely due to variations in the sugar content of the raw materials, as sugar metabolism produced malic acid. The sugar content in CRW is sufficient, and a large amount of pyruvic acid is converted into alcohol during alcoholic fermentation, affecting the TCA cycle (tricarboxylic acid cycle) and leading to the accumulation of malic acid (Duan et al., 2018). The contents of vanillic acid, caffeic acid, p-coumaric acid and ferulic acid of CORW were significantly higher than other samples (p < 0.05). Additionally, the contents of tartaric acid, hydroxybenzene propanoic acid, epicatechin, and salicylic acid also increased significantly (p < 0.05), whereas rutin levels remained unchanged (p > 0.05).

The results indicated that using rice and quinoa together as fermentation materials promoted the decomposition of macromolecular compounds, thereby increasing the levels of phenolic acids and flavonoids in CQRW (Duan et al., 2023; Xie et al., 2021). Adding CBR significantly raised the levels of tartaric acid, chlorogenic acid, hydroxybenzene propanoic, myricetin, and salicylic acid (p < 0.05), while maintaining the stability of most substances in 10%CBR + CQRW and 20%CBR + CQRW (Xie et al., 2021). Furthermore, mixed fermentation with multiple raw materials, especially using CBR as an excipient, greatly enhanced the variety and contents of functional active substances in Huangjiu.

3.2.2. Correlation analysis of Huangjiu components and antioxidant ability

In order to verify the correlation between TPC/TFC/Total ester/ DPPH-RSC/OH-RSC/FRAP and the components in Huangjiu, the correlation analysis was carried out with the data according to the method of Zhu, Jiang, et al. (2020). The results are shown in Fig. 2.

Fig. 2a (left) shows the intra-group correlation analysis of TPC/TFC/

Fig. 1. Dynamic determination of alcohol content, total sugar content, yeast content, TPC, TFC, total ester, DPPH-RSC, OH-RSC, and FRAP of CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW fermentation in 0, 1, 2, 3, 6, 9, 12 d. Alcohol content: (a). Total sugar content: (b). Yeast content: (c). TPC: (d). TFC: (e). Total ester: (f). DPPH-RSC: (g). OH-RSC: (h). FRAP: (i). Different lowercase letters mean significant difference (p < 0.05).

Table 1

Num	RT (min)	Compounds	CRW	CQW	CQRW	10%CBR + CQRW	20%CBR + CQRW	30%CBR + CQRW
1	1.551	Tartaric acid	${0.9502 \pm 0.0103 \atop_{Eb}}$	${}^{1.1642}_{\rm Dd}\pm 0.0106$	${}^{1.3172}_{Ce} \pm 0.0130$	${}^{1.3511}_{_{Bd}}\pm 0.0067$	${}^{1.3876}_{Ac}\pm 0.0119$	${}^{1.3884}_{\text{Ac}} \pm 0.0062$
2	1.641	Malic acid	38.6872 ± 0.0325 ^{Aa}	${}^{1.8371}_{\rm Fb} \pm 0.0122$	$\begin{array}{c} 7.5118 \pm 0.0259 \\ _{Cb} \end{array}$	12.0184 ± 0.0172 ^{Bb}	${}^{6.0427}_{\rm Db}\pm 0.0523$	${}^{5.6508}_{\rm Eb} \pm 0.0471$
3	3.137	Homogentisic Acid	$0.0225 \pm 0.0018_{Ffg}$	$\underset{Ae}{0.0988 \pm 0.0014}$	$0.0653 \pm 0.0011_{\text{Dg}}$	${0.0788 \pm 0.0003 \atop_{Cf}}$	$0.0914 \pm 0.0015_{Bf}$	$0.0617 \pm 0.0014_{\rm Eef}$
4	5.979	Chlorogenic acid	$\underset{Agh}{0.0054\pm0.0004}$	$\underset{Bi}{0.0049} \pm 0.0002$	$\underset{Bhi}{0.0049 \pm 0.0002}$	$\underset{ABi}{0.0050}\pm0.0001$	$\underset{ABi}{0.0051} \pm 0.0001$	$\underset{ABh}{0.0052\pm0.0001}$
5	6.115	Cyanidin-3-O-glucoside	nd	nd	nd	$\underset{Ci}{0.0034\pm0.0002}$	$\begin{array}{c} 0.0107 \pm 0.0007 \\ {}_{Bhi} \end{array}$	$\begin{array}{c} 0.0236 \pm 0.0012 \\ _{Agh} \end{array}$
6	6.149	Catechin	$0.0031 \pm 0.0001_{Bh}$	$\underset{Ai}{0.0034} \pm 0.0002$	$0.0035 \pm 0.0002_{Ai}$	$\underset{ABi}{0.0033}\pm0.0001$	$\underset{\text{Ci}}{0.0024} \pm 0.0001$	$0.0035 \pm 0.0001_{Ah}$
7	6.392	Catechol	$\underset{\text{Dh}}{0.0048} \pm 0.0001$	$0.0565 \pm 0.0005_{Af}$	$0.0027 \pm 0.0003_{Ei}$	$\underset{\text{Di}}{0.0044} \pm 0.0002$	$\underset{Bhi}{0.0117\pm0.0003}$	$0.0097 \pm 0.0003_{Ch}$
8	6.778	Hydroxybenzene propanoic	$\underset{\text{Dd}}{0.0444} \pm 0.0006$	$0.0142 \pm 0.0003_{Fgh}$	$0.0552 \pm 0.0011_{Bg}$	$0.0676 \pm 0.0004_{\text{Ag}}$	$0.0457 \pm 0.0004 \\ _{Cg}$	$0.0337 \pm 0.0003_{Eg}$
9	6.852	Vanillic acid	$0.0442 \pm 0.0045_{Fd}$	$\underset{Cc}{1.2580} \pm 0.0012$	${}^{1.6342}_{\rm Ad}\pm 0.0030$	$\underset{\text{Bc}}{1.4744} \pm 0.0066$	$\underset{\text{Dd}}{1.0468}\pm0.0016$	$0.8323 \pm 0.0010_{Ed}$
10	6.914	Caffeic acid	$\begin{array}{c} 0.0068 \pm 0.0003 \\ {}_{Bgh} \end{array}$	nd	$0.0189 \pm 0.0002_{Ah}$	$\underset{Ci}{0.0036} \pm 0.0004$	$\underset{\text{Ci}}{0.0038 \pm 0.0003}$	$0.0038 \pm 0.0002_{Ch}$
11	6.994	Epicatechin	$\underset{\text{Dh}}{0.0002 \pm 0.0002}$	$\underset{Ci}{0.0007\pm0.0001}$	$0.0024 \pm 0.0003_{Ai}$	$\underset{Ai}{0.0024} \pm 0.0002$	$\underset{Bi}{0.0019\pm0.0002}$	$0.0017 \pm 0.0002_{Bh}$
12	7.247	Rutin	$\begin{array}{c} 0.0269 \pm 0.0020 \\ \text{Eef} \end{array}$	$\begin{array}{r} 18.7307 \pm \\ 0.0059 \ ^{\rm Aa} \end{array}$	$\begin{array}{c} 18.7319 \pm \\ 0.0095 \ ^{\rm Aa} \end{array}$	$\begin{array}{l} 17.8430 \ \pm \\ 0.0030 \ ^{\rm Ca} \end{array}$	$\begin{array}{c} 18.4227 \pm 0.0024 \\ {}_{Ba}\end{array}$	$\begin{array}{l} 10.1377 \pm \\ 0.0030 \ ^{\rm Da} \end{array}$
13	7.322	Procyanidin	nd	$\underset{Agh}{0.0154\pm0.0005}$	$\underset{Chi}{0.0117}\pm0.0003$	$\underset{Chi}{0.0117}\pm0.0003$	$\underset{Bhi}{0.0136\pm0.0004}$	$0.0045 \pm 0.0005_{\text{Dh}}$
14	7.491	p-Coumaric acid	$\begin{array}{c} 0.0085 \pm 0.0005 \\ {}_{Egh} \end{array}$	$0.0198 \pm 0.0004_{\text{Dg}}$	$0.0912 \pm 0.0012_{Af}$	$0.0199 \pm 0.0010_{\text{Dh}}$	$\underset{\text{Cghi}}{0.0245} \pm 0.0009$	$0.0385 \pm 0.0005_{Bfg}$
15	7.595	Ferulic acid	$0.8433 \pm 0.0021_{Cc}$	$\underset{\text{Ee}}{0.0920}\pm0.0010$	${}^{1.6994}_{\rm Ac} \pm 0.0014$	$\underset{\text{Be}}{\textbf{0.8755}} \pm 0.0005$	$\underset{\text{De}}{\textbf{0.2947}\pm0.0006}$	$\begin{array}{c} 0.0616 \pm 0.0004 \\ _{Fef} \end{array}$
16	7.757	Myricetin	$0.0073 \pm 0.0003_{Cgh}$	$\underset{Chi}{0.0072\pm0.0002}$	$\underset{Chi}{0.0070}\pm0.0001$	$\underset{Bh}{0.0166\pm0.0002}$	$\begin{array}{c} 0.0348 \pm 0.0002 \\ _{Agh} \end{array}$	$0.0056\pm0.0004_{\rm Dh}$
17	8.061	Salicylic acid	$\begin{array}{c} 0.0410 \pm 0.0010 \\ _{Fde} \end{array}$	$0.0494 \pm 0.0007_{Ef}$	$0.0623 \pm 0.0006 _{\text{Dg}}$	${}^{0.0643}_{\text{Cg}} \pm 0.0001$	$\underset{Af}{0.0766\pm0.0002}$	$0.0708 \pm 0.0006 _{Be}$
Total			$\begin{array}{l} 40.6957 \pm \\ 0.0566 \ ^{\rm A} \end{array}$	$\begin{array}{c} 23.3522 \pm \\ 0.0352 \ ^{E} \end{array}$	$\begin{array}{l} 31.2194 \pm \\ 0.0584^{\rm C} \end{array}$	$\begin{array}{l} 33.8434 \ \pm \\ 0.0373 \ ^{B} \end{array}$	$_{\rm D}^{\rm 27.5167 \pm 0.0741}$	$\begin{array}{c} 18.3332 \pm \\ 0.0633 \ ^{F} \end{array}$

The composition of the prepared CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW were quantitatively identified (mg/L).

¹ RT: Retention time. Uppercase letters and lowercase letters mark statistically significant differences with one-way ANOVA test of significance (p < 0.05) among samples and compounds, respectively. Nd indicates no detection.

