
fmicb-12-657072 June 16, 2021 Time: 10:56 # 1

ORIGINAL RESEARCH
published: 16 June 2021

doi: 10.3389/fmicb.2021.657072

Edited by:
George Tsiamis,

University of Patras, Greece

Reviewed by:
Huiluo Cao,

The University of Hong Kong,
Hong Kong, China

Gaosen Zhang,
Cold and Arid Regions Environmental

and Engineering Research Institute,
Chinese Academy of Sciences, China

Guangxiu Liu,
Northwest Institute

of Eco-Environment and Resources,
Chinese Academy of Sciences (CAS),

China

*Correspondence:
Li-Juan Long

longlj@scsio.ac.cn
Xin-Peng Tian

xinpengtian@scsio.ac.cn

Specialty section:
This article was submitted to

Systems Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 22 January 2021
Accepted: 23 April 2021

Published: 16 June 2021

Citation:
Chen R-W, He Y-Q, Cui L-Q, Li C,

Shi S-B, Long L-J and Tian X-P
(2021) Diversity and Distribution

of Uncultured and Cultured Gaiellales
and Rubrobacterales in South China

Sea Sediments.
Front. Microbiol. 12:657072.

doi: 10.3389/fmicb.2021.657072

Diversity and Distribution of
Uncultured and Cultured Gaiellales
and Rubrobacterales in South China
Sea Sediments
Rou-Wen Chen1,2, Yuan-Qiu He1,2, Lin-Qing Cui1,2, Cun Li1,2, Song-Biao Shi1,2,
Li-Juan Long1,3* and Xin-Peng Tian1,3*

1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica,
RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou, China, 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China,
3 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China

Actinobacteria are ubiquitous in marine ecosystems, and they are regarded as an
important, underexplored, potential pharmaceutical resource. The orders Gaiellales and
Rubrobacterales are deep taxonomic lineages of the phylum Actinobacteria, both are
represented by a single genus and contain only a few species. Although they have been
detected frequently by high-throughput sequencing, their functions and characteristics
in marine habitats remain unknown due to the lack of indigenous phenotypes. Here, we
investigated the status of the orders in South China Sea (SCS) sediments using culture-
independent and culture-dependent methods. Gaiellales is the second-most abundant
order of Actinobacteria and was widely distributed in SCS sediments at water depths
of 42–4,280 m, and four novel marine representatives in this group were successfully
cultured. Rubrobacterales was present at low abundance in energy-limited marine
habitats. An isolation strategy for Rubrobacterales from marine samples was proposed,
and a total of 138 mesophilic Rubrobacterales strains were isolated under conditions
of light and culture time combined with high-salinity or low-nutrient media. Marine
representatives recovered in this study formed branches with a complex evolutionary
history in the phylogenetic tree. Overall, the data indicate that both Gaiellales and
Rubrobacterales can adapt to and survive in extreme deep-sea environments. This
study lays the groundwork for further analysis of the distribution and diversity of the
orders Gaiellales and Rubrobacterales in the ocean and provides a specific culture
strategy for each group. The results open a window for further research on the ecological
roles of the two orders in marine ecosystems.
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INTRODUCTION

The deep sea is a permanently dark, low-temperature, high hydrostatic pressure, nutrient-limited
habitat that possesses great diversity in microbial organisms. The deep sea is considered a
resource for mining new and potentially valuable microbial species (Hassan and Shaikh, 2017).
Actinobacteria are an important component of the bacterial community and are widely distributed
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in marine environments (Lam, 2006; Ward and Bora, 2006).
Since the discovery of novel bioactive compounds such as
salinosporamides (Marizomib) from marine actinobacteria,
searching for new or rare marine actinobacteria has become a
focus of marine microbial research (Dhakal et al., 2017).

