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Recent advances in understanding the pathophysiological mechanisms contributing to
fragile X syndrome (FXS) have increased optimism that drug interventions can provide
significant therapeutic benefits. FXS results from inadequate expression of functional frag-
ile X mental retardation protein (FMRP). FMRP may have several functions, but it is most
well-established as an RNA binding protein that regulates translation, and it is thought that
by this mechanism FMRP is capable of affecting numerous cellular processes by selectively
regulating protein levels. The multiple cellular functions regulated by FMRP suggest that
multiple interventions may be required for reversing the effects of deficient FMRP. Evidence
that inhibitors of glycogen synthase kinase-3 (GSK3) may contribute to the therapeutic
treatment of FXS is reviewed here. Lithium, a GSK3 inhibitor, improved function in the
Drosophila model of FXS. In mice lacking FMRP expression (FX mice), GSK3 is hyperactive
in several brain regions. Significant improvements in several FX-related phenotypes have
been obtained in FX mice following the administration of lithium, and in some case other
GSK3 inhibitors. These responses include normalization of heightened audiogenic seizure
susceptibility and of hyperactive locomotor behavior, enhancement of passive avoidance
learning retention and of sociability behaviors, and corrections of macroorchidism, neu-
ronal spine density, and neural plasticity measured electrophysiologically as long term
depression. A pilot clinical trial of lithium in patients with FXS also found improvements
in several measures of behavior. Taken together, these findings indicate that lithium and
other inhibitors of GSK3 are promising candidate therapeutic agents for treating FXS.
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INTRODUCTION
During the last few years there has been tremendous progress in
understanding the pathological mechanisms underlying fragile X
syndrome (FXS). This knowledge has provided several leads of
potential interventions that may be therapeutic in FXS. One of
these is lithium and possibly other inhibitors of glycogen synthase
kinase-3 (GSK3), and this evidence is discussed in this review.

FRAGILE X SYNDROME: ETIOLOGY AND PATHOLOGY
Fragile X syndrome is the most common hereditary form of mental
retardation caused by a single genetic defect, the loss of expression
of the fragile X mental retardation 1 (fmr1) gene (Pieretti et al.,
1991; Kooy et al., 2000; Bardoni and Mandel, 2002). FXS is caused
by expansion of a trinucleotide CGG repeat in the 5′ UTR of the
fmr1 gene. This expansion appears as a weak, or fragile-like, end on
the X chromosome. Normally there are ∼5 to ∼44 CGG repeats
containing occasional AGG triplets, with 29 or 30 being most com-
mon (Maddalena et al., 2001). Alleles in the range of 45–54 repeats
are considered to be in a gray, or inconclusive, zone; premutation
alleles range from 55 to 200–230 CGG repeats, which may reduce
translation efficiency of the FMR1 gene (Feng et al., 1995); and full
mutations associated with FXS have over 200–230 CGG repeats,
typically containing several hundred or thousand triplet repeats
(Maddalena et al., 2001). The extended CGG repeats in FXS are
hypermethylated, silencing gene transcription and resulting in loss

of the fragile x mental retardation protein (FMRP). FMRP plays
important roles in RNA binding and translation regulation, as
well as regulation of extracellular transport and sodium-activated
potassium channels (Brown et al., 1998, 2010; Bardoni et al., 2000;
Laggerbauer et al., 2001).

Since FXS is an X-linked developmental disorder, its incidence is
higher in males than females, affecting ∼1 in 4000 males and ∼1 in
7000 females (Crawford et al., 2001). Transmission of the affected
fmr1 allele may occur to female offspring from an affected male
and to both male and female offspring from affected females. FXS
is characterized by several physical, mental, and behavioral abnor-
malities. Prominent physical characteristics include overly pro-
nounced ears, an elongated jaw, double-jointed/hyperextensible
fingers, flat feet, low muscle tone, and macroorchidism. Sleep
disturbances, inattentiveness, hyperactivity, impaired cognition,
seizure susceptibility, and autistic-like behaviors, including devel-
opmental delays, communication impairments, and anxiety, are
common characteristics of patients with FXS.

