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Dario Baldi1 , Liberatore Tramontano1, Vincenzo Alfano1, Bruna Punzo1,
Carlo Cavaliere1, and Marco Salvatore1

Abstract
For decades, the main imaging tool for multiple myeloma (MM) patient’s management has been the conventional skeleton survey.
In 2014 international myeloma working group defined the advantages of the whole-body low dose computed tomography
(WBLDCT) as a gold standard, among imaging modalities, for bone disease assessment and subsequently implemented this
technique in the MM diagnostic workflow. The aim of this study is to investigate, in a group of 30 patients with a new diagnosis of
MM, the radiation dose (CT dose index, dose-length product, effective dose), the subjective image quality score and osseous/
extra-osseous findings rate with a modified WBLDCT protocol. Spectral shaping and third-generation dual-source multidetector
CT scanner was used for the assessment of osteolytic lesions due to MM, and the dose exposure was compared with the lit-
erature findings reported until 2020. Mean radiation dose parameters were reported as follows: CT dose index 0.3 + 0.1 mGy,
Dose-Length Product 52.0 + 22.5 mGy*cm, effective dose 0.44 + 0.19 mSv. Subjective image quality was good/excellent in all
subjects. 11/30 patients showed osteolytic lesions, with a percentage of extra-osseous findings detected in 9/30 patients. Our data
confirmed the advantages of WBLDCT in the diagnosis of patients with MM, reporting an effective dose for our protocol as the
lowest among previous literature findings.
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Introduction

Bone involvement is one of the signs of multiple myeloma

(MM), characterized by an increased activity of osteoclasts and

a suppression of osteoblast function, determining bone resorp-

tion.1 Up to 80% of newly diagnosed MM patients have osteo-

lytic lesions, improving the risk of related skeletal events.2

For decades, the primary imaging tool in patients with MM

was a conventional skeletal survey (CSS), with significantly

lower sensitivity than cross-sectional imaging techniques for

diagnosing osteolytic lesions.3,4 Furthermore, previous publi-

cations ascertained that the sensitivity of conventional X-rays

for the evaluation of bone damage was limited since the

changes can be detected only with at least 30-50% of the bone

mass were destroyed.5 CSS is also inadequate for the represen-

tation of small lytic lesions,6 with a false-negative rate of

30-70%. Furthermore, the positions required for simple radio-

graphs are uncomfortable.7

For this reason, computed tomography (CT) was included in

the updated MM criteria. According to the new International

Myeloma Working Group criteria for MM, numerous studies

show that CT has a higher sensitivity than CSS for the detection

of multiple bone lesions to myeloma.8 Most of these studies
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focused on the whole-body low dose computed tomography

(WBLDCT) protocols, which offers the advantage of both

full-body coverage and the lower radiation dose delivered to

the patient.7-9 For these reasons, recent efforts have been spent

to set-up and improve WBLDCT protocol, taking into account

technological challenges represented by scanner evolution and

parameters optimization (kV, mAs). In this study, we optimize

and propose a WBLDCT imaging protocol in patients with

suspected plasma cell dyscrasia, reducing radiation dose expo-

sure, but preserving image quality and both skeletal and extra-

osseous findings detection.

Materials and Methods

From October 2019 to July 2020 a total of 30 consecutive

patients (16 male, 14 female, aged between 43 and 81, mean

age 64.3) with clinically confirmed MM underwent unenhanced

WBLDCT on a third-generation Dual Source Computed Tomo-

graphy Somatom Force (Siemens Healthineers, Enlargen, Ger-

many). Informed consent was obtained from the patients, and the

local ethics committee (Comitato etico IRCCS Pascale—

Naples) approved the study (project identification code: 9_19).

All patients were positioned supine with the arms placed

along the trunk in order to include the elbows in the field of

view (FOV). Whole-body scanning FOV was adapted to the

length and circumference of the patients. All patients were

scanned in craniocaudal sense from skull to feet, and acquired

in a single inspiratory breath-hold throughout the scan, with a

mean acquisition time of about 20 seconds. CT scan parameters

were: gantry rotation time, 0.5 s; collimation, 192 � 0.6 mm,

using a z-flying focal spot and automated tube current modula-

tion (Siemens, Care Dose 4D); voltage, 100 kV with additional

hardening of the spectrum from a tin filter mounted; reference

tube current-time product of 80 mAs; single tube acquisition;

pitch of approximately 1,5.