The orders Gaiellales and Rubrobacterales were established
by Albuquerque et al. (2011) and Stackebrandt et al. (1997),
respectively. They are two deep monogenetic branches in
the phylogenetic tree of the phylum Actinobacteria (Salam
et al., 2020), which is of considerable evolutionary importance.
Members of the two orders are aerobic and chemoheterotrophic
but are difficult to culture, severely restricting the study of their
function. The order Gaiellales was proposed as a separate order
from Rubrobacterales and contains only one species, Gaiella
occulta (Albuquerque et al., 2011). The obligate cultivation
strategy and insufficient data concerning cultivated species of
Gaiellales has hindered its identification in marine ecosystems.
Previous research revealed that Gaiellales was predominant in
various extreme environments such as weathered serpentine rock
(Khilyas et al., 2019), mangrove wetlands (Liu et al., 2019),
saline–alkaline soil (Peng et al., 2017), wastewater treatment
plants (Shu et al., 2015), and marine ascidians (Steinert et al.,
2015). Rubrobacterales is an extremophilic actinobacteria that
is abundant in sunlight-exposed biofilms and in the highly
irradiated Chernobyl area (Ragon et al., 2011), and dominates
in desiccated areas such as speleothems (Vardeh et al., 2018),
the Atacama desert (Crits-Christoph et al., 2013), and arid soils
(Bachar et al., 2012). The genus Rubrobacter is known for the
first radiation-resistant species Rubrobacter radiotolerans, which
was isolated from a radioactive spring (Yoshinaka et al., 1973;
Suzuki et al., 1988). Rubrobacter species from terrestrial habitats
are a potential source of bioactive compounds with ecological
applications such as radiation-resistant, desiccant-resistant, and
enzymatic radical scavengers (Albuquerque et al., 2014), but
they are rarely isolated from marine habitats due to their slow
growth and the difficulty of recovery (Kämpfer et al., 2014;
Chen et al., 2018).

The limitation of detecting unculturable taxa in marine
bacterial communities has been partially conquered via the
application of molecular ecological technology (Daae et al.,
2013). Most indigenous marine bacteria play key roles in
the marine ecosystem but have not been cultured due to
insufficient understanding of their physiology and environmental
interactions (Vartoukian et al., 2010; Stewart, 2012). Hence,
endeavors to devise specific cultivation strategies are important.
It is widely accepted that culture-dependent and culture-
independent surveys yield different insights into actinobacterial
diversity (Vaz-Moreira et al., 2011; Maldonado et al., 2018).
Both molecular-based and cultivation-based approaches have
been applied in exploring the broad diversity of the obligate
marine actinomycete genus Salinispora from marine sediments
(Mincer et al., 2005). Combining these two approaches
to describe actinobacterial diversity is feasible, as they are
complementary and partly compensate each other’s inherent
limitations (Sun et al., 2010).

In this study, we used culture-independent and culture-
dependent analyses to examine the distribution, abundance,

diversity, and evolutionary status of the two less-studied
actinobacterial orders Gaiellales and Rubrobacterales in the
South China Sea (SCS). Our study provides a specific culture
strategy for each group. Using this method, we obtained hundreds
of pure strains within these two groups. We also demonstrate that
there are many potentially new taxa in the orders Gaiellales and
Rubrobacterales in marine sedimentary environments.

MATERIALS AND METHODS

Sediment Samples
Sampling was conducted during two open cruises in the SCS by
R/V Shiyan 1 and R/V Shiyan 3. Twenty-nine sediment samples
distributed over the SCS area from depths ranging from 42 to
4,280 m were collected from the sites shown in Figure 1. The
name and site location information of samples are listed in
Supplementary Table 1. A surface layer of sandy mud from 0
to 1 cm was obtained as a subsample aseptically after collecting
using a grab-bucket collection sampler. The 29 sediment samples
of the SCS were prepared for culture-independent experiments
and stored at −20◦C without pretreatment. All sediment
samples were transported to the laboratory for further culture-
dependent experiments.