Total ester/DPPH-RSC/OH-RSC/FRAP in Huangjiu samples and the intra-group correlation analysis of components in Huangjiu samples. There was a significant positive correlation between TPC and TFC and antioxidant capacity (|correlation coefficient| > 0.45, p < 0.001), indicating that the antioxidant capacity of rice wine was mainly manifested by phenolics and flavonoids (Ruiz et al., 2016). In addition, TPC and TFC showed a significant positive correlation with total esters, which explained that phenolics and flavonoids could synthesize esters during metabolic synthesis (Wei et al., 2016). The contents of TPC and TFC in Huangjiu samples after adding CBR were higher, and its volatile aroma might be better than other samples.

The correlation between the components in Huangjiu samples is also shown in Fig. 2a (right). There was a significant negative correlation between tartaric acid and malic acid, and a significant positive correlation with homogentisic acid, cyanidin-3-O-glucoside, vanillic acid, epicatechin, rutin, procyanidin, and salicylic acid (p < 0.05). Malic acid was significant negatively correlated with homogentisic acid, vanillic acid, epicatechin, rutin, procyanidin, and salicylic acid, and significant positively correlated with chlorogenic acid (p < 0.05). Homogentisic acid was significant negatively correlated with chlorogenic acid, and significant positively correlated with catechol, vanillic acid, rutin, procyanidin, and salicylic acid (p < 0.05). Chlorogenic acid was significant negatively correlated with vanillic acid, rutin, and procyanidin (p < p0.05). Catechol was significant negatively correlated with hydroxybenzene propanoic, caffeic acid, and ferulic acid, significant positively correlated with procyanidin (p < 0.05). Hydroxybenzene propanoic was significant positively correlated with caffeic acid, epicatechin, and ferulic acid (p < 0.05). Vanillic acid was significant positively correlated

with epicatechin, rutin, procyanidin, and *p*-coumaric acid (p < 0.05). Caffeic acid was significant positively correlated with *p*-coumaric acid and ferulic acid (p < 0.05). Epicatechin was significant positively correlated with rutin, *p*-coumaric acid, and salicylic acid (p < 0.05). Ferulic acid was significant positively correlated with *p*-coumaric acid, myricetin was significant positively correlated with salicylic acid (p < 0.05). The above results suggested potential metabolic relationships among the components in Huangjiu samples. Metabonomics technology would be employed to analyze the secondary metabolites of the rice wine samples in greater detail.

According to the criteria of correlation coefficient and p < 0.05, the results showed 8 components including tartaric acid, malic acid, homogentisic acid, vanillic acid, epicatechin, rutin, procyanidin, and salicylic acid were significantly and closely associated with DPPH-RSC/OH-RSC/FRAP (Fig. 2b). There was a significant negative correlation between malic acid and DPPH-RSC/OH-RSC/FRAP (p < 0.001), while the other metabolites showed a significant positive correlation with these antioxidant indicators (p < 0.001). Therefore, despite having the highest content of malic acid, CRW did not exhibit the strongest antioxidant capacity. Phenolic compounds and flavonoids are powerful antioxidants, with more potential than vitamin C, vitamin E, or carotenoids (Ruiz et al., 2016).

The higher total content of components detected in Huangjiu samples, the stronger the antioxidant capacity, consistent with the findings of Jin et al. (2021). Mixed fermentation or the addition of CBR primarily enhanced the antioxidant capacity and also improved the nutritional quality of CQRW.

Fig. 2. Correlation analysis of basic index CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW and correlation analysis of each component. (a): Correlation analysis of TPC, TFC, Total ester, antioxidants of the prepared Huangjiu samples (left, intra-group correlation analysis), correlation analysis of components in the prepared Huangjiu samples (right, intra-group correlation analysis) (p < 0.05, *; p < 0.01, **; p < 0.001, ***). (b): Correlation analysis of the data of TPC, TFC, Total ester, antioxidants and components of the prepared Huangjiu samples (inter-group correlation analysis) (p < 0.05, *; p < 0.01, ***). (b): Correlation analysis of the data of TPC, TFC, Total ester, antioxidants and components of the prepared Huangjiu samples (inter-group correlation analysis) (p < 0.05, *; p < 0.01, ***).

3.3. Detection of amino acid in Huangjiu

Huangjiu contains a rich array of amino acids, which are produced through the enzymatic hydrolysis of proteins in the raw material (Chen et al., 2020). Quinoa contains 11% more protein than rice and hydrolyzes more easily (Chen, Wu, et al., 2020; He et al., 2022; Ruiz et al., 2016). Therefore, the amino acid content of the sample (raw material including quinoa) was significantly higher than that of CRW (which contains only rice) (p < 0.05). Moreover, CQRW had the highest total amino acid content (Table 2). Phe, Leu, Ile, Met, Val, Thr, His, and Lys, which are essential amino acids for human, were higher in CQRW compared to other samples (the Leu content of CQRW was only lower than 10%CBR + CQRW) (p < 0.05) (Table 2). Among the samples, the

extrusion and hulling process of rice led to the loss of most essential amino acids. Conversely, the preparation of quinoa rice wine preserved these amino acids, thanking to the inclusion of whole quinoa (Cao et al., 2022; Kuktaite et al., 2021).

The taste of amino acids is closely related to the R group of their side chains, which typically exhibit sour, sweet, bitter, salty, flavor, and aromatic qualities (Guo et al., 2023). According to the analysis of 17 amino acids listed in Table 2, 20%CBR + CQRW had the highest content of bitter amino acids, and CQRW had the highest content of aromatic amino acids, sweet amino acids, sour amino acids, and flavor amino acids (p < 0.05), and the taste of CQRW is more prominent. Duan et al. (2023) demonstrated that the type and content of amino acids significantly impact the aroma and taste of fermentation products (p < 0.05).

Table 2

The content of amino acid in prepared CI	W, CQW	, CQRW, 10 ^o	%CBR + CQRW,	20%CBR + CQRW,	30%CBR + CQRW v	vere determined (mg/L)

Num	RT ¹	Compound	CRW	CQW	CQRW	10% CBR + CQRW	$20\% \ CBR + CQRW$	$30\% \ CBR + CQRW$
	(min)							
1	3.838	Phe	$53.946 \pm 1.242 \ ^{\rm Dj}$	$62.930 \pm 0.257 \ ^{Ck}$	$96.642 \pm 0.400 \ ^{\text{Az}}$	$63.648 \pm 0.383 \ ^{Cm}$	$76.472 \pm 0.170 \ ^{Bk}$	$44.011 \pm 0.750 \ ^{Em}$
2	4.132	Leu	$105.629 \pm 0.837 \ ^{\rm Fd}$	137.533 ± 0.484 $^{\rm Dd}$	164.752 ± 0.296 ^{Bg}	$177.552 \pm 0.755 \ ^{\rm Ac}$	$139.015 \pm 0.778 \ ^{\rm Cf}$	$136.184 \pm 0.211 \ ^{\rm Eb}$
3	4.430	Ile	$58.044\pm0.394~^{\rm Di}$	$80.580 \pm 0.299 \ ^{Bj}$	$89.779 \pm 0.868 \ ^{Am}$	90.620 ± 1.364 ^{Ak}	$88.993 \pm 0.867 \ ^{\rm Aj}$	$68.158 \pm 0.998 \ ^{\rm Ci}$
4	4.773	Met	$68.024 \pm 0.499 \ ^{\rm Ch}$	50.377 \pm 0.707 $^{\mathrm{Ez}}$	$80.009 \pm 0.863 \ ^{\text{An}}$	$75.089 \pm 0.901 \ ^{\text{Bz}}$	67.433 ± 0.353 ^{Cz}	$64.801 \pm 0.595 \ ^{\rm Dj}$
5	5.300	Tyr	97.506 \pm 0.249 ^{Ee}	$92.755 \pm 0.743 \ ^{\rm Fi}$	$140.401 \pm 0.843 \ ^{\rm Ci}$	$142.882 \pm 0.661 \ ^{\text{Bg}}$	$152.51\pm1.310^{-\rm Ac}$	$115.067 \pm 0.816 \ ^{\rm De}$
6	5.320	Val	$105.524 \pm 0.443 \ ^{\rm Ed}$	$121.913 \pm 0.450 \ ^{\rm Df}$	$177.830 \pm 0.538 \ ^{\rm Ad}$	$170.525 \pm 0.562 \ ^{\rm Be}$	$142.421 \pm 0.388 \ ^{\rm Ce}$	$53.079 \pm 0.583 \ ^{Fz}$
7	5.527	Pro	$128.408 \pm 0.759 \ ^{\rm Cb}$	$150.809 \pm 0.453 \ ^{\rm Bc}$	$178.568 \pm 0.599 \ ^{\rm Ad}$	$150.294 \pm 0.758 \ ^{\rm Bf}$	$151.609 \pm 1.294 \ ^{\rm Bc}$	$123.114 \pm 0.695 \ ^{\rm Dd}$
8	6.662	Ala	$139.998 \pm 0.259 \ ^{\rm Fa}$	$198.311 \pm 0.274 \ ^{\rm Da}$	$231.392 \pm 0.790 \ ^{\text{Ca}}$	$173.795 \pm 1.526 \ ^{\rm Ed}$	$247.043 \pm 1.435 \ ^{\rm Aa}$	$233.36 \pm 0.235 \ ^{\text{Ba}}$
9	6.729	Thr	51.714 ± 1.524 ^{Dj}	$26.263 \pm 0.906 \ ^{\text{Em}}$	128.421 ± 0.985 ^{Aj}	97.385 \pm 0.949 ^{Bj}	95.686 \pm 1.734 ^{Bi}	$55.892 \pm 1.361 \ ^{\rm Ck}$
10	7.114	Gly	73.970 ± 4.139 ^{Fg}	$151.737 \pm 0.403 \ ^{\rm Dc}$	$225.692 \pm 1.199 \ ^{\rm Ab}$	$187.152 \pm 1.393 \ ^{\rm Bb}$	167.856 ± 2.856 ^{Cb}	$130.912 \pm 1.972 \ ^{\rm Ec}$
11	7.281	Ser	$73.303 \pm 0.962 \ ^{\rm Eg}$	17.935 ± 0.179 ^{Fn}	$159.437 \pm 1.069 \ ^{\rm Ah}$	$121.219 \pm 1.030 \ ^{\rm Bi}$	$115.137 \pm 2.332 \ ^{\rm Ch}$	$86.586 \pm 1.414 \ ^{\rm Dh}$
12	7.630	Glu	109.733 ± 0.694 ^{Fc}	170.436 ± 0.904 ^{Cb}	$202.66 \pm 1.065 \ ^{\rm Ac}$	$192.305 \pm 1.603 \ ^{\rm Ba}$	166.848 ± 0.311 ^{Db}	$130.898 \pm 0.787 \ ^{\rm Ec}$
13	8.267	Asp	$70.297 \pm 0.890 \ ^{\rm Fh}$	$118.125 \pm 1.462 \ ^{\rm Dg}$	$168.650 \pm 0.493 \ ^{\rm Af}$	$141.204 \pm 0.627 \ ^{\rm Bg}$	$128.227 \pm 0.620 \ ^{\rm Cg}$	$100.254 \pm 0.746 \ ^{\rm Ef}$
14	9.253	His	43.114 ± 0.766 ^{Dk}	$105.703 \pm 2.148 \ ^{\rm Bh}$	$121.397 \pm 0.343 \ ^{\rm Ak}$	96.093 \pm 0.378 $^{\mathrm{Cj}}$	96.040 \pm 0.463 ^{Ci}	33.586 ± 1.516 ^{En}
15	9.504	Cys	1.773 ± 0.142 ^{Dz}	3.354 ± 0.359 ^{Co}	$22.521\pm0.666^{\rm Ao}$	$10.390 \pm 0.065 \ ^{\rm Bo}$	$4.077 \pm 0.865 \ ^{Cm}$	$4.335 \pm 0.439 \ ^{\rm Co}$
16	9.566	Arg	94.743 ± 0.448 ^{Bf}	17.246 ± 0.342 ^{En}	12.142 ± 0.046 ^{Fp}	37.325 ± 2.562 ^{Dn}	116.047 ± 1.883 ^{Ah}	91.151 \pm 1.001 ^{Cg}
17	9.882	Lys	107.749 ± 0.277 ^{Ecd}	$130.649 \pm 0.093 \ ^{\rm De}$	$172.585 \pm 1.800 \ ^{\rm Ae}$	$135.325 \pm 1.263 \ ^{\rm Ch}$	145.413 ± 0.630 ^{Bd}	$101.201 \pm 1.090 \ ^{\rm Ff}$
Amino	acid separati	on						
Bitter a	mino acids ²		$558.505 \pm 4.378 \; \text{E}^{\text{a}}$	$618.660 \pm 4.722 \ ^{\rm Da}$	$802.943 \pm 3.336 \ ^{\rm Bb}$	$778.645 \pm 6.666 \ ^{\rm Ca}$	$811.498 \pm 2.859 \ ^{\rm Aa}$	$541.235 \pm 5.876 \ ^{\rm Fb}$
Aromatic amino acids ³		69.797 ± 0.641 ^{CDe}	$53.730 \pm 1.066 \ ^{\rm Ee}$	$102.530 \pm 1.529 \ ^{\rm Ae}$	$85.479 \pm 0.966 \ ^{\rm Be}$	71.510 ± 1.218 ^{Ce}	69.135 ± 10.34 ^{De}	
Sweet amino acids 4		467.394 \pm 7.643 $^{ m Fb}$	$545.055 \pm 2.215 \ ^{\rm Eb}$	$923.510 \pm 4.642 \ ^{\rm Aa}$	729.846 \pm 5.656 ^{Cb}	777.331 \pm 9.651 $^{ m Bb}$	$629.864 \pm 5.677 \ ^{\rm Da}$	
Sour amino acids 5		180.029 ± 1.584 ^{Fc}	$288.561 \pm 2.366 \ ^{\rm Dc}$	$371.309 \pm 1.559 \ ^{\rm Ac}$	$333.510 \pm 2.230 \ ^{\rm Bc}$	$295.075 \pm 0.931 \ ^{\rm Cc}$	$231.152 \pm 1.533 \ ^{\rm Ec}$	
Flavor amino acids ⁶		107.749 ± 0.277 ^{Ed}	130.649 ± 0.093 ^{Dd}	172.585 ± 1.800 ^{Ad}	$135.325 \pm 1.263 \ ^{\rm Cd}$	145.413 ± 0.630 ^{Bd}	101.201 ± 1.090 ^{Fd}	
Total a	mino acids		1383.474 ± 14.523	$1636.655 \pm$	2372.878 ± 12.864	$\textbf{2062.805} \pm$	2100.826 ± 18.289	1572.587 ± 15.210
			F	10.462^{D}	A	16.780 ^C	В	E