ANIMAL MODELS OF FXS
The most common animal models used to study FXS include
mouse models (Bakker et al., 1994) and Drosophila models (Wan
et al., 2000; Zhang et al., 2001). The first mouse model was devel-
oped by Bakker et al. (1994), who generated mice with an inactive
Fmr1 gene (FX mice). With these and other FMRP knockout
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mice, FX mice have been shown to display characteristics with
some similarities to patients with FXS, including macroorchidism,
certain features of behavior, and some cognitive impairments.
However, the impairments in measures of cognition that have been
assessed in FX mice are modest compared to patients with FXS,
although a recent report identified a significant impairment in
prefrontal cortex-dependent cognition in FX mice (Krueger et al.,
2011). FX mice also exhibit increased dendritic spine length and
number, but reduced maturation of spines, compared to wild-
type littermates (Comery et al., 1997; Irwin et al., 2001, 2002).
Autistic-like behaviors characteristic of patients with FXS, and
increased susceptibility to audiogenic seizures also occur in FX
mice (Musumeci et al., 2000; Yan et al., 2004; Bernerdet and Cru-
sio (2006). The use of Drosophila to study FXS was initiated by
Wan et al. (2000), who identified dfmr1 as the invertebrate fam-
ily member of the FMR1/FXR gene family. Over-expression of
RNA binding-deficient mutant dfmr1 in Drosophila caused wing
deformities, including loss of anterior cross-veins longitudinal
veins, and severe rough eye, suggesting altered cell fate determina-
tion and proliferation, and increased apoptosis. Drosophila FXS
models lacking expression of dFMRP or over-expressing a loss-of-
function dFMRP mutant were characterized by Zhang et al. (2001).
Over-expression of loss-of-function mutant dFMRP produced an
abnormal wing span or up-held wings, impaired coordination,
caused early death, and dFMRP-null flies displayed exaggerated
synaptic outgrowth (Zhang et al., 2001). Knockout and mutation
of dfmr1 also affected neurotransmission and increased peripheral
synaptic transmission while decreasing central synaptic trans-
mission. Thus, both the mouse and fly models of FXS have
provided valuable information about the pathology of FXS and
contributed to recent advances in developing potential therapeutic
interventions for FXS.

GLYCOGEN SYNTHASE KINASE-3
Glycogen synthase kinase-3 is a serine/threonine kinase that
exists in two isoforms, GSK3α and GSK3β (Woodgett, 1990).
Regulation of GSK3 is primarily mediated by inhibitory serine-
phosphorylation, specifically at ser21 of GSK3α and ser9 of
GSK3β. The inhibitory serine-phosphorylation of GSK3 is
induced by a wide variety of signaling pathways that converge on
GSK3. Impairments in these pathways can lead to inadequate inhi-
bition of GSK3, causing hyperactive GSK3, which may contribute
to a number of diseases, such as Alzheimer’s disease, diabetes,
and mood disorders (Jope and Johnson, 2004; Mines et al., 2011).
Studies of the actions of GSK3 were accelerated by the discov-
ery that lithium, the classical treatment for bipolar disorder, is a
selective inhibitor of GSK3 (Klein and Melton, 1996; Stambolic
et al., 1996). Lithium both directly inhibits GSK3 activity and also
increases the inhibitory serine-phosphorylation of GSK3 (Jope,
2003). Studies of the effects of lithium contributed immensely to
the identification of many of the known actions of GSK3 and to
revelations that inadequately inhibited GSK3 is linked to a number
of diseases, which includes FXS, as is reviewed here. Connect-
ing GSK3 to pathological processes promoted the development
of many new, small molecule selective inhibitors of GSK3 (Mar-
tinez et al., 2006). Some GSK3 inhibitors that have been used fairly
extensively in experimental studies include indirubin derivatives

(Leclerc et al., 2001), L803-mts (Plotkin et al., 2003), SB216763
(Coghlan et al., 2000), TDZD derivatives (Martinez et al., 2002),
paullone derivatives (Leost et al., 2000), AR-A014418 (Bhat et al.,
2003), and CT99021 (Wagman et al., 2004), the most specific GSK3
inhibitor that has been described (Bain et al., 2007). Of these, only
a TDZD derivative called tideglusib is currently in trials in humans
(Martinez et al., 2011), and none has yet been tested in patients
with FXS.

