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Abstract

Background and aims

Hepatitis C virus (HCV) infection is associated with insulin resistance, which may lead to

type 2 diabetes and its complications. Although HCV infects mainly hepatocytes, it may

impair insulin sensitivity at the level of uninfected extrahepatic tissues (muscles and adipose

tissue). The aim of this study was to assess whether an interferon-free, antiviral therapy

may improve HCV-associated hepatic vs. peripheral insulin sensitivity.

Methods

In a single-arm exploratory trial, 17 non-diabetic, lean chronic hepatitis C patients without

significant fibrosis were enrolled, and 12 completed the study. Patients were treated with a

combination of sofosbuvir/ledipasvir and ribavirin for 12 weeks, and were submitted to a 2-

step euglycemic hyperinsulinemic clamp with tracers, together with indirect calorimetry

measurement, to measure insulin sensitivity before and after 6 weeks of antivirals. A panel

of 27 metabolically active cytokines was analyzed at baseline and after therapy-induced

viral suppression.

Results

Clamp analysis performed in 12 patients who achieved complete viral suppression after 6

weeks of therapy showed a significant improvement of the peripheral insulin sensitivity

(13.1% [4.6–36.7], p = 0.003), whereas no difference was observed neither in the endoge-

nous glucose production, in lipolysis suppression nor in substrate oxidation. A distinct sub-

set of hepatokines, potentially involved in liver-to-periphery crosstalk, was modified by the

antiviral therapy.
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Conclusion

Pharmacological inhibition of HCV improves peripheral (but not hepatic) insulin sensitivity in

non-diabetic, lean individuals with chronic hepatitis C without significant fibrosis.

Introduction

Hepatitis C virus (HCV) infection is a major public health issue worldwide. The World Health

Organization (WHO) has reported that HCV accounts for ~400,000 annual deaths globally,

mostly due to end-stage complications of chronic liver disease, and vowed to eliminate HCV

as a public health threat by the year 2030 [1]. This ambitious goal appears to be within reach

thanks to the advent of potent and safe direct-acting antiviral-based regimens, resulting in a

viral clearance in excess of 95% in most patients’ subgroups [2]. HCV clearance has been

shown to be associated with the improvement of a wide array of clinical outcomes, such as

hepatocarcinogenesis and liver-related mortality [3], but also with the restauration of innate

immune responses [4] and an improved quality of life [5, 6].

An excess HCV-related morbidity and mortality has also been consistently reported to

derive from several extrahepatic disorders, including insulin resistance (IR) and type 2 diabetes

[7–10]. The causal relationship between HCV and glucose metabolic disturbances is supported

by strong clinical and epidemiological evidence. Longitudinal studies have shown an excess of

incident type 2 diabetes in patients with chronic hepatitis C, after adjustment for common risk

factors, including elevated liver enzymes [11–13]. HCV clearance following antiviral therapy

leads to reduced IR [14], reduced incidence of impaired glucose tolerance and type 2 diabetes,

independently of other risk factors [15–17], reduced requirement of antidiabetic drugs in

patients with diabetes [18, 19], reduced incidence of renal and cardiovascular complications

[20–23] and of the associated mortality [24]. Chronic infection with hepatitis C genotype 3 is

characterized by a distinct disease phenotype, including a moderate to severe liver steatosis, an

accelerated liver fibrosis progression rate and an increased risk of hepatocellular carcinoma

[25]. Despite the fact that the risk of diabetes in HCV infected patients is independent of the

genotype [26], the clinical outcome in the genotype 3 is certainly worsen as compared to other

genotypes. The pathogenesis of type 2 diabetes associated with HCV infection proceeds

through IR. Patients with chronic hepatitis C have C-peptide and HOMA-IR levels signifi-

cantly increased compared to individuals with chronic hepatitis B matched for age, sex and

liver disease severity [27]. Since HCV infects primarily hepatocytes, it is intuitive to suggest a

direct interaction between HCV proteins and the insulin signaling cascade inside hepatocytes.