For image reconstruction, an Advanced Modeled Iterative

Reconstruction (ADMIRE, Siemens Healthineers) was used with

a strength of 3 (available strength of ADMIRE: 1 to 5, where a

higher number implies a stronger noise reduction). Then, raw data

images were reconstructed in 1.5 mm slice thickness using a Br64

kernel to generate axial images, while 1 mm slice thickness to

generate coronal images of the whole body and sagittal images of

the spine through multiplanar reformation (MPR). The dose

report, with CT dose index (CTDI) and Dose-Length Product

(DLP) for the WBLDCT protocol, as defined above, were read

from the examination summary reports produced by the CT scan-

ner for each patient, while the dose effects were calculated by

multiplying DLP for a whole-body absorption rate constant

(0.00842),10 for each patient. Moreover, a literature analysis was

performed in order to compare the dose report obtained with the

literature standard until 2020 (Table 1).

Image Quality Assessment

For analysis, image datasets were transferred to an off-line

workstation (Syngo.via Workstation; Siemens Healthcare).

Subjective image quality was independently evaluated on a

per-region basis by 2 independent radiologists with experience

in CT imaging of more than 5 years. During the CT image

interpretation session, the overall quality of axial slices, and

MPR were assessed. A 4-point scale was used (1 excellent ¼
absence of artifacts; 2 good ¼ minimal artifacts, mild blurring

or structure discontinuity but fully evaluable; 3 suboptimal ¼
moderate artifacts and blurring or structure discontinuity; 4 not

diagnostic ¼ doubling or discontinuity in the course of the

segment preventing diagnostic evaluation.25 In case of dis-

agreement between the observers, consensus was reached in

a joint reading to determine the final image quality score. A

per-patient image quality score was defined as the worst score

found in any region for each patient.

Search Strategy and Selection Criteria

A systematic search for all published studies concerning the

application of WBLDCT was conducted. The most relevant

scientific electronic databases (PubMed, Cochrane Library,

MEDLINE, ScienceDirect, Google Scholar) were comprehen-

sively explored and used to build the search. Only studies

published since 2000 were selected, using key terms as

“WBLDCT,” “WBCT” and “whole-body-CT.”

Literature search was restricted to English language publica-

tions. Two reviewers, after having independently screened iden-

tified titles and abstracts, assessed the full text of the original

articles involving WBLDCT applications. For articles meeting

these criteria with full text available, the following further selec-

tion criteria were used: articles were excluded if they involved

also preclinical datasets or phantoms and if they were off topic

after investigating the full text. The entire flow and results of the

literature research were finally checked by a third researcher, in

accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) statement.

Results

The analysis on radiation exposure of the patients showed

a mean DLP of 52.0 + 22.5 mGy*cm, mean CTDI

0.3 + 0.1 mGy, and a mean dose effective 0.44 + 0.19 mSv.

Subjective image quality, regardless of the disease stage during

the examination, was good/excellent in all subjects (median: 1).

The frequency of osteolytic lesion were detected as follows:

11 patients showed presence of osteolytic lesions, among

which 5 also with extra-osseous findings (colic diverticulosis,

abdominal aortic ectasia, bronchiectasis, pulmonary nodula-

tions, splenomegaly); 19 patients showed no osteolytic lesions,

including 4/19 patients with extra-osseous findings (epiaortic

or abdominal aortic ectasia, ectopic kidney, hepatomegaly,

cholelithiasia) (Figure 1).

Discussion

The survival rate of MM patients has improved in the last few

years because of the availability of innovative therapy

2 Dose-Response: An International Journal
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choices,26 which take advantages of early diagnosis and accu-

rate staging.27 Following the new IMWG criteria, it is of clin-

ical importance to detect bone involvement in MM. Indeed,

bone involvement is a significant cause of morbidity and mor-

tality and a key indicator of prognosis in MM patients.8

Although skeletal radiographs have been used to assess MM

patients’ bone involvement, its limitations are well known and

have been previously documented.27

The extensive availability of multidetector CT scanners

allowed the use of WBLDCT protocol for the diagnosis and

follow-up of MM, where the reduced acquisition time (about

20 seconds) in possibly un-compliant patients is counterba-

lanced by ionizing radiation exposure. The coronal and sagittal

MPR provide an excellent overview of the whole body,

allowing a better visualization of the spine and of vertebral

compression fractures in the sagittal plane, and a clearer assess-

ment of the medullary cavity and of focal or diffuse hyperdense

myeloma deposits in the coronal one. Moreover, shifting to the

soft tissue window visualization, in addition to the bone win-

dow, the analysis could be extended to the brain, lungs, and

abdominal organs to highlight concomitant diseases (e.g., lung

nodules, hepatosplenomegaly, accidental injuries) and extra-

bone localizations.28

In recent literature, WBLDCT protocols with estimated

effective doses comparable with CSS have been described,

employing kVp or mAs reductions, iterative reconstruction

(IR) techniques, or spectral shaping. Horger et al. first

described a WBCT study to assess therapy response in patients

Figure 1. Coronal and sagittal reconstructions from WBLDCT scan. From left to right, on top of the coronal MPR images and bottom the axial
images, a patient showed the presence of osteolytic lesions, a patient also with extra-osseous findings (diverticulum), the patient showed no
osteolytic lesions and patients only with extra-osseous findings (ectopic kidney). Blue arrows show the osteolytic lesion, the reds show the
extra-osseous findings.

