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Abstract: Significant surgical and medical advances over the past several decades have resulted in a
growing number of infants and children surviving with hypoplastic left heart syndrome (HLHS) and
other congenital heart defects associated with a single systemic right ventricle (RV). However, cardiac
dysfunction and ultimately heart failure (HF) remain the most common cause of death and indication
for transplantation in this population. Moreover, while early recognition and treatment of single
ventricle-related complications are essential to improving outcomes, there are no proven therapeutic
strategies for single systemic RV HF in the pediatric population. Importantly, prototypical adult
HF therapies have been relatively ineffective in mitigating the need for cardiac transplantation in
HLHS, likely due to several unique attributes of the failing HLHS myocardium. Here, we discuss the
most commonly used medical therapies for the treatment of HF symptoms in HLHS and other single
systemic RV patients. Additionally, we provide an overview of potential novel therapies for systemic
ventricular failure in the HLHS and related populations based on fundamental science, pre-clinical,
clinical, and observational studies in the current literature.
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1. Introduction

Congenital heart disease (CHD) is one of the most common birth defects worldwide,
occurring in 1–2% of live births and more so in stillborn spontaneous miscarriages [1,2].
Hypoplastic left heart syndrome (HLHS) is the most common form of severe CHD. HLHS
is characterized by severe underdevelopment of left sided heart structures including the
mitral valve, left ventricle and aortic valve, resulting in a univentricular circulation. While
single ventricle heart disease (SV) can be of either right ventricular (RV) morphology
as in HLHS, or left ventricular (LV) morphology as in tricuspid or pulmonary atresia,
patients with a systemic RV represent the most common SV sub-type with a prevalence
of 2 to 3 per 10,000 live births worldwide [3–5]. In the United States alone, an estimated
1 in every 3841 infants is born with HLHS [6]. Additionally, patients with HLHS tend to
have worse long-term outcomes than patients with SV of LV morphology [7–9]. There
are inherent differences in RV and LV anatomy and physiology that may make the RV
vulnerable to failure when functioning as the systemic ventricle. Anatomically, the RV lacks
the middle layer of circumferential fibers which are the main source of force generation
in LV contraction; therefore, the RV is limited to reliance on only longitudinal shortening
for contractility [10]. Physiologically, the RV is energetically efficient when pumping to
the low resistance pulmonary circulation, but is highly load-dependent and declines in
performance when exposed to increased afterload [11,12]. Additionally, while the RV can
adapt over time to increased afterload, there are differences in stress-related molecular
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adaptations in the RV compared to the LV which may also play a role in systemic RV
failure [13].

Without medical intervention, HLHS is responsible for 25–40% of all neonatal cardiac
deaths [14]. The significant advancements of surgical palliation and cardiac transplantation
have improved the 5-, 10-, and 15-year survival of patients by nearly 40% [3,15–17]. How-
ever, these interventions are not curative and life-long complications including pathological
cardiac remodeling and progression to heart failure (HF) are still important consequences
of HLHS [18,19]. In general, early recognition and treatment of HLHS-related complica-
tions are essential to improving patient outcomes. However, there are no Class I, Level
A evidence-based treatments for HF associated with any form of CHD, and management
of HF in patients with HLHS is particularly challenging due to their unique anatomy
and physiology.

While the discussion thus far and throughout this review is on HLHS, there are other
CHDs resulting in a single systemic RV circulation such as right-dominant atrioventricular
septal defect, and some forms of double outlet and double inlet right ventricle. For the
purposes of this review, while HLHS serves as the prototypical CHD, the discussion can be
extrapolated to any CHD with a single systemic RV. There are many etiologies for HF in
patients with HLHS including neo-aortic arch obstruction, valvular insufficiency, a restric-
tive atrial septum, arrhythmias, and obstruction within the Glenn or Fontan circulation.
Here, we review the most commonly used medical therapies for myocardial failure in single
systemic RV HF as well as potential novel therapies for systemic ventricular failure in
HLHS and related CHD populations (Figure 1).
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Figure 1. Current pharmacological therapies and potential novel therapeutic targets that could
modulate Hypoplastic Left Heart Syndrome (HLHS)—associated heart failure (HF). Current com-
monly used adult HF therapies have demonstrated mixed or inconclusive effects on HF risk and
patient outcomes in the HLHS population. Targets implicated in HLHS HF that could be amenable to
pharmacological treatment and improve outcomes for HLHS patients are summarized. Created with
BioRender.com (accessed on 24 April 2022).