AMELIORATION OF FXS-ASSOCIATED BEHAVIORAL
ABNORMALITIES BY LITHIUM AND OTHER GSK3 INHIBITORS
McBride et al. (2005) reported that lithium treatment ameliorated
impairments in courtship behavior in the Drosophila model of
FXS. This was a critical finding because it first raised the pos-
sibility that lithium may be therapeutic for FXS. A subsequent
report confirmed the rescue of FXS-associated impairments in the
Drosophila model of FXS by lithium treatment and demonstrated
that this rescue was sustainable throughout the aging process
(Choi et al., 2009). Since lithium both inhibits GSK3 and mod-
ulates phosphoinositide signaling (Jope, 1999), the key target for
its effects in the Drosophila model of FXS has yet to be established.

Direct evidence that GSK3 may be involved in the pathol-
ogy of FXS and be a target for the development of treatments
for FXS was obtained in studies of the regulation of GSK3 in
brain regions from FX mice. Assessments of the levels of serine-
phosphorylation of GSK3 revealed that adult FX mice had lower
levels of inhibitory phospho-ser21-GSK3α and phospho-ser9-
GSK3β in several brain regions compared to wild-type littermates
(Min et al., 2009; Yuskaitis et al., 2010a). However the total protein
levels of GSK3α and GSK3β were equivalent in FX and wild-type
mice, demonstrating that GSK3 expression is normal in FX mouse
brain, but the inhibitory control of GSK3 is impaired. The impair-
ment in the regulation of GSK3 was evident in adult FX mice
on both the FVB and C57Bl6 backgrounds, thus this is a robust
change not dependent on mouse strain, and reduced inhibitory
serine-phosphorylation of GSK3 in FX mice was also found in an
analysis of whole brain GSK3 phosphorylation levels (Liu et al.,
2011). Moreover, impaired inhibitory serine-phosphorylation of
GSK3 in adult FX mice was corrected by acute or chronic treat-
ment with lithium (Min et al., 2009; Yuskaitis et al., 2010a; Liu
et al., 2011).

The effects of lithium, and in some cases other GSK3 inhibitors,
have been tested on several behavioral characteristics of FX mice.
Increased susceptibility to audiogenic seizures, which often evolve
to lethal status epilepticus, is a well-established phenotype of
FX mice (Musumeci et al., 2000). Treatment with lithium dose-
dependently reduced audiogenic seizure susceptibility in 4-week-
old FX mice, but did not alter the responses in wild-type mice (Min
et al., 2009). The occurrence of status epilepticus was also dose-
dependently reduced by lithium in FX mice (Min et al., 2009).
To assess whether decreased audiogenic seizure susceptibility was
a result of lithium-mediated inhibition of GSK3, the effects of
two additional GSK3 inhibitors were investigated. Treatment with
the selective GSK3 inhibitors AR-A014418 (Bhat et al., 2003) or
SB216763 (Coghlan et al., 2000) normalized audiogenic seizure
susceptibility in FX mice similarly to the effect of lithium treat-
ment. The finding that three structurally diverse GSK3 inhibitors
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were able to reduce audiogenic seizure susceptibility in FX mice,
without affecting audiogenic seizure susceptibility in wild-type
mice, suggested that the hyperactive GSK3 identified in FX mouse
brain is likely mediating the phenotypic seizure abnormalities in
FX mice (Min et al., 2009).