DNA Extraction, PCR Amplification, and
Illumina Hiseq Sequencing
Total environmental DNA of the marine sediments
was extracted using a DNeasy Power Soil Kit (MoBio,
United States) following the manufacturer’s instructions.
The V4 hypervariable region, about 400 bp of bacterial 16S
rDNA, was amplified with prokaryotic universal primers
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACVSGGGTATCTAAT-3′) (Caporaso et al., 2011).
PCR amplification was performed using TaKaRa Premix Taq
version 2.0 (TaKaRa Biotechnology Co., Dalian, China) in a
mixture with a final volume of 50 µl that contained 60 ng of
DNA as a template, 10 µM of each primer, 25 µl of 2×Premix
Taq, and nuclease-free water. The amplification was carried out
using a BioRad S1000 (Bio-Rad Laboratory, CA, United States)
thermocycler using the following procedure: 94◦C for 5 min,
30 cycles of denaturation at 94◦C for 30 s, primer annealing
at 52◦C for 30 s, and extension at 72◦C for 30 s followed by a
final extension at 72◦C for 10 min and holding at 4◦C. Each
genomic DNA sample was amplified in triplicate. The quality
of the purified PCR products was detected by 1% agarose gel
electrophoresis. The PCR products for each sample were between
290 and 310 bp after concentration using GeneTools analysis
software (Version 4.03.05.0, SynGene) (Beisvag et al., 2006). The
required volume of PCR product for each replicate was calculated
for each sample in accordance with the principle of equal quality.
The mixture was recovered by an EZNA Gel Extraction Kit
(Omega, United States) for further analysis. The amplicon library
of purified PCR products of each sample was prepared using a
NEBNext Ultra DNA Library Prep Kit (New England Biolabs,
United States) following standard procedures. The construction
of an amplification library of paired-end sequences was carried
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FIGURE 1 | Map of sampling site locations in the SCS area.

out on an Illumina Hiseq 2500 platform for PE250 sequencing
according to the standard protocol (Guangdong Magigene
Biotechnology Co., Ltd. Guangzhou, China).

Sequence Processing and Analyzing
Raw reads of Illumina data were quality filtered by Trimmomatic
(V0.33) (Bolger et al., 2014). Paired-end clean reads were
retrieved after barcodes and primers were removed by Mothur
software (V1.35.1) (Schloss et al., 2009). Paired-end clean
reads were then concatenated by FLASH (V1.2.11) (Magoc
and Salzberg, 2011). The sequences assigned to operational
taxonomic units (OTUs) were clustered at the level of 97%
sequence similarity by USEARCH (V8.0.1517) (Edgar, 2010).
OTUs annotation was performed using QIIME against the
Greengenes database (V13_5) (DeSantis et al., 2006). The
rarefaction curves were calculated using QIIME packages
(Caporaso et al., 2010), and the values of Shannon, Simpson,
and Margalef indices were calculated by PRIMER 6 (Clarke
and Gorley, 2006). Maps of the distribution and abundance of
uncultured phenotypes in the SCS were generated by Ocean Data
View (Schlitzer, 2002).

Cultivation and Bacterial Taxonomic
Classification
Samples were diluted two-fold with sterile seawater and mixed
by vortexing before a 200 µl suspension was evenly spread on
solid medium. Duplicated plates instead of triplicated plates of
each medium were prepared for each sediment sample. Various
types of separation media were designed and combined in the

cultivation experiment for different nutritional requirements of
the bacteria (Supplementary Table 2). Actinomycete Isolation
Agar (AIA) medium, Marine Agar (MA)/MA-Starch media, and
R2A medium were prepared with concentration gradients of
various nutrients. The concentration of each medium was diluted
to half, one-fifth, and one-tenth with water. Considering that
some Rubrobacter species were reported to be moderately salt
tolerant (Albuquerque et al., 2014), 10% (w/v) NaCl was added
in some optimized media. Complex media and synthetic media
were chosen and optimized by referring to published media
for rare Actinobacteria, e.g., Acidimicrobiia, Thermoleophilia,
and Rubrobacteria (Cleaver et al., 2007; Matsumoto et al., 2009;
Matsumoto et al., 2013; He et al., 2020). The cultivation strategies
were performed at different temperatures of 25–28, 37, and 55◦C
in petri dishes of two sizes (90 and 150 mm) and in the dark
or under incandescent illumination of 8–12 µmol E m−2 s−1 at
different time settings of 2–3 days, 7–14 days, and 1–3 months.