¹ RT: Retention time. ² Bitter amino acids: Phe, Leu, Ile, Tyr, Val, His, Arg. Aromatic amino acids ³: Met, Cys. Sweet amino acids ⁴: Pro, Ala, Thr, Gly, Ser. Sour amino acids ⁵: Glu, Asp. Flavor amino acid ⁶: Lys. Uppercase letters and lowercase letters mark statistically significant differences with one-way ANOVA test of significance (p < 0.05) among samples and compounds, respectively.

This result indicated that using quinoa as a fermentation material could enhance the aroma's richness and improve the taste of Huangjiu.

3.4. Taste traits analysis

3.4.1. Taste traits analysis the Huangjiu samples

High-quality Huangjiu typically features flavors such as sour, sweet, bitter, astringent, and fresh (Wang et al., 2020; Yu et al., 2022). The taste traits and intensity of six Huangjiu samples are presented in Fig. 3a. Due to the difference of fermentation raw materials, significant differences were observed in sourness, bitterness, astringency, aftertaste, umami, richness, saltness, and sweetness among the six samples.

Most of the acids in Huangjiu are produced by yeast, and a moderate amount of acids can enhance the taste while reducing the sweetness of Huangjiu (Li et al., 2022; Lv et al., 2015). The CQRW had the lowest sourness (-24.500 ± 0.029) (p < 0.05), CQW had the highest acidity (-8.857 ± 0.025) (p < 0.05), CRW was close to 10%CBR + CQRW and 20%CBR + CQRW. The CRW, which uses only rice as a raw material, is similar to traditional rice wine (Guo et al., 2023; Wang et al., 2020; Wei et al., 2016). Therefore, the sourness levels of CRW, 10%CBR + CQRW, and 20%CBR + CQRW fall within the normal range, enhancing the taste of rice wine.

The presence of bitterness is an essential characteristic of Huangjiu, and a suitable level of bitterness not only enhances the taste but also imparts a refreshing sensation to the wine (Lu et al., 2021; Yu et al., 2022). Compared with CRW, CQW had the lowest bitterness (4.007 \pm 0.102), and other samples had little difference in bitterness, all of which were within the normal range. The astringency of Huangjiu is primarily caused by lactic acid, tyrosine, and others compounds (Yu et al., 2022). When CBR was added to the raw materials, the content of Tyr in the sample increased significantly (except in 30%CBR + CQRW) (p < 0.05) (Table 2, Fig. 3a). The astringency of all samples was within the normal range (Lu et al., 2021). The aftertaste of 20%CBR + CQRW is significantly higher than that of other samples (p < 0.05). A high aftertaste value can bring better taste (Guo et al., 2023). Duan et al. (2023) demonstrated that the umami taste was associated with Glu and Lys; CQRW, having the highest content of Glu and Lys, consequently exhibited the highest umami value. The complexity of the raw materials used could influence the richness of Huangjiu. Therefore, CQRW and 20% CBR + CQRW exhibited higher richness values compared to the other samples, indicating that the appropriate amount of CBR could enhance this aspect. In this study, CRW had the highest sweetness, CQW and 30% CBR + CQRW scored lower on sweetness, and the other samples had moderate sweetness scores. Comparing the taste traits of all the samples, CQW and 20% CBR + CQRW were judged to have the best taste. Appropriate amount of CBR can improve the taste quality of rice wine.

3.4.2. PCA analysis of Huangjiu taste traits

To compare the taste traits of Huangjiu brewed with different raw materials, principal component analysis (PCA) was performed (Melucci et al., 2016) on the taste traits value shown in Fig. 3a.

In Fig. 3b, PC1 (40.1%) and PC2 (36.6%), the first two principal components, explained most of the total variance (76.7%). The total variance was close to 80%, indicating that PC1 and PC2 had a good explanation for the samples and could be used for subsequent analysis (Ma et al., 2022). PC2 distinguished CRW, CQW, and CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW. CRW and CQW were located at the negative end of PC2, while the other samples were positioned at the positive end. This indicated that there were significant differences in taste traits between CRW, CQW and the other samples (p < 0.05). PC1 distinguished 30%CBR + CQRW and CQRW, 10%CBR + CQRW, 20%CBR + CQRW. When the amount of CBR was 30%, the taste of CQRW changed significantly (p < 0.05), which might not be desirable for the preparation of Huangjiu. The CQRW, 10%CBR + CQRW, and 20%CBR + CQRW were positioned in the positive end of PC1 and PC2, and were closely related to astringency, richness, aftertaste-B, bitterness, and umami. This suggested that these samples shared similar taste characteristics. The taste traits of these three samples were identified as including astringency, richness, aftertaste-B, bitterness, and umami. The addition of 10% and 20% CBR improved the taste traits of CQRW.

Fig. 3. Taste traits of the prepared CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW analyzed by electronic tongue, and analysis of the correlation between the taste characteristics and amino acid content of the prepared Huangjiu samples. (a): Radar chart for the taste profiles of the prepared Huangjiu samples. (b): Principal component analysis (PCA) was used to analyzed the taste traits of the prepared Huangjiu samples. (c): Correlation analysis between taste traits and amino acid content of the prepared Huangjiu samples (p < 0.05, *; p < 0.01, ***).

3.4.3. Correlation analysis of Huangjiu amino acids and taste traits To verify the correlation between amino acids and taste traits of Huangjiu, correlation analysis was conducted using normalized data

(Duan et al., 2023; Zhu, Jiang, et al., 2020). The intergroup correlation

analysis was conducted based on the results of the intra-group correlation analysis of *E*-tongue and amino acids content (Fig. S2). The results are shown in Fig. 3c. Sourness was negatively correlated with all amino acids (no Arg). Bitterness and astringency showed a positive correlation

with most amino acids (except Arg, His and Ala). With the exception of Arg and Ala, umami showed a positive with other amino acids. The Lys, which is classified as an umami amino acid, had a significant impact on the umami value of Huangjiu due to its content (p < 0.05) (Chen, Wu, et al., 2020; Lu et al., 2021). The richness value was positively correlated with all amino acids, suggesting that higher amino acids levels in Huangjiu significantly influence its taste traits (p > 0.05). In Fig. 3c, saltiness was significantly correlated with Ile, Pro, Glu, and Asp (p < 0.05), aligning with the findings of Guo et al. (2023). There was a significant negative correlation between sweetness value and Ala (sweet amino acid) (p < 0.05). The change in amino acid content was closely associated with alterations in the taste characteristics of Huangjiu.