Locomotor hyperactivity is a hallmark characteristic of FXS
that is also evident in FX mice (Bakker et al., 1994). Therefore,
the effects of lithium were examined in FX mice to test if locomo-
tor hyperactivity was ameliorated. Untreated FX mice displayed
increased hyperactivity in the open field paradigm (Min et al.,
2009; Yuskaitis et al., 2010a; Liu et al., 2011), including significant
increases in total line crosses, in center square duration, and in
center square entries, and a significant decrease in outer zone line
crosses compared with wild-type mice (Min et al., 2009). Admin-
istration of SB216763 to inhibit GSK3 did not alter the activity
of wild-type mice in the open field, but normalized the total line
crosses, center square entries, center square duration, and outer
zone line crosses in FX mice (Min et al., 2009). Chronic lithium
administration at a therapeutically relevant dose also normalized
to wild-type levels the total ambulatory distance traveled by FX
mice in the open field, without altering the distance traveled by
wild-type mice (Yuskaitis et al., 2010a; Liu et al., 2011). The correc-
tion of locomotor hyperactivity of FX mice by two GSK3 inhibitors
suggests that hyperactive GSK3 in FX mice makes a significant
contribution to this phenotype.

The effect of lithium treatment on the behavior of adult FX and
wild-type mice on the elevated plus maze paradigm also has been
assessed. This behavioral paradigm uses a cross shaped apparatus
consisting of two open arms and two closed arms. Typically, this
apparatus is often used to estimate anxiety displayed by hesitation
to explore the open arms resulting in increased time spent in the
closed arms, although interpretations of the results remain com-
plicated, especially with mice that exhibit locomotor hyperactivity.
FX mice spent significantly more time in the open arms and less
time in the closed arms than wild-type mice, which would classi-
cally be interpreted as exhibition of less anxiety (Yuskaitis et al.,
2010a; Liu et al., 2011), but FX mice also displayed an increase
in closed arm entries, classically interpreted as increased anxi-
ety (Yuskaitis et al., 2010a). Thus, the locomotor hyperactivity of
FX mice may preclude clear interpretations of the measurements
using the elevated plus maze paradigm. Despite the difficulty in
interpreting the behaviors, administration of lithium normalized
behavior in the elevated plus maze paradigm in FX mice to the
behavior of wild-type mice (Yuskaitis et al., 2010a; Liu et al., 2011).
The elevated zero maze was also used to assess anxiety-like behav-
iors in FX mice (Liu et al., 2011). The elevated zero maze has two
closed quadrants and two open quadrants, and the time spent in
the open or closed portions is indicative of the presence or absence
of anxiety or fearfulness versus exploratory behaviors. FX mice
spent more time in the open quadrants than wild-type mice, and
lithium treatment reduced the time spent in the open quadrants,
eliminating the difference between FX mice and wild-type mice
(Liu et al., 2011). Thus, FX mice display abnormal behavior in
each of these tests that is normalized by lithium, but relating these
behaviors to the behavior of subjects with FXS remains difficult.

Another common characteristic of patients with FXS is
the presence of autistic-like behaviors (Hagerman et al., 2005;

Belmonte and Bourgeron, 2006; Hatton et al., 2006). FXS is the
most common known genetic cause of autism spectrum disorders
(ASDs), which can involve developmental delays, communication
impairments, anxiety, and impaired social behaviors. Accordingly,
social behavior deficits have been extensively described in FX mice
(Mineur et al., 2002, 2006; Spencer et al., 2005; Bernerdet and Cru-
sio, 2006; McNaughton et al., 2008; Liu and Smith, 2009; Moy et al.,
2009). The effects of lithium treatment on social behavior were
studied using the two-phase social interaction behavior paradigm
(McNaughton et al., 2008). This test consists of a sociability phase
1, the introduction of one novel stimulus mouse (S1), and a social
preference phase 2, the introduction of a second stimulus mouse
(S2). Although during the sociability phase FX mice generally
behaved as wild-type mice, lithium treatment increased sociabil-
ity measures in both wild-type and FX mice (Mines et al., 2010;
Liu et al., 2011), increasing the time in the socializing chamber
(Mines et al., 2010; Liu et al., 2011) and increasing social approach
assessed by the number of nose contacts (Mines et al., 2010) and by
the time spent sniffing the stimulus mouse (Liu et al., 2011). In the
social preference phase 2, wild-type mice display preference for S2
over S1, but FX mice lacked this preference and spent equivalent
times with S1 and S2 (Mines et al., 2010; Liu et al., 2011) and dis-
played a lower number of nose contacts with S2 and time sniffing
S2 than wild-type mice (Mines et al., 2010; Liu et al., 2011). These
abnormal behaviors in the social preference assessment of FX mice
were significantly normalized by chronic lithium treatment (Mines
et al., 2010; Liu et al., 2011). Lithium treatment also appeared to
modestly reduce displays of social anxiety by FX mice (Mines et al.,
2010). To test if hyperactive GSK3 might contribute to the altered
social behaviors exhibited by FX mice, in addition to administer-
ing lithium to inhibit GSK3, another model of hyperactive GSK3
was used, GSK3 knockin mice. These mice have serine-to-alanine
mutations in the regulatory serines of GSK3α and GSK3β, so the
mice express constitutively active GSK3 that cannot be inhibited
by serine-phosphorylation (McManus et al., 2005). These mice
also displayed no altered behavior in the sociability phase 1 test,
but displayed impairments in the social preference phase 2 sim-
ilar to those of FX mice (Mines et al., 2010). Collectively, these
studies suggest that GSK3 inhibition may be useful in reducing
impairments in social behaviors and social anxiety in FXS.