HCV-induced alterations of the insulin-mediated signal transduction have been reported in

experimental models and human livers [28–30]. Nevertheless, recent works on HCV patients

subjected to hyperinsulinemic-euglycemic clamp have suggested an indirect mechanism

involving the presence of a significant extrahepatic component of IR, essentially located in

skeletal muscles [26, 31, 32], implying undefined endocrine mediators secreted by infected

hepatocytes. The missing piece of evidence should come from the reversal of these effects via a

successful antiviral therapy. Treatment with IFNα-based regimens reduces the whole body IR

[32, 33]. However, IFNα affects the insulin signaling transduction pathway via tyrosine phos-

phorylation of the insulin receptor substrate-1 [34], and may confound the interpretation of

data. The recent approval of IFNα-free regimens [2] allowed us addressing this issue. Given

the high prevalence of HCV infection worldwide, understanding the molecular mechanisms

leading to the development of IR is of major interest and may provide working hypotheses to

unravel the pathogenesis of type 2 diabetes.
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In a single-arm exploratory trial, we evaluated the impact of an IFNα-free therapy on the

level of hepatic vs. extrahepatic insulin sensitivity. The primary outcome of the study was to

determine glucose consumption variation (as measured by euglycemic hyperinsulinemic

clamp) in non-diabetic, lean chronic hepatitis C patients lacking significant fibrosis before and

after complete suppression of viral replication.

Materials and methods

Trial design

The TREND check list as well as the protocol of the trial are available as supplementary infor-

mation (S1 Checklist, S1 Protocol). The study was approved by the ethics committee of the

Canton of Geneva and registered with ClinicalTrials.gov under the accession number

NCT02760355. The selection of patients followed at the Gastroenterology and Hepatology

Division of the Geneva University Hospitals started in 2016 and was performed during a rou-

tine consultation. Participants fulfilling all the following inclusion criteria were eligible for the

study: adult Caucasian patient males or non-pregnant or non-lactating females chronically

infected with HCV genotype 3 and 18–65 years at the time of the screening; lack of contraindi-

cations to the class of drugs under study, e.g. known hypersensitivity or allergy to class of

drugs or the investigational products; lack of significant fibrosis or any feature of metabolic

syndrome, two conditions which may impact glucose metabolism. Patients with excessive alco-

hol consumption (>30 g/day in males and>20 g/day in females), coinfection with human

immunodeficiency virus or hepatitis B virus, concomitant medications interacting with the

study drugs, or any significant medical condition potentially interfering with the adherence to

the study procedure were excluded. Written informed consent was obtained from all subjects

before entering the study.

Sample size calculation was based on the primary outcome i.e. an estimated difference in

peripheral insulin sensitivity between two interventions of 10%, with a standard deviation of

6%, and it was determined a sample size of nine volunteers would be sufficient.

Patients fulfilling the inclusion criteria received a fixed-dose combination tablet containing

400 mg of sofosbuvir and 90 mg of ledipasvir once daily plus body weight-based ribavirin (i.e.

1,000 mg if <75 Kg or 1,200 mg if>75 Kg, in two daily doses), delivered either by FN or GG

at the the Clinical Research Unit of Geneva University Hospitals. Although this regimen was

not included in international treatment guidelines for HCV genotype 3, due to limitations that

became evident at later stages, at the time of the trial set-up it seemed the most potent IFNα-

free regimen to treat this particularly resistant viral genotype [35]. Serum HCV RNA levels

were measured using the COBAS Ampliprep/COBAS TaqMan 2.0 assay (Roche Molecular

Systems, Pleasanton, CA) with a lower limit of detection<15 IU/mL. Complete on-treatment

virological response was defined as undetectable HCV RNA in serum 6 weeks from treatment

start.

From March 2016 to May 2018, patients were submitted to two investigation visits (see

below for detailed metabolic protocol) before and after six weeks of treatment. After sustained

viral response (SVR), three out of the twelve patients participated to an additional clamp.