2. Current HLHS Heart Failure Therapies

For many reasons, there are a limited number of prospective clinical studies in children
with CHD. Children represent a vulnerable population and the number of patients with
any given type of CHD is fairly small, increasing the chances that a clinical trial will be
dramatically underpowered. As a consequence, most of the current HF treatments used
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in the pediatric CHD population have their basis in adult HF research [20]. However,
given the unique age, anatomical, and physiological differences in these populations, it is
unsurprising that many of the evidence-based adult LV HF therapies fail to show benefit
for SV HF [19]. Reviewed below are the most commonly applied current therapeutic
interventions for the treatment of HLHS HF.

2.1. ACE Inhibitors, ARBs, and ARNis

Angiotensin-converting enzyme inhibitor (ACEi) therapy has been traditionally used
in high-risk adult HF patients to delay pathological ventricular remodeling by blocking the
Renin-Angiotensin Aldosterone System (RAAS) [21]. Physiological upregulation of RAAS
has been demonstrated in the HLHS population, suggesting that ACEi use in HLHS patients
equivalates a similar response to that seen in adults, in addition to decreasing afterload
on the systemic ventricle [22]. A double-blind, randomized study of the ACEi, Enalapril,
in infants with SV who did not have HF failed to demonstrate any benefit in somatic
growth, ventricular function, or HF prevention [23]. Based on this study, prophylactic use
of ACEi in SV is not recommended. A separate study looking at the Angiotensin Receptor
Blocker (ARB), valsartan, in adult SV patients with single RV dysfunction, demonstrated
no beneficial impact on systemic RV ejection fraction, maximum exercise capacity, quality
of life, or clinical outcomes after 3 years of continuous therapy [24]. Further subgroup
analysis of this study, however, demonstrated that after the three-year follow up, RV
ejection fraction in the valsartan group remained unchanged, while in the placebo group
RV ejection fraction was significantly reduced. There have been no controlled studies
of angiotensin receptor-neprilysin inhibitors (ARNi) in the HLHS population and small
descriptive series have had mixed results [25,26]. Confounding variables such as age,
ventricular morphology, presence of ventricular dysfunction, valve regurgitation, HF
symptoms, and renal dysfunction should be considered prior to initiating therapy with
ACEi or ARBs in the HLHS population.

2.2. β-Blockers

β-Adrenergic receptor antagonists (β-Blockers), such as carvedilol and metoprolol,
are fundamental in the standard care of adult HF patients [27]. However, despite their asso-
ciation with dose-related LV function improvement, reverse-remodeling, and reductions in
mortality in adult patients, no such efficacy has been found with β-Blocker therapy in the
SV HF population. While a handful of small retrospective case reports and studies have
shown beneficial effects for SV HF with β-Blocker therapy [28–30], a randomized controlled
clinical trial in children with systolic HF comparing placebo to the non-selective β-Blocker,
carvedilol, demonstrated no benefit for SV patients. In fact, patients with a systemic RV
tended to have worse outcomes in response to carvedilol [20]. Moreover, it has been shown
that β-Adrenergic receptor adaptations are uniquely altered in the failing HLHS hearts
compared to failing adult hearts, providing a potential explanation for the lack of efficacy
of β-Blockers in those with a systemic RV [31,32].