GSK3 AND MORPHOLOGY IN FX MICE
In addition to improving abnormal behaviors in FX models,
lithium treatment also modified structural and anatomical charac-
teristics of FX mice. Macroorchidism is a common feature of FXS
that is replicated in FX mice (Bakker et al., 1994; Comery et al.,
1997). Chronic administration of lithium significantly reduced
testicular weight in adult FX mice, but not in adult wild-type
mice (Yuskaitis et al., 2010b). Increased dendritic spine length
with altered morphology are characteristic of FXS and replicated
in FX mice (Comery et al., 1997). Liu et al. (2011) confirmed
increased apical and basal dendritic spine length in FX mice as
compared to wild-type littermates. Furthermore, they found that
lithium treatment normalized dendritic spines in FX mice (Liu
et al., 2011). Reactive astrogliosis has been reported in postmortem
brains of patients with ASDs (Laurence and Fatemi, 2005; Vargas
et al., 2005). Yuskaitis et al. (2010b) reported that adult FX mice
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displayed increased levels of glial fibrillary acidic protein (GFAP),
a classical marker of astrogliosis, in several brain regions, including
the striatum, hippocampus, and cortex, and that chronic lithium
treatment reduced GFAP levels in both adult FX and wild-type
mice. Although the mechanism for this effect of lithium was not
examined, the transcription factor signal transducer and activa-
tor of transcription-3 (STAT3) promotes GFAP expression and is
inhibited by inhibitors of GSK3, including lithium (Beurel and
Jope, 2008), raising the possibility that this action accounted for
the reduced levels of GFAP in vivo after lithium treatment.

GSK3, mGLuRs, AND SYNAPTIC PLASTICITY
Alterations in synaptic plasticity have been a focus of studies of FXS
since early reports found that FMRP may be important for nor-
mal maturation of synaptic connections (Weiler et al., 1997; Weiler
and Greenough, 1999; Antar et al., 2004) and FX mice displayed
enhanced metabotropic glutamate receptor (mGluR)-dependent
long term depression (LTD) in the CA1 region of the hippocampus
(Huber et al., 2002). These and other reports (e.g., McBride et al.,
2005; Yan et al., 2005; Dölen et al., 2007) have strengthened the
mGluR theory of FXS (Bear et al., 2004), which proposes that many
of the protein synthesis-dependent functions of metabotropic
receptors are exaggerated in FXS. This has led to the development
of mGluR5 antagonists as potential therapeutics for FXS. The
mGluR5 antagonist MPEP (2-methyl-6-phenylethynyl-pyridine)
has often been used in studies of FX mice, and MPEP treatment
rescues a number of impairments, such as heightened audiogenic
seizure susceptibility (Yan et al., 2005). Surprisingly, administra-
tion of MPEP also increased the inhibitory serine-phosphorylation
of GSK3 in FX mouse brain, while having little effect in wild-type
mice (Min et al., 2009; Yuskaitis et al., 2010a). This finding indi-
cated that mGluR5 signaling to GSK3 is abnormal in FX mice,
and demonstrated an overlap in the effect of MPEP with GSK3
inhibitors. Furthermore, Choi et al. (2011) found that lithium
treatment ameliorated enhanced mGluR-mediated LTD at CA1
synapses in FX mice. Although the mechanism underlying this
action of lithium was not examined, that it might be due to inhi-
bition of GSK3 is consistent with the finding that GSK3 promotes
LTD (Peineau et al., 2007). Taken together, these studies lend fur-
ther support to the possibility that inhibition of GSK3 may be a
beneficial therapeutic intervention for FXS.