The day of each investigation, all data were collected and stored in an individual folder per

patient. In each folder, the following data were collected in a paper Case Report Form: demo-

graphic data, visit dates, concomitant medication, biochemical and viral data (extracted from

the electronic patient record of the Geneva University Hospitals), drug information provided

by the pharmacy, results of the metabolic analyses, and adverse events. The essential docu-

ments according to the ICH GCP guidelines E6(R2) including the Informed consent forms

were stored in the Trial Master File.
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Flowchart summarizing the study is depicted in Fig 1.

Metabolic protocol

To assess the relative contribution of hepatic vs. extrahepatic tissues to the whole body insulin

sensitivity, patients were asked to undergo a thorough investigation visit before and after six

weeks of treatment, conducted by GG at the Clinical Research Unit of Geneva University Hos-

pitals. For both visits, patients were admitted to the hospital in the morning, after an overnight

fast (>10h). Body weight, height, waist and hip circumference, blood pressure were measured.

An adipose tissue biopsy was obtained [36].

Insulin sensitivity was assessed by performing a two-step hyperinsulinemic euglycemic

clamp (0.3 mU � kg−1 �min−1 and 1 mU � kg−1 �min−1 for 90 min each) with non-radioactive

Fig 1. Flowchart of the study design.

https://doi.org/10.1371/journal.pone.0217751.g001
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tracers ([6,6]-2H2-glucose and 2H5-glycerol, Cambridge Isotope Laboratories, Innerberg, Swit-

zerland) [37] (S1 Fig). Blood samples were collected at 30 min intervals for the analysis of trac-

ers, non-esterified fatty acids (NEFA), glucose and insulin and every 5 min during the clamp

to control plasma glucose concentration, which was maintained constant at *5 mmol/L by

infusing a 20% (w/v) glucose solution. Total glucose rate of appearance, endogenous glucose

production rate (EGP) and glycerol rate of appearance (glycerol Ra) were calculated [38].

Respiratory gas exchanges were monitored for the last 30 min of the different steps of the

clamp by open-circuit indirect calorimetry [39]. The instrument was calibrated according to

standard procedures.

Regional soft tissue composition were assessed at the femur (thigh), D12 and L5 level using

low dose unenhanced computed tomography (CT). Edge-detection and threshold techniques

were used to separate tissues (i.e. adipose, muscle and bone) based on attenuation characteris-

tics, which are directly related to tissue composition and density [40, 41]. To measure subcuta-

neous and visceral fat, single (1 cm) CT scan slices were obtained at the level of umbilicus and

at level of the thigh 15 cm from the greater trochanter. CT scans were analyzed using density

contour software (Osirix MD, v.9.0.2, Pixmeo, Switzerland). Adipose tissue was classified

according to a density of -250 to -50 Hounsfield units. Visceral fat area (within the borders of

the fascia transversalis), total thigh area and thigh subcutaneous fat area of the two legs were

measured and the thigh muscle area was calculated as the difference between total thigh area

of both legs and thigh subcutaneous fat area. Change in area was calculated as the difference

between the values obtained before and after 6 weeks of treatment [42].

Laboratory assays

Plasma glucose and NEFA concentrations were determined by a colorimetric method (RX

Monza, Randox Laboratories Ltd, United Kingdom). Plasma insulin was measured by RIA

(EMD Millipore, St. Louis, Missouri, USA). Plasma [6,6-2H2]glucose and 2H5-glycerol con-

centration were measured by gas chromatography-mass spectrometry [43].

Quantification of plasma cytokines

Levels of 27 cytokines and other proteins involved in metabolism or inflammation were mea-

sured in plasma before and after 6 weeks of antiviral treatment, using either a customized

bead-based multiplex (Human magnetic luminex assay, R&D systems) or by commercial

ELISA (S1 Table). Samples and standards were run in duplicate.