3.5. Analysis of aroma components of Huangjiu

The difference of fermentation raw materials influences the volatile compounds in Huangjiu (Yang et al., 2020; Yu et al., 2022). The main compounds and contents of Huangjiu with different raw materials were shown in Fig. 4 and Table 3. A total of 79 key volatiles were detected in 6 samples, including 26 esters, 16 higher alcohols, 12 aldehydes, 9 acids, 7 ketones, and 9 others. The 10%CBR + CQRW had the most easters, higher alcohols, aldehydes, acids, and ketones volatile compounds; CQRW had the most of others volatile compounds (Fig. 4a). With the increase of CBR, all kinds of volatile compounds in CQRW (with added CBR) showed a gradient decrease (Fig. 4a). Cluster analysis was used to analyze the volatile compounds of 6 Huangjiu samples. The 10%CBR + CQRW, 20%CBR + CQRW, and CQRW fall into the same category, indicating that both 10% and 20% CBR can enhance the aroma quality of CQRW (Fig. 4b). Table S4 lists the detection time and the characteristic aroma description of volatile compounds.

Yeast fermentation can promote the synthesis of certain ester compounds (Wei et al., 2016). Ester volatile compounds are produced by yeast and acetyl-CoA, influenced by various factors including fermentation factors (Wang et al., 2020). The CRW contained 18 ester compounds, with ethyl nonanoate, which imparts grape and rose aromas, being unique to CRW. The CQW had the highest number of ester compounds (23). However, its ester compounds content was 301.857 \pm 6.118 mg/L, which is lower than that of other samples (except for 30% CBR + CQRW). When the fermentation materials included rice and quinoa, only one aromatic ester was absent, and the concentration of esters compound increased by 36.716% (compared with CQW). With the addition of 10% CBR, the type of ester compounds remained the same, but their concentration increased by 48.146% (compared to CQW). The results indicated that adding CBR as an excipient in CQRW enhanced the volatile aroma of Huangjiu esters.

The metabolism of sugar intermediates, or the transamination of aromatic amino acids via the Ehrlich pathway, produces the corresponding higher alcohols during alcoholic fermentation (Ma et al., 2022). Chen, Wu, et al. (2020) study showed that glutelin promoted the production of higher alcohols and ester was 11% and 99%, respectively. 1-Propanol showed weak ethanol and acetone flavor. 4-Methyl-1-pentanol showed wine flavor, and they were only detected in CRW and CQRW. The types (11) and contents (2080.046 \pm 2.406 mg/L) of higher alcohols volatile compounds in CQW were lower than those in other samples (p < 0.05). When the raw material is solely quinoa, the absence of sugar and the lack of cooperative fermentation by lactic acid bacteria and yeast inhibit amino acid metabolism, reducing the content of higher alcohols (Wei et al., 2016). There was a difference in the type of higher alcohol compounds between CQRW and other samples with added CBR, which was 1-propanol. When the addition of CBR was 10%, the higher alcohols volatile compounds in Huangjiu was the most.

Aldehydes are typically produced by the oxidation of polyphenols or the conversion of alcohols (Li et al., 2022; Paucean et al., 2019). During fermentation, amylopectin can be preferentially utilized for the synthesis of aldehydes volatile compounds (Yang et al., 2020). The differences in starch types between quinoa and rice resulted in varying aldehydes volatile compounds contents in CRW and CQW. The 10%CBR + CQRW had the highest concentration of aldehydes volatile compounds (12). Additionally, a new aldehyde compound, 2-Methyl-3-phenylpropionaldehyde, was identified after adding CBR, which enhances the aroma of Huangjiu.

Saccharomyces cerevisiae can synthesize a variety of organic acids from sugars and other nutrients (Jin et al., 2021). Acetic acid is the most acids volatile compound, and its accumulation can lead to a deterioration in the quality of Huangjiu (Xie et al., 2021). The acetic acid content in CRW is comparable to that of traditional rice wine (Lv et al., 2015). Consequently, the sour volatile compounds in CRW and CQRW contribute positively to the aroma of rice wine.

Ketones volatile compounds usually have special aroma, 2-octanone shows fruity, fatty, grass flavor; 2-heptanone shows medicinal flavor; 2-undecanone shows fruity, cream, cheese flavor; 4-Methylacetophenone shows hawthorn, honey, alfalfa flavor; 2-nonanone shows fruity, sweet, wax, coconut flavor; 4-hydroxy-2-butanone shows aromatic odor. There were 6 ketones volatile compounds in 10%CBR + CQRW, and the highest content was 7.407 \pm 0.235 mg/L (p < 0.05). Adding 10%CBR to the raw materials could increase the content of special aroma compounds in Huangjiu.

Other volatile compounds included furans, alkenes, naphthalene, and their derivatives, etc. And 9 others volatile compounds (except CRW) were identified in the Huangjiu samples, with the highest

Fig. 4. Analysis of main volatile compounds in prepared CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW. (a): Total analysis of total esters (a1), higher alcohols (a2), aldehydes (a3), acids (a4), ketones (a5), and others (a6) compound of the Huangjiu samples. (b) Heat map and cluster analysis of main volatile compounds in Huangjiu samples (esters (b1), higher alcohols (b2), aldehydes (b3), acids (b4), ketones (b5), and others (b6)). Different lowercase letters mean significant difference (p < 0.05).

Table 3

Concentration of main volatile compounds in the prepared CRW, CQW, CQRW, 10%CBR + CQRW, 20%CBR + CQRW, 30%CBR + CQRW (mg/L).