4 Dose-Response: An International Journal



with MM, demonstrating the more reliability of the CT

approach compared to the conventional, laboratory-based fol-

low-up.6 Then, further studies assessed the importance of a

WBLDCT, in patient with MM, providing important informa-

tion for the disease monitoring and management of patients,22

as long as detection of incidental findings.13

Multiple studies have been performed in order to optimize

the protocol and provide a lower effective dose than the

CSS.9,10,13,22,25-28 Several works tested different combinations

of CT parameters in order to obtain a reliable and diagnostic

protocol. Gleeson et al. tested combinations of kV that range

from 80-140 kVp, and tube current-time product from 14-125

mAs with the modulation of the activated current and a mod-

erately sharp reconstruction algorithm, to generate a low

effective dose of about 1.74 mSv,29 while Kropil et al. used

a 100 kV and 100 mAs protocol, with automatic tube current

modulation, to administer an effective dose of approximately

4.8 mSv.4 Most recent studies, instead, employes a 120 kV

protocol and a tube current between 30 and 100 mAs, to

achieve an effective dose ranging between 2.7 mSv9 and

29,5 mSv.4,6-10,12-18,21-23,25-32 Other studies have been

focused on a different approach based on low tube voltage

(80 kV) and high current (200–230 mAs), generating an effec-

tive dose of about 4.5 mSv.14

Saravanabavaan et al. exploited the potential of spectral

shaping thanks to tin filter, in synergy with IR and automatic

current modulation on a third-generation DSCT (Sn 100 kV,

ref. mAs: 130). In their work, they compared the image quality

and effective dose with patients who have been examined on a

second-generation DSCT with a standard low-dose protocol

(100 kV, ref. mAs: 111), demonstrating a good image quality

and, more relevant, a reduction of radiation dose by approxi-

mately 74% compared to a similar protocol without tin filter.20

After systematic literature reviewing relating to the

WBLDCT and single-energy CT protocols with spectral

filtration at 100 kV,15,17,18,20,23,33,34 we modified our protocol

furtherly reducing the reference mAs, obtaining a mean effec-

tive dose of 0.44 mSv, lower than those reported in the litera-

ture for the same procedure, and mainly than CSS (ranges

between 1.5 and 2.5 mSv.30 Despite the reduction of the dose

can generate a minor image quality due to the background noise

increase, we reported a good/excellent image quality, also due

to intrinsic bone contrast, also compared to osteolytic lesions,

and reconstruction algorithms improvement.35

Moreover, an added value of our protocol compared to the

existing literature is that CT scans were acquired including feet,

although WBLDCT acquisition recommendations, suggested

to restrict the FOV size until the proximal metaphysis of the

tibia.30 Only 2 previous works22,27 extended the acquisition

volume to the entire whole-body, reporting an effective dose

of about 10 mSv, so at least 20 times that recorded in our study.

Our study shows that whole-body imaging without contrast

agent injection at 100 kV with spectral modeling through a

dedicated tin filter on the tube side allows the reduction in the

radiation dose and consequently a lower effective dose. In the

2nd and 3 rd generation DSCT, an additional tin filter allows

spectral modeling. On the second generation DSCT, this is

traditionally used for better spectral separation when operating

with dual-energy CT scans and not available for single energy

CT.36,37 With the third generation DSCT this system can also

be used in single energy-single source mode to optimize the

X-ray spectrum in a system known as “spectral modeling.”

This process removes low energy photons from the spectrum.

Furthermore, the use of an improved third-generation IR

algorithm reduces image noise and/or radiation dose while

preserving image quality, compared to standard filtered back-

projection reconstructions.38,39 Finally, the 3rd generation

DSCT applies adaptive tube current modulation.40

In our study, thanks to the combination of the use of a 3 rd

generation DSCT with tin filter, IR, and low reference mAs, we

obtained a low radiation dose, without losing diagnostic sensi-

tivity for the detection of osteolytic alterations.

In conclusion, the proposed WBLDCT protocol has the real

potential to reduce radiation exposure, with a dose effective

reduction ranging from 3 to 6 times compared with CSS. This

feature becomes a non-negligible factor in management of

patients with bone involvement, where strict follow-ups with

CT scans can be needed.
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