CLINICAL TRIALS
The promising reports that lithium corrects FX-associated abnor-
malities in flies and mice was corroborated in a pilot clinical trial of
lithium in patients with FXS (Berry-Kravis et al., 2008). The use of
lithium in humans is well-established because it has been used clin-
ically for 60 years in the treatment of mood disorders, especially
bipolar disorder (Jope, 1999). Berry-Kravis et al. (2008) assessed
the clinical effects of lithium in patients with FXS given lithium
carbonate orally with doses adjusted to obtain a serum level of
0.8–1.2 mEq/L for the final 4 weeks of a 2-month trial. This pilot
trial found that aggression, anxiety, mood swings, tantrums, and
abnormal outbursts were improved in lithium-treated patients.
Care-giver ratings indicated decreases in hyperactivity and inap-
propriate speech. Improvements in lethargy and stereotypy were
also observed in patients given lithium, as compared to baseline

behaviors previously recorded (Berry-Kravis et al., 2008). Overall,
these findings further bolster the possibility that lithium, and
perhaps other GSK3 inhibition, may provide therapeutic benefits
in FXS.

POTENTIAL TARGETS OF GSK3 THAT MAY CONTRIBUTE TO
FXS ABNORMALITIES
Since GSK3 was only recently found to be hyperactive in FX mouse
brain and to be a potential therapeutic target for FXS, identifica-
tion of the mechanisms by which GSK3 may contribute to FXS
phenotypes awaits future investigations. However, several possi-
bilities can be suggested representative of the cellular functions
regulated by GSK3 and the abnormalities that have been identified
in FX mice.

Regulation of cellular cytoskeleton dynamics provides one
potential mechanism by which hyperactive GSK3 could con-
tribute to abnormalities in FXS brain. Prevalent among GSK3
substrates are microtubule-associated proteins (MAPs) that regu-
late dynamic changes in neuronal plasticity, which is thought to be
abnormal in FXS. Microtubules are polymers of the protein tubu-
lin composing networks that maintain the structure and spatial
organization of cells and that provide mechanisms for transport-
ing organelles and protein complexes within cells. Microtubules
are dynamic structures capable of rapid changes mediated by
increased tubulin polymerization or, oppositely, by microtubule
depolymerization. These changes occur in response to signals that
regulate MAPs, which reversibly bind microtubules and regulate
microtubule stability, allowing cells to change shape, extend or
retract processes, and to move. Among the MAP family, the pro-
tein tau is the most widely studied substrate of GSK3 (Hong et al.,
1997; Cho and Johnson, 2004), primarily because of its links to
Alzheimer’s disease (Johnson and Bailey, 2002). There are many
phosphorylation sites on tau, and in general tau phosphorylation
reduces its binding to microtubules, whereas dephosphorylated
tau tends to bind and stabilize microtubules. Tau binding sta-
bilizes microtubules, and phosphorylation by GSK3 causes tau
to dissociate from microtubules, which destabilizes microtubules.
Thus, hyperactive GSK3 in FX brains may reduce tau binding to
microtubules. Also, a dramatic ∼50% loss of tau protein has been
reported in FX cortical neurons (Liao et al., 2008), which could
result from its degradation following phosphorylation by GSK3.
Considering together the possibilities of tau hyperphosphoryla-
tion by GSK3, which dissociates tau from microtubules, and the
lower level of tau available to bind and stabilize microtubules, these
alterations could contribute to deficits in structural plasticity that
may contribute to impaired neuronal plasticity in FXS. Addition-
ally, cyclin-dependent kinase-5 (Cdk5) levels are low in FX cortical
neurons (Liao et al., 2008) and normally Cdk5 suppresses GSK3
activity through neuregulin and Akt signaling to reduce tau phos-
phorylation (Wen et al., 2008). Thus, the reduced Cdk5 levels in
FX brain may contribute to hyperactive GSK3 and abnormal phos-
phorylation of tau. Similarly to tau, GSK3 also phosphorylates
and regulates the function of other proteins that bind and reg-
ulate microtubules, including MAP1B (Garcia-Perez et al., 1998;
Lucas et al., 1998). Notably, MAP1B was one of the earliest targets
found to be regulated by FMRP, and aberrantly regulated MAP1B
leads to abnormally increased microtubule stability in FX neurons