All colonies were selected to subculture on Marine Agar
2216E (MA, BD DifcoTM) medium. At least three rounds of
subculturing were performed to obtain pure cultures. Purified
isolates were maintained in glycerol suspensions (20%, w/v)
at −80◦C. Genomic DNA of isolates was extracted by 100 µl
of a reagent consisting of 5% (w/v) chelax-100 resin dissolved
with distilled water as described by Walsh et al. (1991). PCR
amplification of the 16S rRNA gene was performed with bacterial
general primers 27F (5′-GAGTTTGATCCTGGCTCAG-3′) and
1492R (5′-GGTTACCTTGTTACGACTT-3′) as described by
Rainey et al. (1996). The 16S rRNA gene sequence was assembled
via the SeqMan program (version 7.1.0), and low-quality
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sequences were removed by the BioEdit program (Kimura, 1980).
The nearly complete 16S rRNA gene sequence similarity analysis
was carried out using EzBioCloud.1

Phylogenetic Analysis
The OTU sequences from the 16S rRNA gene amplicon
sequencing and the nearly complete 16S rRNA gene
sequences from cultured strains were selected for phylogenetic
reconstruction. The reference representatives were retrieved
from the GenBank database. Phylogenetic analysis was calculated
using the Kimura two-parameter model, and the cladogram was
constructed by neighbor joining (Saitou and Nei, 1987) in the
MEGA X software (Kumar et al., 2018) and visualized by the
interactive Tree of Life (iTOL v4) tool (Letunic and Bork, 2019).

PCA Analysis
Principal component analysis (PCA) allowed us to summarize
and visualize the information concerning strains cultivated
using multiple factors, including light intensity, culture time,
salinity, dish size, temperature, and nutrient concentration.
The cultured strains were divided into four groups: Gaiellales,
Rubrobacterales, Actinomycetales, and non-Actinobacteria. The
data were standardized automatically by the function PCA in
FactoMineR (Le et al., 2008). The results provided a list of
matrices (coordinates, correlations between variables and axes,
squared cosine and sine contributions) for the variables that
were extracted using the function get_pca_var, and similar
results for the cultured strains were extracted using the function
get_pca_ind from the PCA output in the factoextra R package
(Kassambara and Mundt, 2020). The function fviz_pca_biplot in
the factoextra R package was used to construct a biplot of cultured
strains and variables (Kassambara and Mundt, 2020).

RESULTS

Illumina Hiseq Sequencing Information
In this study, a total of 785,421 high-quality effective sequences
were gained from the sample libraries, and the average length
of these overlapping paired-end sequences was about 374 bp.
There were from 16,549 to 55,059 sequences of 2,170 to 6,821
OTUs obtained from the samples (Supplementary Table 3). The
rarefaction curve tended to approach the saturation plateau,
indicating that the sampling sizes were sufficient (Supplementary
Figure 1). A total of 536,417 sequences of bacteria were obtained,
with from 11,794 to 37,153 sequences distributed in 29 samples
assigned to 16,825 OTUs (Supplementary Table 3). The number
of OTUs ranged from 1,839 to 6,042, and 93 OTUs were
shared among all samples, indicating that the bacteria were well
distributed in different samples from various water depths.

Taxa of Uncultured Actinobacteria
A total of 22,074 sequences of 377 OTUs were assigned to
the phylum Actinobacteria, and the average relative abundance
of Actinobacteria was about 4.05%, ranging from 0.17 to

1https://www.ezbiocloud.net/identify

8.42%. The Shannon indices indicated that the actinobacterial
diversity ranged from 2.77 to 6.25, while the Simpson indices
ranged from 0.03 to 0.36. The Margalef indices indicated
the actinobacterial species richness to be in the range 7.19
to 25.91 (Supplementary Table 3). Acidimicrobiales was the
most abundant, accounting for 81.21% of Actinobacteria on
average (Figure 2 and Supplementary Figure 2). The orders
Gaiellales, Actinomycetales, and Solirubrobacterales were the
next most dominant groups detected in all sediment samples in
the SCS, accounting for 5.8, 3.81, and 3.34% of Actinobacteria
on average, respectively. The remaining Actinobacteria were
mainly from known or Candidatus orders, including group
OPB41, group WCHB1-81, and Rubrobacterales (Supplementary
Figure 2). The groups OPB41 and WCHB1-81 and the order
Rubrobacterales were rare with low relative abundance in partial
samples from the SCS (Figure 2).