RNA extraction and real-time RT-PCR

Total RNA was extracted using the NucleoSpin RNA set for NucleoZOL kit (Macherey-Nagel,

Düren, Germany). cDNA was synthesized from 500 ng total RNA with Transcriptor Universal

cDNA master (Roche Diagnosis, IN). For real-time PCR, the following primers were used:

hormone-sensitive lipase (LIPE, forward ACGGTGGCCGATGCCATGTT and reverse AGCTGC
GTGGGGCTGAGTTT) and adipose triglyceride lipase (ATGL, forward GTGTCAGACGGCGAG
AATG and reverse TGGAGGGAGGGAGGGATG). Relative quantification was performed by real-

time PCR as described [44].

Histology and morphometry

Adipose tissue biopsies were formalin-fixed, paraffin-embedded and processed for H&E stain-

ing. Lipid droplet area was calculated using Definiens software (Definiens AG, Munich,

Germany).
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Statistical analysis

Statistical analysis was performed using Graphpad Prism 7 software. All results were expressed

as means ±SD and analysed by paired t-test. Correlation analyses were done by using the Pear-

son’s correlation coefficient test A value of p<0.05 was considered significant. To account for

multiple testing, we corrected the p-value by calculating the false discovery rate (FDR) (Benja-

mini-Hochberg method) and using a cut-off value of FDR less than 0.1 to be significant.

Results

Characteristics of the study population

Seventeen non-diabetic, lean chronic hepatitis C patients infected with HCV genotype 3 and

without significant fibrosis, as determined by the Metavir score at liver biopsy or by transient

elastography (FibroscanTM) were included in the study (Table 1).

Out of the 17 patients enrolled, 13 (8 males and 5 females) completed the study and under-

went both hyperinsulinemic euglycemic clamps (Fig 1). During the visit at baseline, one

patient was not properly clamped with insulin and thus excluded from the analysis. Subjects

had a median age of 49.5 years [24–59] (Table 1).

All the 12 patients adhered to the treatment and reached complete virological response at 6

weeks (Table 2). No important adverse effects were reported.

The complete suppression of viral replication was accompanied by a significant decrease of

serum ASAT, ALAT and GGT, but also by an expected, significant increase of total and LDL

cholesterol [45] (Table 2). No changes were observed in body weight, body mass index, blood

pressure, or visceral/subcutaneous fat volume (Table 2 and S2 Fig).

Glucose metabolism

Basal levels of plasma glucose and insulin were similar as measured before and after 6 weeks of

treatment (Table 2). Under clamp conditions, insulin levels increased to similar steady-state

levels in both clamp experiments, while normoglycemia (plasma glucose 5.0 mmol/L) was

maintained (S3 Fig). Hepatic insulin sensitivity was estimated by calculating endogenous glu-

cose production (EGP), which corresponds to the difference between glucose rate of

Table 1. Characteristics of the study population (n = 12).

Patient

no.

Sex

(M/F)

Age

(y)

Opiate-substitution

therapy (yes/no)

Liver fibrosis ALAT /ASAT

(U/L)

Fasting glucose

(mM)

Fasting

insulin

(μU/Ml)

HOMA-IR HbA1c %

(mmol/mol)(stage F by Metavir or kPa by

FibroscanTM)

1 F 37 no 3.5±0.8 33/25 5.2 11.2 2.6 5.1 (32)

2 F 44 no 4.4±1.2 28/24 5.4 10.3 2.5 4.8 (29)

3 M 55 no F0 44/30 5.5 4.9 1.2 5.2 (33)

4 M 33 no F1 82/37 4.4 9 1.8 4.9 (30)

5 F 56 no 3.8±2.9 202/135 6 25.8 6.9 5.4 (36)

6 M 24 yes F1 45/32 5 7.6 1.7 5.0 (31)

7 M 55 no 5.3 97/49 6.2 14.6 4 5.4 (36)

8 M 55 no 5.8 78/56 5.3 12.7 3 5.4 (36)

9 F 59 no F0 32/31 5.1 11 2.5 5.1 (32)

10 F 42 no F0 137/107 5.2 11.6 2.7 4.8 (29)

11 M 56 no F0 206/94 4.5 16.6 3.3 5.1 (32)

12 M 38 no F1 66/39 5.3 8.5 2 5.4 (36)

Abbreviations: HOMA-IR, homeostatic model assessment of insulin resistance; HbA1c, glycated hemoglobin.