Frontiers in Molecular Neuroscience www.frontiersin.org November 2011 | Volume 4 | Article 35 | 4

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Mines and Jope GSK3 in fragile X syndrome

(Zhang et al., 2001; Lu et al., 2004). Thus, abnormal phosphoryla-
tion by GSK3 of tau, MAP1B, or other known cytoskeletal protein
substrates of GSK3, such as kinesin (Morfini et al., 2002) and
collapsin response mediator protein-2 (Cole et al., 2007), could
lead to abnormal microtubule dynamics and function that may
contribute to abnormal neural plasticity in FXS.

Glycogen synthase kinase-3 is known to regulate by phospho-
rylation the activity of a relatively large number of transcription
factors (Grimes and Jope, 2001a). Thus, altered transcription
caused by aberrant transcription factor regulation by hyperac-
tive GSK3 in FXS brain may exacerbate abnormal translation
caused by loss of FMRP. Two representative examples that may
be important in FXS are cyclic AMP response element binding
protein (CREB) and Heat Shock Factor-1 (HSF-1). CREB reg-
ulates many critical processes, such as formation of long term
memory and maintenance of synaptic plasticity (Alberini, 2009;
Benito and Barco, 2010), both key processes that are impaired
in FXS. CREB is active when phosphorylated on serine-133, and
this phosphorylation creates a site for GSK3 to bind and phos-
phorylate serine-129, which inactivates CREB (Wang et al., 1994;
Grimes and Jope, 2001b). Thus, hyperactive GSK3 in FXS brain
may reduce the learning and neural plasticity functions of CREB by
abnormally inactivating CREB. FMRP over-expression increases
cyclic AMP production (Berry-Kravis and Ciurlionis, 1998), cyclic
AMP production is defective in platelets from patients with FXS
(Berry-Kravis and Sklena, 1993), induced levels of cyclic AMP are
substantially reduced in platelets and in brains of Fmr1 knockout
mice and in human FXS neural cells (Kelley et al., 2007), and using
the drosophila model of FXS, Dockendorff et al. (2002) reported
that dfmr1 is required for normal CREB activity. Thus, CREB acti-
vation may be impaired in FXS brain and further impaired by
the inhibition induced by GSK3. The transcription factor HSF-1
is activated in response to many stressors because it is a crucial
component of cellular mechanisms responding to abnormal or
misfolded protein accumulation. Since FMRP is thought to sup-
press translation of many proteins, its deficiency in FXS may result
in aberrantly expressed proteins. Activation of HSF-1 in response
to abnormal protein accumulation is important because it con-
trols the expression of heat shock proteins, such as hsp70, which
chaperone proteins to prevent their accumulation and aggregation
within cells. The action of HSF-1 may be impaired by hyperactive
GSK3 in FXS brain because GSK3 phosphorylates HSF-1, resulting
in its inactivation (Chu et al., 1996; Bijur and Jope, 2000; Xavier
et al., 2000). Thus, these two transcription factors exemplify mech-
anisms by which hyperactive GSK3 in FXS brain may exacerbate
mechanisms contributing to the impairments associated with FXS.