2.3. Digoxin

Digoxin is a cardiac glycoside, derived from the purple foxglove flower, and was one
of the first drugs used for the treatment of HF and arrhythmias. However, due to multiple
drug interactions and the overlap in therapeutic and toxic concentrations that requires close
monitoring, digoxin is now only occasionally used and is no longer considered a first-line
therapy [33]. These limitations are not as problematic in the pediatric population that have
fewer comorbidities and concomitant medications [34,35]. A retrospective study of infants
with HLHS in the National Pediatric Cardiology Quality Improvement Collaborative
(NPCQIC) database demonstrated improved survival for those infants discharged home
on digoxin after the Norwood procedure [36]. However, there have not been prospective
controlled trials of the use of digoxin for the treatment of SV HF.
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2.4. PDE3 Inhibitors

While the chronic use of phosphodiesterase-3-inhibitors (PDE3i), such as milrinone,
is associated with increased mortality in adults with HF [37,38], this class of drugs is
commonly used in children. Milrinone for example, has been shown to prevent post-
operative low cardiac output syndrome in children with CHD [39]. In addition, it has
demonstrated lusitropic, and systemic and pulmonary arterial vasodilatory effects, and
has been shown to augment renal blood flow [40–42]. A recent study demonstrated
improved one-year survival in infants with SV receiving perioperative treatment with
milrinone as opposed to epinephrine and dopamine after the Norwood procedure [43].
Milrinone has been shown to improve HF symptoms in HLHS patients, including reducing
frequency of HF-related emergency department visits and hospital admissions [44]. In
addition, PDE3i therapy in pediatric SV HF is commonly used as a bridge to transplant [31].
PDE3 is a certified regulator of myocardial contractile function via cyclic-AMP (cAMP)
signaling and its modulation of phospholamban (PLN) and sarcoplasmic reticulum calcium-
ATPase (SERCA) [45]. Preservation of PLN activity in the myocardium and distinct cAMP
compartmentalization in children with SV HF, may account for the beneficial response to
PDE3i therapy observed between SV and adult HF patients [46].

2.5. Vasodilators

In the HLHS population, maintaining a low pulmonary vascular resistance is im-
portant for optimal circulation, particularly after Fontan palliation when blood flow to
the lungs is entirely passive. As a consequence of this unique physiology, various pul-
monary vasodilator therapies including endothelin receptor antagonists, prostanoids, and
phosphodiesterase-5-inhibitors (PDE5i) have been used in the treatment of HLHS HF.

2.5.1. Endothelin Receptor Antagonists

Circulating concentrations of a vasoconstrictor, plasma endothelin-1, are increased in
post-Fontan HLHS patients [47]. Several studies conducted in post-Fontan patients treated
with the endothelin rector antagonist, bosentan, observed improved exercise capacity and
cardiac performance without significant adverse events including hepatotoxicity [48–50].
Despite these encouraging results, this class of drugs is not commonly used in the treatment
of SV HF. Additional studies are required to better assess the long-term effects of endothelin
receptor antagonism therapy, such as that on Fontan-associated liver disease.

2.5.2. Prostanoids

Prostanoid, E-type 1 prostaglandin (PGE1), is commonly used in HLHS neonates prior
to Norwood palliation to maintain patency of the ductus arteriosus [51–53]. HLHS patients
are dependent on a patent ductus arteriosus to provide systemic blood flow, due to severe
obstruction of the left ventricular outflow tract. PGE1 dilates the ductus arteriosus as a
postnatal therapeutic to maintain the right to left shunting of systemic blood flow prior
to surgical intervention. Prostanoid use in older SV patients, particularly post-Fontan is
rare; however, several small studies have looked at inhaled iloprost in patients with Fontan
circulation and found improvement in peak oxygen pulse and maximum VO2, as well as
improved exercise capacity and cardiac output [52,53].