Taxa of Uncultured and Cultured
Gaiellales and Rubrobacterales
There were 31 Gaiellales OTUs from 1,216 sequences detected
in all sediment sample sites, and the relative abundance of
the order was from 2.32 to 11.38% of the Actinobacteria
(Supplementary Table 4). OTU 218 and OTU 484 were most
frequently detected in the SCS, and OTUs 341 and 591 had
the highest numbers in the 460 m depth environment sample
(16ZBS07) (Supplementary Table 5). Thirty-one uncultured
Gaiellales OTUs clustered with known Gaiellales representatives
and formed multiple independent branches in the phylogenetic
tree (Figure 3). Based on the culture-dependent method, only
four Gaiellales strains were isolated from sediment samples taken
at depths of 320–460 m, they were slow-growing on SN-Mn and
MA plates and were better maintained in liquid MB media. They
represented two potential new species by showing relatively low
similarity (<89.0%) to the only known species Gaiella occulta.
Four cultured strains were clustered with six uncultured OTUs
and two unclassified species (Gaiella sp. EBR4-RS1 and Gaiella
sp. EBR4-R2), they formed a separate cluster (named clade Gaiel
II) far from the only known species G. occulta with a clear
divergence and thus represent a new family group.

The order Rubrobacterales comprised a small proportion of
Actinobacteria, with extremely low relative abundance (from
0.00 to 4.42% of Actinobacteria). The order was distributed
sporadically in the SCS and occurred more in deep sea sediments
than in the shallows. Four Rubrobacterales OTUs with 72
sequences were detected in nearly half of all samples, and two
ubiquitous representatives, OTU 18976 and OTU 639, showed
the highest numbers in the 3,503 m depth environmental sample
(16XB83) (Supplementary Table 5). Finally, 138 strains assigned
to the order Rubrobacterales were isolated from nine samples
at depths from 323 to 4,280 m. Samples at water depths of
2,061, 3,448, and 460 m yielded 65, 34, and 21 Rubrobacter
strains, respectively. The clustering tree of uncultured and
cultured organisms revealed that they spanned five divergent
phylogenetic lineages of the order Rubrobacterales (Figure 3).
Hundreds of Rubrobacter strains and OTU 10386 were clustered
together with two known species, Rubrobacter aplysinae and
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FIGURE 2 | Actinobacterial composition in 29 deep-sea sediments.

Rubrobacter bracarensis, as a part of clade Rubro I. Two
sister groups, Rubro II and Rubro III, were ubiquitous in SCS
sediments. Species R. radiotolerans and R. indicoceani were
representative of the clades Rubro II and Rubro III, respectively;
each had corresponding marine cultured strains and uncultured
categories. Nine strains clustering with OTU 7567 formed a
distinct phylogenetic cluster named clade Rubro IV and showed
a great degree of novelty at the level of species diversity, with
the highest similarity to other known species below 95%. Among
these strains, we reported two strains as novel Rubrobacter
species, R. tropicus and R. marinus (Chen et al., 2020). Moreover,
the obtained 16S rRNAs of marine Rubrobacterales were most
closely related to four species, R. aplysinae, R. bracarensis,
R. indicoceani, and R. radiotolerans. However, no marine
sequences in this study were related to Rubro V, which is
composed of several terrestrial thermophilic species.

The Cultivation of Gaiellales and
Rubrobacterales
To explore the relationships between cultured species in the
orders Gaiellales and Rubrobacterales and to compare the results
with normal bacterial growth, six culture factors (culture time,
salinity, dish size, temperature, and nutrient concentration) and
3,504 cultured strains were analyzed using PCA (Figure 4). The
first two principal components explained 67.2% of the variance.
The closer a variable is to the correlation ellipse, the better its
representation on the factor map. In the biplot, the variables
light, time, and salinity contributed the most to dimensions 1
and 2. Cultured Rubrobacterales strains yielded high values for
four factors (light, culture time, salinity, and dish size), but had
low values for variables temperature and nutrient concentration.
The PCA results were consistent with the culture results. Under
optimal light conditions, 109 Rubrobacter strains were cultured.