The amyloid precursor protein (APP) regulates synaptic func-
tion in neurons and also is proteolyzed to amyloid-β peptides (Aβ)
that can be toxic, particularly in the realm of Alzheimer’s disease.
FMRP was found to repress APP translation (Westmark and Mal-
ter, 2007; Lee et al., 2010), and large increases in APP levels were
found in cortical extracts from 14-day-old Fmr1 knockout mice
(Liao et al., 2008). Examination of the levels of soluble amyloid-
β peptides demonstrated elevated levels in multiple strains of
Fmr1 knockout mice (Westmark and Malter, 2007), which have
been suggested to contribute to impairments associated with FXS
(Malter et al., 2010). These findings may be associated with the

detrimental actions of GSK3 in FXS because APP is phosphory-
lated by GSK3 (Aplin et al., 1996; Wen et al., 2008). Importantly,
GSK3 has been reported to promote the processing of APP to
amyloid-β peptides (Phiel et al., 2003; Su et al., 2004). Since
GSK3 inhibitors reduce the production of amyloid-β peptides, this
may contribute to their therapeutic effects if amyloid-β peptides
contribute to impairments in FXS.

Although investigations of neuronal characteristics greatly pre-
dominant in the field of FXS research, altered functions of other
cell types due to FMRP deficiency undoubtedly contribute to
FXS-associated phenotypes and may provide additional targets
for therapeutic interventions for normalizing some characteris-
tics of FXS. For example, GSK3α was found to be hyperactivated
in testis from FX mice, which display the macroorchidism evi-
dent in patients with FXS, and this was significantly reduced by
only 4 weeks of lithium treatment to inhibit GSK3 (Yuskaitis et al.,
2010b). Alterations in FMRP-deficient astrocytes may be partic-
ularly important, as indicated by the remarkable findings that
incubation of primary hippocampal neurons from FX mice with
wild-type astrocytes led to normalization of some abnormalities
in the FX neurons, while FX astrocytes induced abnormalities in
co-cultured wild-type neurons (Jacobs and Doering, 2010; Jacobs
et al., 2010). FX mouse brains also exhibit elevated levels of GFAP,
a marker of astrogliosis, and lithium treatment reduced GFAP
levels (Yuskaitis et al., 2010b). GFAP expression is induced by
activation of the transcription factor STAT3, and GSK3 promotes
STAT3 activation (Beurel and Jope, 2008), raising the possibility
that hyperactive GSK3 in FX mouse brain drives STAT3-mediated
GFAP expression, which can be reduced by GSK3 inhibitors.

Thus, these examples represent only a few of the many poten-
tial mechanisms by which hyperactive GSK3 may contribute to the
pathology of FXS. Identification of the abnormalities in FX mice
that are corrected by administration of GSK3 inhibitors may clar-
ify which of the targets of GSK3 is important in the phenotypes
displayed by FX mice.

SUMMARY
Altogether, lithium has proven to be beneficial for a surpris-
ingly large number of different phenotypes in FX mice and a
pilot trial supported the possibility that this may translate into
contributing to the treatment of patients with FXS. Improving
upon lithium’s actions in FXS likely will require clarifying to
what extent they result from inhibition of GSK3. In FX mice,
heightened susceptibility to audiogenic seizures is almost certainly
controlled by inhibiting GSK3, since three structurally dissimilar
GSK3 inhibitors normalized this susceptibility without affecting
responses of wild-type mice. Evidence also suggests that locomo-
tor hyperactivity can be reduced by targeting GSK3 based on the
normalizing actions of the GSK3 inhibitor SB216763 as well as
lithium. However, for the other identified therapeutic actions of
lithium in FX mice, the information available is largely correla-
tive: GSK3 is hyperactive in the brains of FX mice, lithium inhibits
GSK3, and MPEP also inhibits GSK3 in FX brain regions. Thus,
it remains to be established if other highly specific inhibitors of
GSK3 will prove more beneficial than lithium in the treatment of
FXS. If this is established, it would open the way for the application
to FXS treatment of the many new selective inhibitors of GSK3 that
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have been developed in recent years. Since GSK3 influences many
cellular processes, it is unlikely that complete inhibition of GSK3
should be an objective or would be tolerated. Rather, similar to the
partial inhibition of GSK3 that is achieved by therapeutic levels of
lithium in the treatment of bipolar disorder (Li and Jope, 2010),
as well as in FX mice, dampening of the abnormally active GSK3

associated with FXS with new GSK3 inhibitors may be a reasonable
therapeutic goal.
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