2.5.3. PDE5 Inhibitors

PDE5 inhibitors (PDE5i) are often used in the HLHS population to treat pulmonary
hypertension and improve pulmonary blood flow as reviewed in [54]. PDE5 is a cyclic-GMP
(cGMP) specific PDE, and PDE5 expression is upregulated during increased cardiac stress
and is associated with unfavorable myocardial responses [55–57]. However, while PDE5i
use as an adult HF therapeutic is inconsistent [58,59], a recent multicenter, longitudinal,
phase III clinical trial of udenafil therapy in post-Fontan SV adolescents demonstrated
improvements on measures of exercise performance [60]. While the primary target of PDE5i
therapy in SV is the pulmonary vasculature, it has been shown that PDE5 is expressed in
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the failing myocardium of HLHS patients, suggesting PDE5i may have therapeutic effects
on the myocardium directly. Additionally, recent pre-clinical studies have demonstrated
improved mitochondrial function in response to PDE5i therapy in the heart and liver, and
in diabetic adipocytes [61–63]. Thus, while further research is needed to demonstrate the
most appropriate indications and mechanisms involved in the beneficial effects of PDE5i
use in SV patients, its current association with improved exercise tolerance, pulmonary
blood flow, and systemic RV function is promising [57,60,64].

2.5.4. Guanylate Cyclase Inhibitors

Riociguat, a novel soluble guanylate cyclase (sGC) inhibitor, was recently investigated
for the treatment of pulmonary hypertension associated with CHD [65,66]. Riociquant
acts by both sensitizing sGC to endogenous nitric oxide (NO) and by directly stimulating
sGC independently of NO. Similar to PDE5i therapy, sGCi therapy restores the NO-sGC-
cGMP pathway, thereby increasing cGMP and stimulating vasodilation. The efficacy and
safety of riociguat in a subset of patients with persistent/recurrent pulmonary arterial
hypertension after correction of CHD were extrapolated from a large randomized, double
blind, placebo-controlled phase III trial of riociguat in patients with pulmonary arterial
hypertension [67]. Riociguat was well tolerated in CHD patients and improved 6-min
walk distance, pulmonary vascular resistance, N-terminal of the prohormone of brain
natriuretic peptide (NT-proBNP) levels, and WHO functional class. However, while this
study suggests potential benefit of sGCi therapy in those with CHD there were no patients
with HLHS specifically included in the study.

2.6. Diuretics

Congestive symptoms (edema, dyspnea, orthopnea) are a hallmark of HF and are
secondary to increased extracellular volume and increased ventricular filling pressures.
Diuretic therapy aims to mitigate the consequences of this volume expansion and is there-
fore commonly used for symptom management in patients with HF [68]. Interestingly
however, evidence to support the use of diuretics, even in adult HF populations, is lacking.
There are several types of diuretics including loop diuretics (e.g., furosemide), thiazides
(e.g., hydrochlorothiazide), osmotic agents (e.g., mannitol), carbonic anhydrase inhibitors
(e.g., acetazolamide), and potassium-sparing (e.g., spironolactone). Loop diuretics are the
most commonly prescribed as they are generally efficacious and cost-effective. Thiazide
diuretics are often employed when patients become resistant to loop diuretics. While the
use of diuretics is reasonable in patients with HLHS and congestive HF symptoms, once
symptoms improve and euvolemia is achieved attempts at discontinuing or decreasing
diuretic use can limit complications such as electrolyte derangements, worsening renal
function, and fractures in small children [69].

3. Potential Future HLHS Medical Therapies

Despite advances in medical and device therapy for the treatment of HF, morbidity
and mortality remain high [70]. Therefore, there is a continual interest in identification
of new therapies for the treatment of adult LV or RV HF, which have the potential to
subsequently benefit children with CHD, including those with HLHS.

3.1. Mitochondrial Targeted Therapies

Although the pathophysiology of HF is complex, mitochondrial dysfunction is com-
mon across various HF etiologies [71], including HLHS [72–74]. Mitochondrial abnormal-
ities include impaired mitochondrial electron transport chain (ETC) activity, increased
formation of reactive oxygen species (ROS), altered metabolic substrate utilization, and
aberrant mitochondrial dynamics, resulting in reduced capacity to generate myocardial
adenosine trinucleotide phosphate adequate (ATP) for appropriate myocardial function
reviewed in [71]. Therefore, mitochondria represent an important target for SV HF therapy
with considerable potential to improve cardiac function.
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3.1.1. Elamipretide (Bendavia, MTP-131, SS-31)