The high-salinity (over 10% (w/v) NaCl) media (YJSF, AIAS, and
CAAM) yielded the greatest number of halo-tolerant Rubrobacter
isolates (Supplementary Figure 3). Although the oligotrophic
media (AIAE, SN, and ZANT) obtained the second largest
number of Rubrobacter isolates, marine Rubrobacterales isolates
required sufficient nutrition for growth; this was shown by the
addition of 1% glucose to the medium. In this study, Gaiellales
and Rubrobacterales formed visible colonies on isolation media
when the cultivation time extended to at least one month at
25–28◦C incubation. Only four marine Gaiellales strains were
isolated from the inorganic medium with manganese metal ions
and MA medium; this result needs further research to find the
root causes or bottlenecks for bacterial growth and to design
additional cultivation strategies.

DISCUSSION

Actinobacterial Vertical Distribution and
Composition in the SCS
Actinobacteria are distributed globally in various marine habitats,
including continental shelves, open ocean, and the deep sea
(Ward and Bora, 2006; Jensen and Lauro, 2008). Previous studies
have revealed the abundance of Actinobacteria in SCS sediment
(relative abundance 4–10% of total sequences), which is more
common in the deep sea than in the shallows (Zhu et al., 2013).
In this study, the normally uneven fluctuation of actinobacterial
abundance was generally stable in sediment environments (about
4.05%) (Supplementary Figure 4), but the diversity and species
richness of Actinobacteria OTUs in shallow samples were higher
than in deep samples (Supplementary Table 3). The composition
of marine Actinobacteria at the level of order was remarkably
similar to earlier research results (Durbin and Teske, 2011;
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FIGURE 3 | The neighbor-joining tree showing phylogenetic relationships of cultured and uncultured Gaiellales and Rubrobacterales based on nearly full-length 16S
rRNA gene sequences (>1,300 bp) and OTUs using 374 unambiguous nucleotides. Tree bar, 0.02 sequence divergence. The similar Rubrobacter strains were
collapsed with a 2% threshold of dissimilarity. Red font indicates isolated strains; blue font indicates the environmental OTUs. GenBank accession numbers used are
given in parentheses.

Chen et al., 2016). The most abundant Actinobacteria group
was Acidimicrobiales, and the next most dominant groups were
the orders Gaiellales, Actinomycetales, and Solirubrobacterales
while Rubrobacterales comprised a minor fraction of the
Actinobacteria. The actinobacterial taxa composition difference
in the samples may be related to niche adaptation for inhabiting
marine environments.

Distribution of Gaiellales and
Rubrobacterales in the Deep Sea
Our study revealed that uncultured Gaiellales sequences were
widely distributed from 42 to 4,280 m in SCS sediment
environments, and Gaiellales was the second dominated
uncultured marine Actinobacteria. Previous studies also showed
that the order Gaiellales was predominant in a variety of

marine habitats, such as submarine permafrost water, permafrost
sediments (Mitzscherling et al., 2017), mangrove wetlands
(Liu et al., 2019) and deep sea (Chen et al., 2016). The
distribution patterns calculated by the diversity indices (Shannon,
Simpson, and Margalef) showed that there was no obvious
trend in the diversity of the two orders with the depth of
sediment environments (Supplementary Figure 5). But the
OTUs belonging to the clade Gaiel I were particularly abundant in
the mesopelagic sediments (Supplementary Table 5) where the
temperature ranged from about 8 to 2.5◦C (Yang et al., 2018).
Although it is unclear whether this high abundance is related
to the adaptation to the middle and deep sea, this result further
illustrated that Gaiellales is ubiquitous and widely distributed in
SCS sediments, and also has a stronger ability to adapt to marine
environment than the order Rubrobacterales.
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FIGURE 4 | Principal component analysis (PCA) illustrating the relationship between culturable taxa with cultivation variables.