https://doi.org/10.1371/journal.pone.0217751.t001
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appearance and exogenous glucose infusion rate. Low-dose insulin infusion rate induced EGP

suppression as compared to basal state, however no difference was observed in EGP between

before and after 6 weeks of treatment, under both basal and clamp conditions (p = 0.70 and

0.90, respectively) (Fig 2A). At high-dose insulin infusion rate, EGP was completely sup-

pressed. Peripheral insulin sensitivity was assessed by measuring glucose infusion rate during

high-dose insulin. Ten out of 12 patients exhibited a significantly increased glucose infusion rate

after 6 weeks of treatment compared to baseline (median [range]: 13.1% [4.6–36.7]) (p = 0.003)

(Fig 2B), indicating that HCV suppression led to an improved peripheral insulin sensitivity.

However, no significant alterations were found in oxidative and nonoxidative glucose, measured

by indirect calorimetry between before and after 6 weeks of treatment (S2 Table).

To confirm the improved insulin sensitivity, we performed a third clamp in three patients

who agreed to undergo the procedure, at least 6 months after the end of treatment. Two

patients who permanently cleared HCV maintained an increased glucose infusion rate (+8%

and +18%, respectively) with respect to pre-treatment levels. On the contrary, the peripheral

insulin sensitivity of the third patient who experienced a relapse in HCV infection returned to

baseline levels, consistent with the hypothesis that HCV directly induces this metabolic effect.

Transaminase levels are a proxy for liver inflammation. Thus, we assessed whether the

decline of ALAT levels would be correlated with the improvement of glucose infusion rate,

which provides a measure of peripheral insulin sensitivity. We found no correlation between

glucose infusion rate changes and ALAT decrease (r = -0.177, p = 0.58), suggesting that the

pathogenesis of peripheral IR induced by HCV in patients with mild liver damage may pro-

ceed independently of liver inflammation.

Table 2. Subjects characteristics at baseline after 6 weeks of antiviral treatment (n = 12).

Variable (n = 12) Baseline 6-week treatment p
BMI (kg/m2) 23.0 ± 2.9 23.0 ± 2.9 0.999

Body weight (Kg) 67 ± 12.9 67.07 ± 13 0.815

Waist circumference (cm) 83.9 ± 13.3 78.2 ± 16.1 0.105

Systolic BP (mmHg) 121.4 ± 15.5 120.8 ± 13.9 0.881

Diastolic BP (mmHg) 76.6 ± 13.3 75.7 ± 11.5 0.775

Glucose metabolism

Fasting glucose (mM) 5.3 ± 0.5 5.3 ± 0.5 0.685

Fasting insulin (μU/mL) 12.0 ± 5.3 12.0 ± 4.0 0.977

Liver enzymes

ASAT (U/L) 54.9 ± 36.7 23.1 ± 2.4 0.013

ALAT (U/L) 87.5 ± 62.9 21.9 ± 4.6 0.003

Alkaline phosphatase (U/L) 59.9 ± 23.0 59.5 ± 20.0 0.879

GGT (U/L) 37.0 ± 21.6 17.6 ± 8.2 0.001

Lipids

Cholesterol (mmol/L) 4.2 ± 0.6 5.0 ± 1.1 0.001

TG (mmol/L) 1.4 ± 0.6 1.3 ± 0.7 0.776

LDL (mmol/L) 2.1 ± 0.6 2.8 ± 0.9 0.0006

HDL (mmol/L) 1.5 ± 0.37 1.6 ± 0.6 0.293

Subcutaneos fat volume 232.6 ± 118.5 228.7 ± 114.3 0.385

Visceral fat volume 84.3 ± 67.3 85.83 ± 70.4 0.447

HCV RNA Log10 (IU/mL) 6.4 ± 6.6 <1.2 -

Abbreviations: BMI, body mass index; ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase; GGT, gamma glutamyl transpeptidase; TG, triglycerides;