NO	Volatiles	CRW	CQW	CRQW	$10\% \ \text{CBR} + \text{CQRW}$	$20\% \ CBR + CQRW$	$30\% \ CBR + CQRW$
	Esters	410.996 ± 3.002 ^B	$301.857 \pm 6.118^{\rm C}$	412.687 ± 4.336 ^B	447.188 ± 4.113 ^A	$304.372 \pm 5.201^{\circ}$	201.699 ± 3.889 ^D
A1	Ethyl acetate	$64.903 \pm 0.551^{\text{D}}$	55.436 ± 1.021^{E}	$108.312 \pm 0.715^{\text{A}}$	$100.513 \pm 0.933^{\text{B}}$	$72.046 \pm 0.786^{\circ}$	40.315 ± 0.355 ^F
A2	Ethyl propionate	$0.002 \pm 0.001^{\text{B}}$	0.003 ± 0.001^{B}	$0.004 \pm 0.001^{\text{B}}$	$0.013 \pm 0.002^{\text{A}}$	nd	nd
A3	Isobutyl acetate	$5.756 \pm 0.317^{\text{B}}$	$8810\pm0.559^{\text{A}}$	nd	$4.315 \pm 0.103^{\circ}$	$4.221 \pm 0.243^{\circ}$	1.213 ± 0.131 ^D
A4	Ethyl butyrate	$8.876 \pm 0.422^{\text{A}}$	0.901 ± 0.072^{B}	nd	0.423 ± 0.078^{E}	$0.754 \pm 0.025^{\circ}$	$0.631 \pm 0.014^{\text{D}}$
A5	Isoamyl acetate	$33751 \pm 0.858^{\circ}$	$29173\pm0.750^{\circ}$	55.953 ± 0.633 ^A	45.924 ± 0.456^{B}	$27.784 \pm 1.030^{\circ}$	10.351 ± 0.011
46	Ethyl valerate	nd	$0.435 \pm 0.075^{\circ}$	0.551 ± 0.085^{B}	$1.063 \pm 0.023^{\text{A}}$	0.597 ± 0.055^{B}	$0.331 \pm 0.056^{\text{D}}$
47	Ethyl beyanoate	35306 ± 0.531 ^A	20.057 ± 0.073	25.210 ± 0.000	30566 ± 2153^{B}	22.981 ± 0.611 ^D	10.874 ± 0.601 F
10	Ethyl hontoposto	0.857 ± 0.010^{B}	20.037 ± 0.009	25.219 ± 0.371	$1.052 \pm 0.041^{\text{A}}$	22.901 ± 0.011	0.922 ± 0.051
A0	Ethyl coprulate	123610 ± 0.010^{B}	0.074 ± 0.024 58 005 \pm 0.272 F	0.302 ± 0.030 02 565 ± 0.355 ^D	1.053 ± 0.041 135 222 ± 0.199 Å	0.044 ± 0.000	0.032 ± 0.000
A10	Ethyl popapoate	123.019 ± 0.013 4.148 ± 0.746 A	38.003 ± 0.272	92.303 ± 0.333	133.223 ± 0.100	94.000 ± 0.000	09.133 ± 0.339
A10	Mothyl dogoposto	4.140 ± 0.740		110		$0 = 41 + 0.016^{\circ}$	100
A11	Methyl decanoate	110	0.409 ± 0.053	0.072 ± 0.022	0.935 ± 0.072	0.541 ± 0.010	0.315 ± 0.012
AIZ	Ethyl caprate	53.963 ± 1.010	$15./14 \pm 0.035$	44.087 ± 0.277	$37.465 \pm 0.864^{\circ}$	24.384 ± 0.156	19.893 ± 0.544
AI3	gamma - Butyrolactone	4.433 ± 0.346	1.265 ± 0.221	$2.526 \pm 0.045^{\circ}$	3.001 ± 0.233	1.985 ± 0.250	1.204 ± 0.472
A14	Ethyl benzoate	0.620 ± 0.046	1.396 ± 0.110	$0.823 \pm 0.034^{\circ}$	2.315 ± 0.105	0.739 ± 0.036	0.412 ± 0.016
A15	Dietnyi succinate	3.977 ± 0.140	72.847 ± 0.569	3.546 ± 0.301	16.351 ± 0.135	$4.266 \pm 0.333^{\circ}$	2.135 ± 0.008
AIG	I rimetnylene acetate		1.825 ± 0.011	1.211 ± 0.011^{-1}	1.636 ± 0.084^{-1}	$1.315 \pm 0.013^{\circ}$	0.737 ± 0.035^{-1}
A17	Ethyl phenylacetate	$0.574 \pm 0.044^{\circ}$	nd	0.778 ± 0.016^{-5}	0.913 ± 0.035 ··	$0.554 \pm 0.056^{\circ}$	$0.435 \pm 0.031^{\circ}$
A18	Ethyl butyl succinate	nd	1.144 ± 0.132	1.876 ± 0.041	nd	nd	$0.002 \pm 0.002^{\circ}$
A19	Ethyl 4-hydroxybutanoate	29.954 ± 0.035 ^A	4.953 ± 0.455	$10.297 \pm 0.764^{\circ}$	18.832 ± 0.561	$11.242 \pm 0.325^{\circ}$	8.664 ± 0.122
A20	Phenethyl acetate	35.744 ± 0.156 ^в	16.699 ± 0.546^{-1}	38.036 ± 1.223 ^A	38.983 ± 0.435 ^A	$28.905 \pm 0.845^{\circ}$	20.736 ± 0.651 ^b
A21	Ethyl isopentyl succinate	nd	1.062 ± 0.852 ^A	nd	nd	nd	nd
A22	gamma - Nonanolactone	$1.780 \pm 0.010^{\circ}$	nd	1.855 ± 0.020 ^в	2.207 ± 0.036 ^A	2.930 ± 0.775 ^A	2.953 ± 0.035 ^A
A23	Ethyl myristate	nd	1.122 ± 0.100 ^B	4.091 ± 0.366 ^A	$0.956 \pm 0.026^{\circ}$	0.756 ± 0.023 ^D	0.025 ± 0.006 ^E
A24	Palmitic acid ethyl ester	2.732 ± 0.165 ^B	$1.700 \pm 0.133^{\circ}$	15.706 ± 0.465 ^A	2.984 ± 0.377 ^B	$1.686 \pm 0.161^{\circ}$	1.269 ± 0.035 ^D
A25	Mono-ethyl succinate	nd	7.530 ± 0.022 ^A	1.454 ± 0.111 ^B	nd	nd	nd
A26	Dibutyl phthalate	nd	0.697 ± 0.016 ^D	2.530 ± 0.543 $^{ m A}$	1.513 ± 0.192 ^B	$0.957 \pm 0.076^{\circ}$	0.235 ± 0.047 ^E
	Higher alcohols	3540.501 \pm	2080.046 ± 2.406	3789.026 ± 2.944	3959.347 ± 4.479	3461.786 ± 3.275	2467.366 ± 3.143
	Tinginer alcohols	2.478 ^C	F	В	A	D	E
B1	1-Propanol	9.620 ± 0.123 ^A	nd	8.819 ± 0.242 ^B	nd	nd	nd
B2	2-Methyl-1-propanol	$201.084 \pm 0.546 \ ^{\rm A}$	$86.018 \pm 0.138 \ ^{\rm D}$	$126.660 \pm 0.476^{\circ}$	135.662 ± 0.089 ^B	70.852 ± 0.585 ^E	21.170 ± 0.847 ^F
B3	1-Butanol	1.520 ± 0.122 ^B	0.767 ± 0.046 $^{\rm D}$	1.519 ± 0.181 ^B	1.736 ± 0.155 $^{ m A}$	$1.009\pm0.044^{\rm C}$	0.678 ± 0.032 ^E
B4	4-Methyl-1-pentanol	1123.369 ± 0.651	nd	nd	nd	nd	nd
21	, mengr i penanor	A		1453.051 ± 0.642	1633.166 ± 2.315	1241.977 +	
B5	3-Methyl-1-butanol	nd	766.788 ± 0.651 ^E	B	A .	0.994 ^c	833.156 ± 0.317 ^D
B6	1-Hexanol	2.210 ± 0.110 $^{ m E}$	2.981 ± 0.135 ^B	2.998 ± 0.022 ^B	3.135 ± 0.028 ^A	$2.817 \pm 0.061^{\circ}$	2.632 ± 0.049 ^D
B7	2-Octanol	50.000	50.000	50.000	50.000	50.000	50.000
B8	1-Heptanol	$4.770 \pm 0.262 \stackrel{\text{E}}{\cdot}$	nd	5.972 ± 0.267 ^D	$9.444 \pm 0.364^{\circ}$	12.810 ± 0.114 ^A	11.638 ± 0.397 ^B
B9	2-Ethylhexanol	4.492 ± 0.056 ^A	nd	$2.483 \pm 0.100^{\circ}$	3.677 ± 0.042 ^B	2.330 ± 0.025 ^D	1.638 ± 0.048 ^E
B10	2-Nonanol	4.182 ± 0.182 ^A	nd	3.519 ± 0.149 ^B	3.465 ± 0.221 ^B	$3.006 \pm 0.023^{\circ}$	1.349 ± 0.034 ^D
B11	1-Octanol	2.517 ± 0.067 $^{ m A}$	1.419 ± 0.068 ^D	2.329 ± 0.058 ^B	2.331 ± 0.034 ^B	$1.901 \pm 0.017^{\circ}$	1.127 ± 0.017 ^E
B12	3-Methylthiopropanol	1.985 ± 0.203 ^D	12.924 ± 0.388 ^A	10.028 ± 0.486 ^B	12.336 ± 0.416 ^A	10.707 ± 0.613 ^B	$8.668 \pm 0.421^{\circ}$
B13	1-Decanol	nd	0.602 ± 0.013 ^B	0.914 ± 0.100 $^{ m A}$	0.984 ± 0.065 ^A	0.956 ± 0.068 ^A	$0.477 \pm 0.022^{\mathrm{C}}$
B14	Benzyl alcohol	nd	$1.507 \pm 0.069\ ^{\rm A}$	$0.788 \pm 0.054^{\rm C}$	0.993 ± 0.102 ^B	$0.792 \pm 0.010^{\rm C}$	0.566 ± 0.013 ^D
B15	Phenethyl alcohol	${}^{2134.752}_{\rm A} \pm 0.156$	$\underset{F}{1155.560} \pm 0.883$	${}^{2118.609}_{\rm B}\pm0.156$	2100.965 ±	${}^{2061.793}_{\rm D}\pm0.687$	${}^{1533.645}_{\scriptscriptstyle E}\pm 0.915$
B16	1-Phenethyl alcohol	0.000	$1.482 \pm 0.016^{\text{A}}$	1.337 ± 0.012 ^B	0.363 1 454 ± 0 063 ^A	$0.836 \pm 0.034^{\circ}$	0.622 ± 0.032 ^D
210	Aldehvdes	24546 ± 0546^{B}	18357 ± 0.010	25.027 ± 1.027^{B}	28671 ± 0.003	22379 ± 0.004	15154 ± 0.630^{E}
C1	Hevanal	27.370 ± 0.370	10.007 ± 0.000	$0.922 \pm 0.062^{\text{A}}$	0.057 ± 0.003^{B}	0.035 ± 0.013	$0.006 \pm 0.009^{\text{D}}$
C2	Hentanal	nd	$2.332 \pm 0.156^{\text{B}}$	2.847 ± 0.002	1.735 ± 0.003	1.347 ± 0.101 ^D	0.277 ± 0.066^{E}
C2	Octanal	2538 ± 0.082 Å	$0.654 \pm 0.020^{\circ}$	0.788 ± 0.021 B	0.035 ± 0.023	nd	nd
C3	1 Nopapal	2.330 ± 0.003	5.034 ± 0.030 5.716 ± 0.669 D	9.756 ± 0.021	0.033 ± 0.000 7 334 $\pm 0.991^{\circ}$	5.060 ± 0.060 D	$2164 \pm 0.112^{\text{E}}$
CF	1-11Ulidiidi Dogul aldabuda	14.707 ± 0.180^{-1}	0.222 ± 0.002	0.730 ± 0.423	$7.334 \pm 0.331^{\circ}$	0.009 ± 0.008	2.104 ± 0.112
C3	Poproldobydo	0.743 ± 0.038	0.332 ± 0.024	10 6 6 4 0 1 0 0 5 4 ^B	0.132 ± 0.023	0.073 ± 0.000	0.070 ± 0.010
0	2 Hortales also	$1.1/8 \pm 0.045^{-1}$	0.900 ± 0.011^{-5}	0.049 ± 0.254^{-1}	7.503 ± 0.198^{-1}	0.307 ± 0.307^{-1}	$3./2/\pm 0.201^{-5}$
67	3-meptylacrolein 2-Methyl-3-	0.949 ± 0.032 **	0.405 ± 0.023 ⁻	0.834 ± 0.054 ⁻	0.050 ± 0.051^{-5} .	0.383 ± 0.059 -	0.403 ± 0.013^{-1}
C8	phenylpropionaldehyde	nd	nd	nd	$3.787 \pm 0.156 \ ^{\rm A}$	$3.062 \pm 0.089 \ ^{\rm B}$	$\textbf{2.233} \pm \textbf{0.027}^{C}$
60	Citral	nd	nd	$1.125 \pm 0.049^{\circ}$	3.668 ± 0.053 ^A	2.068 ± 0.076^{B}	0.698 ± 0.047 ^D