The order Rubrobacterales was a ubiquitous group and had
greater natural diversity, such as ancient vestiges (Schabereiter-
Gurtner et al., 2001; Mihajlovski et al., 2017), rocky coasts
(Molina-Menor et al., 2019), Arctic desert endostromatolites
(Pellerin et al., 2009), etc. Rubrobacterales were also detected
by high-throughput sequencing although the group comprised
only a small proportion of the microorganisms in marine habitats
(Brown and Bowman, 2001; Kochling et al., 2011). Similar
results were also obtained in this study using the culture-
independent method. But for the culture-dependent method, the
optimal growth occurred when adding 1% glucose to the media,
which implied that the bacteria may be restricted to deep sea
sediments where nutrients are limited. They are actually found
in deep sea sediments, where they were not detected by the
uncultured method. The bacteria mainly exist in the bathypelagic
sediments at depths of over 2,000 m, where the temperature is
generally below 2.5◦C (Yang et al., 2018). Therefore, we postulate
that the order Rubrobacterales has cells with a slow growth
disadvantage, and they may struggle to survive in nutritionally
limited marine habitats.

Diversity of Gaiellales and
Rubrobacterales in the Deep Sea
Previous results from interspecies heterogeneity of 16S rRNA
genes showed that Gaiellales had a more complex genetic
evolutionary history than Rubrobacterales, and this order
may have undergone more evolutionary events in the marine

environment (Steinert et al., 2015). However, only one valid
published species in the order Gaiellales is not enough to
supply the representative Candidatus for classifying cultured-
independent OTUs, which severely limits the study of the order’s
diversity and phylogeny. New marine representative species and
marine OTUs in this study were clustered into two separated
groups named Gaiel I and Gaiel II, that represent potential new
marine-derived higher-level taxa. The results support Gaiellales
as having a large family tree with complex branches and a high
level of evolution in the ocean, a hypothesis that is consistent with
their wide distribution and high abundance in marine habitats.

For the order Rubrobacterales, previous study illustrated the
limitations of analyzing its diversity and phylogeny by culture-
independent surveys, due to the low abundance in marine
environments (Rappe et al., 1999; Yooseph et al., 2007; Sunagawa
et al., 2015). The deeper recognition of the special niche of
rare uncultured Rubrobacterales in marine habitats required
more pure cultured strains or genus-specific primers (Castro
et al., 2019). In this study, four OTUs and 138 cultured strains
clustered in four groups were found to be associated with oceans,
expanding the phylogenetic tree of Rubrobacterales. And clade
Rubro IV was clearly novel, as shown by the independence
and the marine-derived characteristics. The phylogenetic tree of
Rubrobacterales also showed that the evolution of these diverse
strains is continuous in the marine ecosystem, a conjecture
that perhaps they survived in the ancient, stable oceans and
developed unique marine properties to adapt to the extreme
deep-sea environments.
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Isolation Strategies for Rubrobacterales
and Gaiellales
It is necessary to successfully cultivate rare living species
through a culture strategy, especially for the communities
that are common but have low abundance. These rare
species may serve as a potentially inexhaustible reservoir
of genomic innovation, a factor that could explain how
microbial communities episodically reshape planetary processes
(Sogin et al., 2006). To obtain the optimal growth conditions
for marine Rubrobacterales, an isolating strategy to improve
the survival capacity in the laboratory was designed by
simulating their natural environment to reverse the situation of
nutritional disadvantage.