LDL, low-density cholesterol; HDL, high density cholesterol. Data are means ± SD.

https://doi.org/10.1371/journal.pone.0217751.t002
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Lipid metabolism

Lipid metabolism was studied by determining insulin-mediated lipolysis suppression. In adi-

pose tissue, insulin suppresses triglyceride hydrolysis into glycerol and NEFA, and induces

lipogenesis leading to an increased energy storage. As expected, low-dose insulin infusion

induced a decrease of glycerol Ra and plasma levels of NEFA (Fig 2C and 2D, respectively). At

high-dose insulin infusion rate, lipolysis was completely suppressed. No significant variation

was observed between baseline and after 6 weeks of treatment in insulin-mediated lipolysis

suppression, both under basal and clamp conditions (Fig 2C and 2D). In accordance, the

expression of genes in adipose tissue involved in lipolysis (LIPE and ATGL) was unchanged as

compared to pre-treatment (S4A Fig). No effect of viral suppression on lipid oxidation was

observed (S2 Table). Adipose tissue histology and lipid droplet morphology and size were not

modified upon treatment (S4B Fig). These data suggest that HCV does not affect lipid homeo-

stasis in adipose tissue, contrary to what was observed in the liver [46, 47].

Fig 2. Euglycemic hyperinsulinemic clamp. (A-B) Glucose metabolism. (C-D) Lipid metabolism. Endogenous glucose production (EGP) at baseline

(open bars) and after 6 weeks of antiviral treatment (black bars) in the basal state and during low-dose insulin infusion rate (0.3 mU.kg-1.min-1). Data are

means ± SD. (B) Glucose infusion rate during high-dose insulin infusion rate (1 mU.kg-1.min-1) at baseline and after 6 weeks of antiviral treatment (��p =

0.003). Insulin-mediated lipolysis suppression at baseline and 6-week treatment measured by (C) glycerol tracer (n = 8) and by (D) non-esterified fatty

acid (NEFA) levels in plasma (n = 12), in basal state and clamp conditions. Data are means ± SD.

https://doi.org/10.1371/journal.pone.0217751.g002
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Antiviral treatment affects cytokine profile

The plasma levels of 27 cytokines and other factors were measured at baseline and after 6

weeks of antiviral treatment in all patients. The levels of some of them were significantly modi-

fied upon viral suppression: compared to baseline, the levels of IP10, fractalkine, retinol bind-

ing protein 4 (RBP4), selenoprotein P (SEPP1), angiopoietin-like-4 (ANGPTL-4) and -6

(ANGPTL-6), insulin-like growth factor-binding protein 3 (IGFBP-3) and -7 (IGFBP-7),

fetuin-A, chemerin, and MCP-1 were decreased, while those of visfatin and vaspin were

increased after 6 weeks of treatment (Fig 3). Of note, we did not detect significant changes in

the circulating levels of TNFα (Fig 3).

Discussion

In this study, we show that (i) the complete suppression of HCV replication induced by an

IFNα-free regimen in lean chronic hepatitis C patients without significant fibrosis significantly

improves the extrahepatic (but not the hepatic) insulin sensitivity, (ii) the improved glucose

homeostasis bears no correlation with the transaminase decline, suggesting the HCV-induced

extrahepatic IR and liver inflammation are probably disconnected from each other, (iii) HCV

does not seem to interfere with the insulin effects on lipid metabolism in adipose tissue, and

(iv) HCV modifies the circulating levels of factors likely involved in the pathogenesis of the

decreased peripheral insulin sensitivity.