Cardiolipin is a mitochondrial phospholipid critical in facilitating normal ATP gen-
eration by anchoring proteins of the ETC onto the inner mitochondrial membrane [75].
Elamipretide (also referred to as Bendavia, MTP-131, and SS-31) is a novel aromatic-cationic,
cell-permeable tetrapeptide that targets mitochondrial cardiolipin to help enhance mito-
chondrial function. Several pre-clinical studies have demonstrated that SS-31 significantly
improved LV function, increased myocardial ATP synthesis, and prevented pathological
LV remodeling in animal models [76–78]. However, clinical studies evaluating the effects
of SS-31 in patients with HF have yet to report significant improvement on LV systolic or
diastolic function [79,80]. This may be due to many variables, one of which is the short-
term SS-31 therapy in clinical studies versus the higher concentrations and more chronic
exposures in pre-clinical studies. Specific to the SV population, there is evidence of dysreg-
ulation of the biosynthesis and remodeling of the mitochondrial phospholipid cardiolipin
in failing SV hearts that could have implications for mitochondrial function [81]. An ex
vivo study utilizing explanted pediatric and adult cardiac specimens (including hearts
from SV patients) demonstrated that acute SS-31 treatment improved cardiac mitochondrial
function [78], further suggesting the potential benefit of mitochondrial targeted therapies
for the treatment of SV HF.

3.1.2. Antioxidants

Over the past several years, antioxidants have gained increased popularity for the
treatment of several disease etiologies. In fact, several of these molecules are undergoing
investigations for the treatment of adult HF for their antioxidant properties and ability
to stimulate mitochondrial biogenesis. In a small clinical trial, resveratrol, a naturally
occurring antioxidant, improved LV function, endothelial function, lowered cholesterol
levels, and protected against unfavorable hemorheological changes in patients with coro-
nary artery disease [82]. Other antioxidant molecules such as oxypurinol, allopurinol,
sapropterin, nicotinamide adenine dinucleotide (NAD+), vitamin E, and folic acid have
been shown to protect the heart from pathological remodeling and improve cardiac function
in various pre-clinical studies [reviewed in 83,84]. Moreover, rodent models overexpressing
antioxidant enzymes such as superoxide dismutase (SOD), a catalase, also show significant
benefit in terms of cardiac remodeling and function in the setting of induced cardiac stress.
However, in the clinical setting, antioxidant therapies have yielded varied and somewhat
disappointing results [83–85]. Perhaps the subcellular compartmentalization of ROS for-
mation may explain the lack of efficacy of untargeted antioxidant therapy. Antioxidants
that selectively accumulate in the mitochondrial matrix, such as mitoquinone (MitoQ) may
prove to be more efficacious in the setting of HF. For example, while MitoQ has not yet
been evaluated in HF patients, dietary supplementation with MitoQ improved endothelial
function in elderly individuals [86] and acute oral therapy improved flow-mediated va-
sodilation, walking capacity, and time to claudication in patients with peripheral artery
disease [86]. Whether these therapeutic strategies will improve outcome in specific sub-
sets of HF patients, including those with HLHS, is yet to be determined, but deserves
further consideration.

3.2. SGLT2 Inhibitors

Sodium-glucose co-transporter-2 (SGLT2) inhibitors represent a recent adult HF ther-
apeutic directed at glucose metabolism. SGLT2 proteins are expressed in the proximal
convoluted tubule of the kidneys and are responsible for the majority of the reabsorption
of glucose filtered by the kidneys [87]. SGLT2 inhibition (SGLT2i), therefore, blocks the
reabsorption of filtered glucose in the kidneys in an insulin-independent mechanism, re-
sulting in an increased amount of glucose secreted in the urine. Many clinical trials have
confirmed the efficacy SGLT2i in lowering glycemic levels in the type 2 diabetes (T2D) pop-
ulation [88,89], and large-scale clinical trials present evidence of the efficacy of SGLT2i treat-
ment in preventing HF in patients with T2D [89,90]. In a systematic meta-analysis, SGLT2i
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also appear to significantly reduce systolic and diastolic blood pressure [91]. Additionally,
a second meta-analysis suggests reduced cardiovascular mortality and HF hospitalizations
among adult HF patients in multiple cardiovascular outcome trials, even in the absence of
T2D reviewed in [92]. Interestingly, the cardiac benefits seen in response to SGLT2i therapy
might be partly explained by their effects on ion handling and metabolism of cardiac
myocytes reviewed in [84]. In light of the evidence of SGLT2i’s efficacy in substantially
improving outcomes for adult patients with HF with reduced ejection fraction (HFrEF), the
translation of this class of medication to treat HLHS HF deserves further investigation.