C10	4-N-Propylbenzaldebyde	1.910 ± 0.061 ^A	$1.711 \pm 0.012^{\circ}$	$1.020 \pm 0.036^{\text{A}}$	1 951 ± 0.052 Δ	1.000 ± 0.070 1.043 ± 0.030 ^A	$1.836 \pm 0.020 B$
C11	Cinnamaldebyde	0.101 ± 0.001	nd	nd	0.540 ± 0.032 R	0.798 ± 0.039	0.983 ± 0.029
C10	5-Hydroxymethylfurfural	$2.418 \pm 0.060^{\text{A}}$	$1.241 \pm 0.020^{\text{B}}$	1200 ± 0.069^{B}	1.156 ± 0.032	$1.093 \pm 0.030^{\circ}$	0.751 ± 0.061 D
012	Acide	2.710 ± 0.009 70.262 ± 0.207 ^E	1.271 ± 0.020 158 846 $\pm 0.047^{\circ}$	1.200 ± 0.000	1.130 ± 0.033 170 456 ± 1.251 Å	1.053 ± 0.020 164 442 ± 1.010 ^B	102.291 ± 0.001
D1	Acetic acid	70.203 ± 2.387 35.840 ± 1.339 E	130.040 ± 0.947 132.205 $\pm 0.216^{\circ}$	30.403 ± 1.101 34 403 \pm 0.001 E	$1/0.450 \pm 1.251$ $1/0.064 \pm 0.465$ Å	104.443 ± 1.213 125.280 + 0.462 B	123.301 ± 1.077 100 154 \pm 0.647 D
וע	Dropapoic acid	33.040 ± 1.338	$132.203 \pm 0.310^{\circ}$	54.495 ± 0.891^{-1}	140.904 ± 0.400	133.369 ± 0.403^{-1}	100.134 ± 0.047^{-1}
D2	Fiopanoic aciu	$\frac{110}{2010} + 0.004 \text{ A}$	0.712 ± 0.012	nu	0.037 ± 0.035^{-1}	0.475 ± 0.050^{-2}	0.110 ± 0.022^{-1}
	isobulyric acid	3.818 ± 0.204 ··	$2.312 \pm 0.023^{\circ}$		3.310 ± 0.210 ···	3.100 ± 0.018	$2.703 \pm 0.036^{\circ}$
D3	2 Mother huteria act	· · · · · · · · · · · · · · · · · · ·	$(411 + 1106)^{\circ}$	2.209 ± 0.043 -	2.387 ± 0.008^{-1}	2.002 ± 0.005	2.000 ± 0.024
D3 D4	2-Methyl butyric acid	2.324 ± 0.013^{-5}	$10 = 0.07 \pm 0.001$	11 440 1 0 1000	10,000 1 0,001 8	10.011 0.040 8	10 000 0 011 !!
D3 D4 D5	2-Methyl butyric acid Hexanoic acid	$2.324 \pm 0.013^{\circ}$ $10.946 \pm 0.546^{\circ}$	$13.587 \pm 0.156^{\text{A}}$	$11.442 \pm 0.120^{\circ}$	$12.009 \pm 0.361^{\text{B}}$	12.311 ± 0.243 ^B	10.338 ± 0.011
D3 D4 D5 D6	2-Methyl butyric acid Hexanoic acid Octanoic acid	$\begin{array}{c} 2.324 \pm 0.013 \\ ^{5} \\ 10.946 \pm 0.546 \\ ^{c} \\ 11.465 \pm 0.034 \\ ^{A} \\ \end{array}$	$\begin{array}{c} 2.411 \pm 0.001 \\ 13.587 \pm 0.156 \\ 4.527 \pm 0.274 \\ F \\ 0.746 \pm 0.016 \\ P \end{array}$	$\begin{array}{c} 11.442 \pm 0.120^{C} \\ 5.126 \pm 0.065^{E} \\ 1.110 \pm 0.027^{B} \end{array}$	$12.009 \pm 0.361^{\text{B}}$ $6.487 \pm 0.086^{\text{C}}$	$\begin{array}{c} 12.311 \pm 0.243 \\ \overline{}^{\rm B} \\ 7.032 \pm 0.342 \\ \overline{}^{\rm B} \\ 0.767 \pm 0.022 \\ \overline{}^{\rm D} \end{array}$	$\begin{array}{c} 10.338 \pm 0.011 \\ 5.421 \pm 0.085 \\ ^{\rm D} \\ 0.502 \pm 0.022 \\ ^{\rm F} \end{array}$
D3 D4 D5 D6 D7	2-Methyl butyric acid Hexanoic acid Octanoic acid Nonanoic acid	$\begin{array}{c} 2.324 \pm 0.013 \\ \hline 10.946 \pm 0.546 \\ \hline 11.465 \pm 0.034 \\ \hline 2.534 \pm 0.033 \\ \hline 0.031 \\ \hline 0.031$	$\begin{array}{c} 2.411 \pm 0.001 \\ 13.587 \pm 0.156 \\ ^{\rm A} \\ 4.527 \pm 0.274 \\ ^{\rm F} \\ 0.746 \pm 0.019 \\ ^{\rm D} \\ 2.044 \pm 0.072 \\ ^{\rm F} \end{array}$	$\begin{array}{c} 11.442 \pm 0.120^{C} \\ 5.126 \pm 0.065^{E} \\ 1.118 \pm 0.027^{B} \\ 1.550 \pm 0.0017^{B} \end{array}$	$\begin{array}{c} 12.009 \pm 0.361 \\ 6.487 \pm 0.086 \\ 0.913 \pm 0.010 \\ 1.456 \pm 0.010 \\ \end{array}$	$\begin{array}{c} 12.311 \pm 0.243 \\ \overline{}^{\rm B} \\ 7.032 \pm 0.342 \\ \overline{}^{\rm B} \\ 0.767 \pm 0.022 \\ \overline{}^{\rm D} \\ 1.105 \pm 0.022 \\ \overline{}^{\rm D} \end{array}$	$\begin{array}{c} 10.338 \pm 0.011 \\ 5.421 \pm 0.085 \\ 0.502 \pm 0.033 \\ E \end{array}$
D3 D4 D5 D6 D7 D8	2-Methyl butyric acid Hexanoic acid Octanoic acid Nonanoic acid Decanoic acid	2.324 ± 0.013^{-5} 10.946 ± 0.546^{C} 11.465 ± 0.034^{-A} 2.534 ± 0.033^{-A} 2.381 ± 0.011^{-A}	$\begin{array}{c} 2.441 \pm 0.001 \\ 13.587 \pm 0.156 \\ 4.527 \pm 0.274 \\ \hline \\ 0.746 \pm 0.019 \\ \hline \\ 0.944 \pm 0.053 \\ \hline \\ \end{array}$	$\begin{array}{c} 11.442 \pm 0.120^{C} \\ 5.126 \pm 0.065^{E} \\ 1.118 \pm 0.027^{B} \\ 1.759 \pm 0.046^{B} \\ 2.125 \pm 0.046^{B} \end{array}$	$\begin{array}{c} 12.009 \pm 0.361 \\ ^{B} \\ 6.487 \pm 0.086 \\ ^{C} \\ 0.913 \pm 0.010 \\ ^{C} \\ 1.456 \pm 0.065 \\ ^{C} \\ \end{array}$	$\begin{array}{c} 12.311 \pm 0.243 \\ ^{B} \\ 7.032 \pm 0.342 \\ ^{B} \\ 0.767 \pm 0.022 \\ ^{D} \\ 1.195 \pm 0.059 \\ ^{D} \\ \end{array}$	$\begin{array}{c} 10.338 \pm 0.011 \ {}^{D} \\ 5.421 \pm 0.085 \ {}^{D} \\ 0.502 \pm 0.033 \ {}^{E} \\ 0.664 \pm 0.057 \ {}^{F} \\ \end{array}$
D3 D4 D5 D6 D7 D8 D9	2-Methyl butyric acid Hexanoic acid Octanoic acid Nonanoic acid Decanoic acid Benzoic acid	$\begin{array}{c} 2.324 \pm 0.013 \\ \hline 10.946 \pm 0.546 \\ c\\ 11.465 \pm 0.034 \\ A\\ 2.534 \pm 0.033 \\ A\\ 2.381 \pm 0.011 \\ A\\ 0.954 \pm 0.210 \\ E\\ c\\ 0.954 \pm 0.210 \\ E\\ c\\ 0.954 \\ c\\ 0.954 \\$	$\begin{array}{c} 2.411 \pm 0.001 \\ 13.587 \pm 0.156 \\ 4.527 \pm 0.274 \\ ^{\rm F} \\ 0.746 \pm 0.019 \\ ^{\rm D} \\ 0.944 \pm 0.053 \\ ^{\rm E} \\ 1.400 \pm 0.033 \\ ^{\rm C} \end{array}$	$\begin{array}{c} 11.442 \pm 0.120^{\text{C}} \\ 5.126 \pm 0.065^{\text{E}} \\ 1.118 \pm 0.027^{\text{B}} \\ 1.759 \pm 0.046^{\text{B}} \\ 2.195 \pm 0.008^{\text{A}} \end{array}$	$\begin{array}{c} 12.009 \pm 0.361 \\ ^{\rm B} \\ 6.487 \pm 0.086 \\ ^{\rm C} \\ 0.913 \pm 0.010 \\ ^{\rm C} \\ 1.456 \pm 0.065 \\ ^{\rm C} \\ 1.868 \pm 0.011 \\ ^{\rm B} \\ \end{array}$	$\begin{array}{c} 12.311 \pm 0.243 \ ^{\text{B}} \\ 7.032 \pm 0.342 \ ^{\text{B}} \\ 0.767 \pm 0.022 \ ^{\text{D}} \\ 1.195 \pm 0.059 \ ^{\text{D}} \\ 1.213 \pm 0.005 \ ^{\text{D}} \end{array}$	$\begin{array}{c} 10.338 \pm 0.011 \\ 5.421 \pm 0.085 \\ 0.502 \pm 0.033 \\ 0.664 \pm 0.057 \\ F \\ 0.534 \pm 0.063 \\ F \\ 0.534 \pm 0.063 \\ F \\ 0.534 \pm 0.063 \\ F \\ 0.534 \\ 0.663 \\ F \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.663 \\ F \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.663 \\ F \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.534 \\ 0.653 \\ 0.534 \\ 0.$
D3 D4 D5 D6 D7 D8 D9	2-Methyl butyric acid Hexanoic acid Octanoic acid Nonanoic acid Decanoic acid Benzoic acid Ketones	$\begin{array}{c} 2.324 \pm 0.013 \\ 10.946 \pm 0.546 \\ ^{\rm C}\\ 11.465 \pm 0.034 \\ ^{\rm A}\\ 2.534 \pm 0.033 \\ ^{\rm A}\\ 2.381 \pm 0.011 \\ ^{\rm A}\\ 0.954 \pm 0.210 \\ ^{\rm E}\\ 6.892 \pm 0.159 \\ ^{\rm BCE}\end{array}$	$\begin{array}{c} 2.411\pm 0.050\ ^{A}\\ 13.587\pm 0.156\ ^{A}\\ 4.527\pm 0.274\ ^{F}\\ 0.746\pm 0.019\ ^{D}\\ 0.944\pm 0.053\ ^{E}\\ 1.400\pm 0.033\ ^{C}\\ 4.133\pm 0.166\ ^{E}\\ \end{array}$	$\begin{array}{c} 11.442 \pm 0.120^{C} \\ 5.126 \pm 0.065 \stackrel{E}{} \\ 1.118 \pm 0.027 \stackrel{B}{} \\ 1.759 \pm 0.046 \stackrel{B}{} \\ 2.195 \pm 0.008 \stackrel{A}{} \\ 6.993 \pm 0.049 \stackrel{B}{} \\ \end{array}$	$\begin{array}{c} 12.009 \pm 0.361 \ ^{B} \\ 6.487 \pm 0.086^{C} \\ 0.913 \pm 0.010^{C} \\ 1.456 \pm 0.065^{C} \\ 1.868 \pm 0.011 \ ^{B} \\ 7.407 \pm 0.235 \ ^{A} \end{array}$	$\begin{array}{c} 12.311 \pm 0.243 \ ^{B} \\ 7.032 \pm 0.342 \ ^{B} \\ 0.767 \pm 0.022 \ ^{D} \\ 1.195 \pm 0.059 \ ^{D} \\ 1.213 \pm 0.005 \ ^{D} \\ 6.634 \pm 0.240^{C} \\ \end{array}$	$\begin{array}{c} 10.338 \pm 0.011 \\ 5.421 \pm 0.085 \\ 0.502 \pm 0.033 \\ F \\ 0.664 \pm 0.057 \\ F \\ 0.534 \pm 0.063 \\ F \\ 4.979 \pm 0.163 \\ D \\ 0.664 \\ F \\ 0.534 $