The improvement in HCV-induced glucose metabolic alterations following antiviral ther-

apy has been initially reported using IFNα-based regimens [30]. These data should be taken

with caution, due to the known effects of IFNα on the insulin signaling pathway [25] and on

body weight. Recently, improved glucose homeostasis has been reported also in patients

treated with IFNα-free regimens, and patients with diabetes may even require reduced

amounts of medicines to maintain glycemic control [18, 19, 48, 49]. Such studies have mea-

sured the improvement of routine parameters of glucose metabolism, such as glycated hemo-

globin or HOMA-IR scores, thus falling short of analyzing in detail the relative contribution of

the liver vs. extrahepatic organs to the whole insulin sensitivity. A single study, using a clamp

assessment, assessed patients treated with an IFNα-based regimen [32]. Here, for the first time

we measured the hepatic and peripheral insulin sensitivity in patients treated with an IFNα-

free regimen. In addition, we also chose to assess the insulin sensitivity at the time of complete

suppression of viral replication rather than upon consolidation of SVR, because the latter may

be associated with unpredictable changes in body weight [50].

Our data are in agreement with two previous independent studies in chronic hepatitis C

patients without stigmata of the metabolic syndrome [26, 31]. These were the first to report a

significant extrahepatic component of viral IR, based on euglycemic hyperinsulinemic clamp

measurements. However, only one of those studies [26] reported a hepatic component of the

whole body IR, while the other one [31] merely suggested a possible, small hepatic contribu-

tion. In a follow-up study [32], clamps performed before and after IFNα-induced viral clear-

ance could not identify with certitude a hepatic IR. It is possible that the hepatic IR shown in

the initial work by Vanni et al. [26] may be due to a higher degree of hepatic inflammation and

fibrosis, while all our patients lacked significant fibrosis. In our study, the reduction in the glu-

cose infusion rate during clamp at the time of complete viral suppression failed to correlate

with the improvement of ALAT levels, a proxy for liver inflammation. In addition, we failed to

detect significant changes in the circulating levels of TNFα, an inflammatory cytokine

increased in chronic hepatitis C [26, 31, 51], especially with type 2 diabetes [52]. Taken

together, these data suggest that the pathogenesis of peripheral IR induced by HCV in patients

with mild liver damage may proceed independently of liver inflammation and fibrosis. A
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significant inflammation may however accelerate this process, as suggested by experimental

[53] and clinical data [13].

Fig 3. Heat map of 27 cytokines and other metabolically relevant proteins determined in plasma of 12 chronic

hepatitis C patients before and after 6 weeks of antiviral treatment. Data are shown as Log-2 fold change to baseline

levels. Each row and column represents a specific cytokine and patient, respectively. Blue and red colors indicate cytokines

found to be down-regulated and up-regulated, respectively, after treatment. FC, fold change after 6 weeks of treatment

compared to pretreatment values. P-value were corrected for multiple testing by calculating the false discovery rate (FDR).

A cut-off value of FDR less than 0.1 was considered to be significant.

https://doi.org/10.1371/journal.pone.0217751.g003
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We also measured the circulating levels of several circulating factors which may influence

metabolic processes. For many of them, levels were unchanged upon treatment (Fig 3), sug-

gesting that they may not have any significant impact on HCV-induced IR. For others, changes

induced by antivirals deserve a comment, as they may be directly or indirectly involved in the

pathogenesis of HCV-related IR.

Nine liver-secreted factors were dysregulated in viremic patients: fractalkine, RBP4, SEPP1,

fetuin-A, IGFBP-3, IGFBP-7, chemerin and ANGPTL-4 and -ANGPTL-6. The plasma levels

of all these factors were significantly decreased upon suppression of the viral replication, sug-

gesting that HCV infection leads to their upregulation.

Fractalkine is a chemoattractant to T cells and monocytes, and may be a promoter of sys-

temic inflammation, although its role in diabetes is controversial [54]. In hepatitis C, it is asso-

ciated with liver disease severity and fibrosis progression [55, 56].