3.3. BET Inhibitors

Bromodomain and extraterminal motif (BET) inhibitors are a class of drugs that have been
proposed as a therapeutic for multiple cancer types, and more recently, for the treatment of
pulmonary arterial hypertension [93,94]. BET proteins contain two N-terminal domains that
bind to an acetylated lysine residue on histone tails, playing a more indirect role in initiating
and continuing transcription and regulating the cell cycle. Though further investigation
is required, one pre-clinical study found that rodent models exposed to chronic hypoxia
showed significant RV hypertrophy, increased systolic pressure and contraction speed
compared to control, that was reversed with BET inhibitor (I-BET151) treatment [95]. This
study provides promising evidence of the potential beneficial effects of BET inhibition
on pulmonary hypertension, which could subsequently translate to patients with Fontan
physiology [94,96].

3.4. HDAC Inhibitors

Histone deacetylases (HDACs) are one class of enzymes that remove the acetyl group
from lysine residues of both histone and non-histone proteins and represent yet another
novel potential therapeutic [97]. A study utilizing explanted cardiac specimens, showed
increased activity and expression of class I, IIa, and IIb of HDACs in HLHS myocardium
compared to normal controls [98]. A similar effect showing elevated HDAC catalytic
activity and protein expression was seen in a neonatal rodent model of hypoxia-induced
RV hypertrophy, suggesting that targeting HDACs may be a promising novel therapeutic
for systemic RV failure in the HLHS population.

3.5. Immunomodulatory Therapies

Mounting evidence suggests that the immune system contributes significantly to
cardiac function and plays a role in the pathophysiology of HF. Specific depletion of
cardiac tissue-resident macrophages for example, impairs clearance of damaged mito-
chondria in the myocardium, leading to metabolic alterations and ultimately ventricular
dysfunction [99,100]. Moreover, circulating peripheral blood mononuclear cells are a
source of pro-inflammatory cytokines in the failing adult heart [101,102]. Importantly,
neonatal thymectomy is routinely performed in infants with HLHS to gain better visual-
ization during surgical palliation, and while the consequences are not well understood,
evidence suggests altered immune cell composition and impaired immune cell-mediated
responses in these patients [103–105]. Therefore, a thymectomy may significantly impact
the formation of the immune cell pool, which in turn can influence the development of
clinically-significant co-morbidities, including the progression to HF in HLHS patients.
Therefore, immunomodulatory therapies may represent another potential novel approach
to treatment and deserve further consideration in this population.

4. Conclusions

Altogether, there are many factors contributing to the lack of evidence-based therapies
for the treatment of HF in HLHS. Due to the relative rarity of HLHS, it is not possible to
perform large, randomized, placebo-controlled clinical trials, as is conducted for adult HF
therapeutics. There is an evolving body of evidence, much of which is described above, that
the failing HLHS myocardium bears unique attributes in comparison to the adult failing
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heart, suggesting some adult-based therapies may not be efficacious, while others may
hold more promise. Additionally, basic science and pre-clinical investigations of the failing
HLHS myocardium have identified potential myocardial therapeutic targets such as PDE5
and mitochondrial dysfunction, which deserve further study in this population. Through a
combination of pre-clinical, clinical, and observational studies, advancements in the clinical
care and outcome of patients with HLHS HF are possible.
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