(continued on next page)

Table 3 (continued)

NO	Volatiles	CRW	CQW	CRQW	10% CBR + CQRW	$20\%\ CBR + CQRW$	30% CBR + CQRW
E2	2-Heptanone	nd	$1.888\pm0.061\ ^{\text{A}}$	$1.633\pm0.042~^{\text{B}}$	$\textbf{0.888} \pm \textbf{0.052}^{C}$	0.804 ± 0.036^{C}	$0.366\pm0.023~^{\rm D}$
E3	2-Undecanone	$1.153 \pm 0.011^{ m C}$	$0.288 \pm 0.047^{\rm F}$	1.638 ± 0.043 $^{ m A}$	1.356 ± 0.045 ^B	$0.988 \pm 0.005 \ ^{\rm D}$	0.536 ± 0.004 ^E
E4	4-Methylacetophenone	nd	$0.663 \pm 0.033 \ ^{\rm A}$	nd	nd	nd	nd
E5	2-Nonanone	$2.062 \pm 0.512 \ ^{\rm A}$	nd	1.279 ± 0.018 ^E	1.407 ± 0.043 ^D	$1.586 \pm 0.009^{ m C}$	1.737 ± 0.044 ^B
E6	4-Octanone	$0.323 \pm 0.022 \ ^{\rm D}$	nd	$0.554\pm0.010\ ^{\text{A}}$	$0.488 \pm 0.007 \ ^{\rm B}$	$0.486 \pm 0.013 \ ^{\rm B}$	$0.400 \pm 0.011^{\rm C}$
E7	4-Hydroxy-2-butanone	$3.355\pm0.014~^{\rm A}$	nd	$0.989 \pm 0.005 \ ^{\rm D}$	2.136 ± 0.055 ^B	1.739 ± 0.650 ^{BCE}	$1.263 \pm 0.062^{\rm C}$
	Others	$39.270 \pm 1.878 \ ^{\rm D}$	$28.890 \pm 0.808 \ ^{F}$	$50.878 \pm 0.618 \ ^{\rm A}$	46.776 \pm 1.020 ^B	$42.967 \pm 1.385^{\circ}$	$34.537 \pm 0.423 \ ^{\rm E}$
F1	2-Pentylfuran	nd	$0.207\pm0.017\ ^{\text{E}}$	$0.301 \pm 0.008 \ ^{\rm D}$	$0.357 \pm 0.011^{\rm C}$	$0.530\pm0.006~^{\rm A}$	0.463 ± 0.005 ^B
F2	Styrene	nd	$0.439 \pm 0.051 \ ^{\rm D}$	$0.802\pm0.024~^{\rm A}$	$0.778 \pm 0.003 \ ^{\rm A}$	0.670 ± 0.006 ^B	$0.522\pm0.002^{\rm C}$
F3	n-Hendecane	1.535 ± 0.033 ^E	$1.130 \pm 0.031 \ ^{\rm F}$	$6.804 \pm 0.412\ ^{\rm A}$	2.664 ± 0.036 ^B	$2.030 \pm 0.015^{\rm C}$	$1.835 \pm 0.123 \ ^{\rm D}$
F4	β-Methylstyrene	$6.883 \pm 0.292 \ ^{\rm A}$	$3.894 \pm 0.039 \ ^{\rm D}$	$5.150 \pm 0.015 \ ^{\rm B}$	$6.678 \pm 0.112\ ^{\rm A}$	$4.938 \pm 0.229 \ ^{\rm B}$	$4.056 \pm 0.035^{\rm C}$
F5	Diethylene glycol monoethyl ether	$0.479\pm0.047~^{\rm A}$	$0.246 \pm 0.005^{\circ}$	$0.467\pm0.014~^{\rm A}$	$0.433 \pm 0.022 \ ^{\rm A}$	0.309 ± 0.035 ^B	0.201 ± 0.006 ^D
F6	Naphthalene	$24.352 \pm 1.330^{\rm C}$	19.443 ± 0.505 ^E	$30.157 \pm 0.013 \ ^{\rm A}$	$28.673 \pm 0.786 \ ^{\rm B}$	$27.182 \pm 0.954 \ ^{\rm B}$	$22.286 \pm 0.153 \ ^{\rm D}$
F7	Methylnaphthalene	$0.530 \pm 0.045 \ ^{\rm F}$	$1.045\pm0.048\ ^{\text{E}}$	2.255 ± 0.054 $^{\rm A}$	1.966 ± 0.013 ^B	$1.648 \pm 0.011^{ m C}$	$1.336 \pm 0.065 \ ^{\rm D}$
F8	2,4-Di-tert-butylphenol	$1.449\pm0.085~^{\rm A}$	$0.814\pm0.101~^{B}$	$1.402\pm0.022~^{\rm A}$	$0.366 \pm 0.031^{\rm C}$	0.177 ± 0.024 $^{\rm D}$	$0.062 \pm 0.003 \ ^{\rm E}$
F9	4-Hydroxystyrene	4.042 ± 0.046^{C}	1.671 ± 0.011 $^{\rm F}$	$3.539 \pm 0.056 \ ^{\text{E}}$	$4.862\pm0.005~^B$	$5.483\pm0.109\ ^{\text{A}}$	$3.776\pm0.031~^{\rm D}$

Uppercase letters mark statistically significant differences with one-way ANOVA test of significance among sample (p < 0.05). Nd indicates no detection.

concentration of these compounds in CQRW. These compounds possessed distinctive aroma characteristics and had positive effects on the aroma of Huangjiu.

The CQRW and 10%CBR + CQRW exhibited the highest flavor quality. The mixed fermentation of quinoa and rice enhanced the variety of flavor substances in Huangjiu, and the addition of 10%CBR increased both the diversity and concentration of aroma compounds.

4. Conclusion

The CBR is a by-product of processing. Enhancing CBR utilization can mitigate environmental pollution and create economic value. Incorporating CBR during the CQRW brewing process enriched the phenolics and flavonoids in Huangjiu, thus enhancing its antioxidant capabilities. The addition of CBR led to increased total components detected and amino acid levels in Huangjiu. Additionally, 10%CBR + CQRW, 20%CBR + CQRW, and CQRW had the closest taste traits. Throughout the fermentation process, components such as amino acids and phenolic acids could produce volatile aroma compounds through metabolic pathways like the tricarboxylic acid cycle, Ehrlich pathway, and phenylpropanoid pathway. These metabolic processes, along with esterification, redox reactions, and enzymatic catalysis, contributed to the formation of volatile aroma compounds. The GC-MS analysis identified 72 aroma compounds in 10%CBR + CQRW sample, more than other samples. Consequently, adding CBR during CQRW fermentation enhanced the overall quality, with 10%CBR proving to be the most effective addition. The nutritional and functional roles of CQRW would be evaluated and prepared for industrial production.

CRediT authorship contribution statement

Jian Ma: Writing – original draft, Data curation, Conceptualization. Wuyang Huang: Writing – original draft, Resources, Methodology. Yanhong Ma: Writing – review & editing, Methodology, Funding acquisition, Conceptualization. Jian Li: Resources, Methodology, Formal analysis. Naihong Feng: Supervision, Funding acquisition, Formal analysis. Bo Wen: Software, Methodology. Feihong Jia: Visualization, Software. Yu Wang: Methodology, Investigation, Formal analysis. Zhiqiang Gao: Resources, Methodology, Investigation, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors confirm that this manuscript has no conflicts of interest.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by Research Program Sponsored by Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu 030801, China (No. SBGJXTZXKF-05); Supported by Agriculture Research System of China of MOF and MARA(CARS-06-14.5-B9). We thank Dr. Ning Wang from Central Laboratory in Jiangsu Academy of Agricultural Sciences for her technical support of HPLC-MS/MS analysis.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fochx.2024.101584.

References

- Bogdan, P., Kordialik-Bogacka, E., Czyzowska, A., Oracz, J., & Zyzelewicz, D. (2020). The profiles of low molecular nitrogen compounds and fatty acids in wort and beer obtained with the addition of quinoa (*Chenopodium quinoa* Willd.), amaranth (*Amaranthus cruentus* L.) or maltose syrup. *Foods*, 9(11). https://doi.org/10.3390/ foods9111626.
- Cao, H. W., Sun, R. L., Liu, Y., Wang, X. X., Guan, X., Huang, K., & Zhang, Y. (2022). Appropriate microwave improved the texture properties of quinoa due to starch gelatinization from the destructed cyptomere structure. *Food Chemistry, X, 14, Article* 100347. https://doi.org/10.1016/j.fochx.2022.100347
- Chen, L. H., Ren, L. X., Li, D. N., & Ma, X. (2020). Analysis of microbiomes in three traditional starters and volatile components of the Chinese rice wines. *Food Science* and Biotechnology, 32(1), 87–96. https://doi.org/10.1007/s10068-020-00839-y
- Chen, T., Wu, F. H., Guo, J. J., Ye, M. Q., Hu, H., Guo, J., & Liu, X. Q. (2020). Effects of glutinous rice protein components on the volatile substances and sensory properties of Chinese rice wine. *Journal of the Science of Food and Agriculture*, 100(8), 3297–3307. https://doi.org/10.1002/jsfa.10343
- Duan, S. F., Han, P. J., Wang, Q. M., Liu, W. Q., Shi, J. Y., Li, K., ... Bai, F. Y. (2018). The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nature. Communications, 9, Article 2690. https://doi.org/10.1038/s41467-018-05106-7
- Duan, W. H., Guan, Q. J., Zhang, H. L., Wang, F. Z., Lu, R., Li, D. M., ... Xu, Z. H. (2023). Improving flavor, bioactivity, and changing metabolic profiles of goji juice by selected lactic acid bacteria fermentation. *Food Chemistry*, 408, Article 135155. https://doi.org/10.1016/j.foodchem.2022.135155
- Evstigneyev, E. I. (2017). Quantification of polysaccharides in vegetable raw materials and lignin preparations. *Russian Journal Bioorganic Chemistry*, 43(7), 732–736. https://doi.org/10.1134/S1068162017070044
- Guo, W. D., Zhang, Y., Long, Z., Fu, X. G., & Ren, K. Z. (2023). Study on the taste active compounds in Douchi using metabolomics method. *Food Chemistry*, 412, Article 135343. https://doi.org/10.1016/j.foodchem.2022.135343