RBP4, a retinol transporting protein from liver to peripheral tissues, is upregulated in

HCV-infected persons vs. healthy controls [57]. In vitro, HCV stimulates RBP4 expression,

while RBP4 knockdown increases HCV replication, suggesting that RBP4 upregulation may be

a mechanism of viral attenuation or an adaptive host response to infection. RBP4 increases

gluconeogenesis by stimulating phosphoenolpyruvate kinase and impairs insulin signaling in

the muscle, leading to IR [58]. Indeed, RBP4 is an important biomarker for several metabolic

disorders [59].

SEPP1, a selenium transporter, impairs insulin signaling by inhibiting insulin-stimulated

glucose uptake in myotubes [60]. SEPP1 is increased in chronic hepatitis C patients with diabe-

tes vs. non-diabetic infected controls [61].

Fetuin-A is an important independent risk factor for the development of type 2 diabetes

[62], to the point that it has been suggested as a therapeutic target [59]. Its levels are increased

in patients with IR [63], including in chronic hepatitis C [61].

IGFBP-3 must be assessed as ratio IGF-1/IGFBP-3, reported for being inversely correlated

with IR [64]. In our work, IGF-I levels were unchanged, translating into an increased IGF-I/

IGFBP-3 ratio, consistent with the improved insulin sensitivity. Similarly, IGFBP-7 was

reported to be highly expressed in patients with IR [65].

Finally, chemerin, expressed in the adipose tissue but also in the liver, makes skeletal muscle

cells insulin resistant, inducing a markedly decrease glucose uptake [66]. Systemic levels are

elevated in chronic hepatitis C [67].

As to ANGPTL-4 and ANGPTL-6, their role in glucose homeostasis is less clear. In

humans, ANGPTL4 levels are inversely correlated with glycemia and HOMA-IR, while in

patients with type 2 diabetes, plasma levels of ANGPTL4 are significantly lower than in healthy

subjects [68]. Also ANGPTL-6 is playing a protective effect by antagonizing obesity and IR. In

humans, plasma concentrations were increased in diabetic vs. non-diabetic subjects [69]. The

changes observed in our work suggest that may be part of a host adaptive response to the glu-

cose metabolic alterations induced by HCV.

Vaspin and visfatin levels increased significantly upon viral suppression. Vaspin is an adi-

pokine elevated in obesity and type 2 diabetes [70]. Administration of vaspin improves glucose

tolerance in obese mice [71]. In humans, it increases after physical exercise [72], while in vitro
it has insulin-sensitizing effects [73]. Experimental data indicate that vaspin may be a host

compensatory response to decreased insulin sensitivity. The fact that HCV suppression leads

to increased vaspin levels suggests that the viral IR may be also mediated by blockade of host

adaptive responses. Since vaspin is secreted by adipocytes, this blockade seems indirect, again

suggesting a cross-talk between infected and uninfected tissues. Visfatin is another adipokine

that stimulates insulin signaling [74], and its increase upon viral suppression is consistent with

an increased insulin sensitivity.
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Thus, we identified a profile of cytokines likely involved in HCV-induced IR. Treatment-

induced viral suppression led to a decrease of circulating levels of cytokines promoting IR

(fractalkine, RBP4, SEPP1, fetuin-A, IGFBP-3, IGFBP-7 and chemerin) and to an increase of

two adipokines involved in protection from IR (vaspin and visfatin). The molecular mecha-

nisms leading to this altered profile in viremic patients may be direct (for hepatokines) or indi-

rect (for factors not expressed by hepatocytes). These results provide a rationale for studying

the details of the liver-to-periphery cross-talk leading to HCV-induced IR, as shown by our

clamp data after treatment-induced viral suppression.

Although the burden of hepatitis C worldwide is dwindling due to the advent of potent anti-

virals and the implementation of national strategies for viral elimination, our findings are still

relevant and worth being studied in detail to provide working hypotheses to analyze the phys-

iopathology of glucose homeostasis in other settings, such as non-alcoholic fatty liver disease,

type 2 diabetes, and energy homeostasis.
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