The Rubrobacter species survive well under illuminated
conditions, with the ability to respond to reactive oxidative
stress (ROS) and to efficiently repair DNA lesions (Egas
et al., 2014). It has been reported that the growth of xero-
tolerant heterotrophic Rubrobacter spp. can be promoted by
decreased humidity and increased temperature combined with
enhanced daylight irradiation (Imperi et al., 2007). In this
study, compared to other light-sensitive bacteria that live
in the dark aphotic zone of the deep ocean, the viability
and competitive advantage of cultured Rubrobacterales on
plates were enhanced by light, and 109 Rubrobacter strains
were successfully isolated. Although most Rubrobacter species
derived from terrestrial habitats are thermophilic (Carreto et al.,
1996; Chen et al., 2004; Albuquerque et al., 2014; Norman
et al., 2017), no isolates of the order Rubrobacterales showed
thermotolerant ability in this study. Instead, 44 Rubrobacter
strains were isolated from Indian Ocean sediments by incubation
at 4◦C for one year. Since marine sediments are largely
present in low-temperature environments, the presence of low
temperature-adapted bacteria with low thermostable enzymes
(inactivated at temperatures over 40◦C) would be expected
(Hardeman and Sjoling, 2007). This is consistent with the
result that no growth was observed at temperatures over
40◦C in marine Rubrobacter species (Kämpfer et al., 2014;
Chen et al., 2018).

When designing the synthetic media, the salinity and nutrient
levels were first considered. In the present study the greatest
numbers of halo-tolerant Rubrobacter isolates were obtained
from high-salinity media, and the second-highest quantity was
obtained using oligotrophic media. We speculate that the high-
salinity or oligotrophic media restricted the growth of fast-
growing bacteria, and the eutrophic bacteria were intolerant
to starvation and ultimately died (Gray et al., 2019). Marine
Rubrobacter species grew slowly and took a long time to form
red colonies on plates (Kämpfer et al., 2014; Chen et al.,
2018). Similarly, marine Gaiellales and Rubrobacterales were
successfully cultured when the cultivation time was extended
to at least one month. The subcultures also required at least
two weeks to form rich visible colonies on plates. Recent results
show that slow-growing colonies are usually discovered at a
nutritional disadvantage status when one fast-growing strain
is competing for nutrition resources under the same culture
conditions (Carini, 2019). Hence, prolonging the incubation time
can increase the ratio of viable counts of rare, slow-growing

bacteria on media (Stevenson et al., 2004). Moreover, a drastic
increase in the quantity of Rubrobacter colonies was discovered
in this study using large-size petri dishes (150 mm), perhaps due
to competition for the living space and the reduced competitive
pressure for slowly growing or poorly adaptable bacteria such as
Rubrobacterales and Gaiellales.

For the order Gaiellales, the sole known representative
was isolated from a mineral water bottling plant, where the
borehole water had a temperature of 28◦C, a pH of 5.9,
and was poor in mineral ions (Albuquerque et al., 2011).
However, the lack of phenotypic and genomic annotated
information increased the difficulty of the culture (Severino
et al., 2019). One interesting result is that Gaiellales are
strict chemoorganotrophs, as inferred by genomic data, but
they could be cultured from an inorganic medium (SN-Mn)
made up of 50% seawater in this study. This suggests that
their growth may depend on certain nutrients in seawater
that are not present in the laboratory and thereby make
them difficult to culture. Further results showed that marine
Gaiellales strains were hygrophilous and halophilic, different
from the species G. occulta. Therefore, simulating the natural
environment, especially its potential key factors, is an effective
strategy for isolating novel, rare, or uncultured bacteria
(Mu et al., 2020).

CONCLUSION

In this study, we analyzed the status of the orders Gaiellales and
Rubrobacterales in marine sediments of the SCS using culture-
independent and culture-dependent methods. We concluded
the following: (1) The order Gaiellales was the second-most
dominant order of Actinobacteria, distributed in all detected
sediment samples in different water depths of the SCS, but
it could hardly be cultured; the order Rubrobacterales was
present in low abundance but displayed a steady existence
in over more than half of the marine sediments. (2) Marine
Gaiellales are highly diverse in the ocean, and they can be
separated into two main branches as higher-level new taxa.
Each branch was represented by cultured representatives; marine
Rubrobacterales clustered in four groups were associated with
four known species, R. aplysinae, R. bracarensis, R. indicoceani,
and R. radiotolerans. Clade Rubro IV is a novel independent
branch from the deep sea. (3) Light, high salinity, culture
time, or low nutrient levels at optimal growth temperature
were the most effective factors for Rubrobacterales survival
under laboratory conditions. The order Gaiellales may depend
on certain marine factors for growth, and their ability to be
cultured needs to be researched further by mimicking the
natural habitat.
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