J. Ma et al.

He, X. F., Wang, B., Zhao, B. T., & Yang, F. M. (2022). Ultrasonic assisted extraction of quinoa (*Chenopodium quinoa* Willd.) protein and effect of heat treatment on its *in* vitro digestion characteristics. *Foods*, 11(5), Article 771. https://doi.org/10.3390/ foods11050771

- Huang, W. Y., Cai, Y. Z., & Zhang, Y. B. (2010). Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. *Nutrition and Cancer*, 62(1), 1–20. https://doi.org/10.1080/01635580903191585
- Jin, Z., Cai, G. L., Wu, C., Hu, Z. M., Xu, X. B., Xie, G. F., ... Lu, J. (2021). Profiling the key metabolites produced during the modern brewing process of Chinese rice wine. *Food Research International*, 139, Article 109955. https://doi.org/10.1016/j. foodres.2020.109955
- Kataria, A., Sharma, S., & Dar, B. N. (2021). Changes in phenolic compounds, antioxidant potential and antinutritional factors of Teff (*Eragrostis tef*) during different thermal processing methods. *International Journal of Food Science and Technology*, 57(11), 6893–6902. https://doi.org/10.1111/ijfs.15210
- Kuktaite, R., Repo-Carrasco-Valencia, R., de Mendoza, C. C. H., Plivelic, T. S., Hall, S., & Johansson, E. (2021). Innovatively processed quinoa (*Chenopodium quinoa Willd.*) food: Chemistry, structure and end-use characteristics. *Journal of the Science of Food* and Agriculture, 102(12), 5065–5076. https://doi.org/10.1002/jsfa.11214
- Lanza, B. (2013). Abnormal fermentations in table-olive processing: Microbial origin and sensory evaluation. Frontiers in Microbiology, 4, Review 91. https://doi.org/10.3389/ fmicb.2013.00091
- Li, M., Zhan, P., Wang, P., Tian, H. L., Geng, J. Z., & Wang, L. X. (2022). Characterization of aroma-active compounds changes of Xiecun Huangjiu with different aging years based on odor activity values and multivariate analysis. *Food Chemistry*, 405(Pt A), *Article* 134809. https://doi.org/10.1016/j.foodchem.2022.134809
- Liu, R., Fu, Z. K., Zhang, F. J., Mao, Q. Z., Luan, C. G., Han, X. L., ... Hao, F. K. (2020). Effect of yellow rice wine on anti-aging ability in aged mice induced by *D-galactose*. *Food Science and Human Wellness*, 9(02), 184–191. https://doi.org/10.1016/j. fshw.2020.02.003
- Lu, Z. D., Xie, G. F., Wu, D. H., Yang, L. X., Jin, Z., Hu, Z. M., ... Lu, J. (2021). Isolation and identification of the bitter compound from Huangjiu. *Food Chemistry*, 349, Article 129133. https://doi.org/10.1016/j.foodchem.2021.129133
- Lv, X. C., Chen, Z. C., Jia, R. B., Liu, Z. B., Zhang, W., Chen, S. J., ... Ni, L. (2015). Microbial community structure and dynamics during the traditional brewing of *Fushou* Hong Qu glutinous rice wine as determined by culture-dependent and culture-independent techniques. *Food Control*, 571, 216–224. https://doi.org/ 10.1016/j.foodcont.2015.03.054
- Ma, J., Ma, Y. H., Zhang, H. Z., Chen, Z. L., Wen, B., Wang, Y., & Huang, W. Y. (2022). The quality change of fig wine fermented by RV171 yeast during the six-month aging process. *LWT-food. Science and Technology*, 166, Article 113789. https://doi.org/ 10.1016/j.lwt.2022.113789
- Melucci, D., Bendini, A., Tesini, F., Barbieri, S., Zappi, A., Vichi, S., Conte, L., & Toschi, T. G. (2016). Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. *Food Chemistry*, 204, 263–273. https://doi.org/10.1016/j.foodchem.2016.02.13
- Nickel, J., Spanier, L. P., Botelho, F. T., Gularte, M. A., & Helbig, E. (2016). Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of *Chenopodium quinoa* Willd grains. *Food Chemistry*, 209, 139–143. https://doi.org/10.1016/j.foodchem.2016.04.031
- Okamoto, T., Sugimoto, S., Noda, M., Yokooji, T., Danshiitsodol, N., Higashikawa, F., & Sugiyama, M. (2020). Interleukin-8 release inhibitors generated by fermentation of *Artemisia princeps* pampanini herb extract with *lactobacillus plantarum* SN13T. *Frontiers in microbiology*, 11. https://doi.org/10.3389/fmicb.2020.01159. article 1159.
- Paola Rodriguez-Castaño, G., Dorris, M. R., Liu, X. B., Bolling, B. W., Acosta-Gonzalez, A., & Rey, F. E. (2019). Bacteroides thetaiotaomicron starch utilization promotes quercetin degradation and butyrate production by Eubacterium ramulus. Frontiers in microbiology, 10. https://doi.org/10.3389/fmicb.2019.01145. article 1145.
- Paucean, A., Man, S. M., Chiş, M. S., Mureşan, V., Pop, C. R., Socaci, S. A., ... Muste, S. (2019). Use of pseudocereals preferment made with aromatic yeast strains for enhancing wheat bread quality. *Foods, 8(10), Article 443.* https://doi.org/10.3390/ foods8100443
- Ruiz, G. A., Xiao, W., Boekel, M. V., Minor, M., & Stieger, M. (2016). Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from

quinoa (Chenopodium quinoa Willd). Food Chemistry, 209, 203–210. https://doi.org/ 10.1016/j.foodchem.2016.04.052

- Sharma, S., Kataria, A., & Singh, B. (2022). Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (*Chenopodium quinoa*). LWT-food. Science and Technology, 160, Article 113256. https://doi.org/10.1016/j.lwt.2022.113256
- Suarez-Estrella, D., Borgonovo, G., Buratti, S., Ferranti, P., Accardo, F., Pagani, M. A., & Marti, A. (2021). Sprouting of quinoa (*Chenopodium quinoa* Willd.): Effect on saponin content and relation to the taste and astringency assessed by electronic tongue. *LWTfood. Science and Technology*, 144. https://doi.org/10.1016/j.lwt.2021.111234. Article 111234.
- Tang, Y., & Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. *Molecular Nutrition & Food Research*, 61(7). https://doi.org/10.1002/ mnfr.201600767. Article 1600767.
- Varela, C., Dry, P. R., Kutyna, D. R., Francis, I. L., Henschke, P. A., Curtin, C. D., & Chambers, P. J. (2015). Strategies for reducing alcohol concentration in wine. *Australian Journal of Grape and Wine Research*, 21(s1), 670–679. https://doi.org/ 10.1111/ajgw.12187
- Wang, J., Yuan, C. J., Gao, X. L., Kang, Y. L., Huang, M. Q., Wu, J. H., ... Zhang, Y. Y. (2020). Characterization of key aroma compounds in Huangjiu from northern China by sensory-directed flavor analysis. *Food Research International*, 134, Article 109238. https://doi.org/10.1016/j.foodres.2020.109238
- Wei, X. L., Liu, S. P., Yu, J. S., Yu, Y. J., Zhu, S. H., Zhou, Z. L., ... Mao, J. (2016). Innovation Chinese rice wine brewing technology by bi-acidification to exclude rice soaking process. Journal of Bioscience and Bioengineering, 123(4), 460–465. https:// doi.org/10.1016/j.jbiosc.2016.11.014
- Xie, G. F., Zheng, H. J., Qiu, Z. L., Lin, Z. C., Peng, Q., Bealu, G. D., ... Liu, G. M. (2021). Study on relationship between bacterial diversity and quality of Huangjiu (Chinese Rice wine) fermentation. *Food Science & Nutrition*, 9(7), 3885–3892. https://doi.org/ 10.1002/FSN3.2369
- Yang, Y. J., Hu, W. Y., Xia, Y. J., Mu, Z. Y., Tao, L. R., Song, X., ... Ai, L. Z. (2020). Flavor formation in Chinese rice wine (Huangjiu): Impacts of the flavor-active microorganisms, raw materials, and fermentation technology. *Frontiers in Microbiology*, 11, Review 580247. https://doi.org/10.3389/fmicb.2020.580247
- Yu, H. Y., Li, Q. W., Xie, J. R., Chen, C., Lou, X. M., Ai, L. Z., & Tian, H. X. (2022). Characterization of bitter compounds in *Shaoxing* Huangjiu by quantitative measurements, taste recombination, and omission experiments. *Journal of Agricultural and Food Chemistry*, 70(40), 12907–12915. https://doi.org/10.1021/acs. jafc.2c02867
- Yu, L. J., Ding, F., & Ye, H. (2012). Analysis of characteristic flavour compounds in Chinese rice wines and representative fungi in wheat Qu samples from different regions. *Journal of the Institute of Brewing*, 118(1), 114–119. https://doi.org/ 10.1002/jib.13
- Zhang, X. X., HerreraBalandrano, D. D., Huang, W. Y., Chai, Z., Beta, T., Wang, J., ... Li, Y. (2021). Comparison of nutritional and nutraceutical properties of burdock roots cultivated in Fengxian and Peixian of China. *Foods*, 10(9). https://doi.org/ 10.3390/foods10092095. article 2095.
- Zhao, P., Wang, J., Zhao, W., Ma, X. L., & Sun, H. J. (2018). Antifatigue and antiaging effects of Chinese rice wine in mice. *Food Science & Nutrition*, 6(8), 2386–2394. https://doi.org/10.1002/fsn3.830
- Zhu, D. S., Ren, X. J., Wei, L. W., Cao, X. H., Ge, Y. H., Liu, H., & Li, J. R. (2020). Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue. *Scientia Horticulturae*, 260, Article 108879. https://doi.org/ 10.1016/j.scienta.2019.108879
- Zhu, Y. Y., Jiang, J., Yue, Y., Feng, Z. P., Chen, J. C., & Ye, X. Q. (2020). Influence of mixed probiotics on the the bioactive composition, antioxidant activity and appearance of fermented red bayberry pomace. *LWT-food. Science and Technology*, *133, Article 110076*. https://doi.org/10.1016/j.lwt.2020.110076
- Zhu, Y. Y., Lv, J. M., Gu, Y., He, Y. K., Chen, J. C., Zhou, Z. Q., & Ye, X. Q. (2022). Polysaccharides of Chinese bayberry pomace wine: Structural characteristics, antioxidant activity and influence on the bayberry wine. *Food. Bioscience, 50, Article* 102025. https://doi.org/10.1016/J.FBIO.2022.102025