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ABSTRACT

Dysfunction of the Hippo pathway enables cells to evade
contact inhibition and provides advantages for cancer-
ous overgrowth. However, for a significant portion of
human cancer, how Hippo signaling is perturbed
remains unknown. To answer this question, we per-
formed a genome-wide screening for genes that affect
the Hippo pathway in Drosophila and cross-referenced
the hit genes with human cancer genome. In our screen,
Prosap was identified as a novel regulator of the Hippo
pathway that potently affects tissue growth. Interest-
ingly, a mammalian homolog of Prosap, SHANK2, is the
most frequently amplified gene on 11q13, a major tumor
amplicon in human cancer. Gene amplification profile in
this 11q13 amplicon clearly indicates selective pressure
for SHANK2 amplification. More importantly, across the
human cancer genome, SHANK2 is the most frequently
amplified gene that is not located within the Myc
amplicon. Further studies in multiple human cell lines
confirmed that SHANK2 overexpression causes dereg-
ulation of Hippo signaling through competitive binding
for a LATS1 activator, and as a potential oncogene,
SHANK2 promotes cellular transformation and tumor
formation in vivo. In cancer cell lines with deregulated

Hippo pathway, depletion of SHANK2 restores Hippo
signaling and ceases cellular proliferation. Taken toge-
ther, these results suggest that SHANK2 is an evolu-
tionarily conserved Hippo pathway regulator, commonly
amplified in human cancer and potently promotes can-
cer. Our study for the first time illustrated oncogenic
function of SHANK2, one of the most frequently ampli-
fied gene in human cancer. Furthermore, given that in
normal adult tissues, SHANK2’s expression is largely
restricted to the nervous system, SHANK2 may repre-
sent an interesting target for anticancer therapy.

KEYWORDS SHANK2, oncogene, Hippo signaling,
cancer

INTRODUCTION

In order to prevent malignant outgrowth, the number of cells
in organs and tissues is tightly regulated. For normal cells in
monolayer culture or in a tissue, proliferation is usually hal-
ted when cells reach high density (Gumbiner and Kim,
2014). As cell density increases, gradual changes in the
cellular microenvironment, including cell-ECM and cell-cell
interactions, cell shape and tension will impact cellular pro-
liferation (Halder et al., 2012). Such a mechanism of “contact
inhibition” is important for tissue homeostasis, and loss of
contact inhibition is a hallmark of human cancer (Hanahan
and Weinberg, 2011; Yu et al., 2015).Electronic supplementary material The online version of this

article (https://doi.org/10.1007/s13238-020-00742-6) contains sup-

plementary material, which is available to authorized users.
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The Hippo signaling pathway is a primary responder for
contact inhibition (Hanahan and Weinberg, 2011; Halder
et al., 2012; Yu et al., 2015). First discovered in Drosophila,
the Hippo pathway has been shown to significantly affect cell
number and tissue growth (Harvey et al., 2003; Jia et al.,
2003; Pantalacci et al., 2003; Udan et al., 2003; Wu et al.,
2003; Huang et al., 2005). Later studies in mammalian
system reached similar conclusions and showed that
deregulation of the Hippo pathway causes cancer (Zender
et al., 2006; Dong et al., 2007; Zhou et al., 2009; Atkins et al.,
2016). The core components of Hippo pathway consist of
upstream kinases MST1/2 and LATS1/2, which are activated
by various upstream signals (Dupont et al., 2011; Wehr et al.,
2013; Wang et al., 2015; Yang et al., 2015; Chakraborty
et al., 2017) including cell-cell contact, and the downstream
transcription cofactors YAP and TAZ, which promote cellular
proliferation (Siew et al., 2008; Zhao et al., 2010; Halder and
Johnson, 2011). Phosphorylation of YAP/TAZ by LATS1/2
leads to cytoplasmic sequestration and degradation of these
transcription cofactors, thereby stopping cell growth and
proliferation (Liu et al., 2010; Zhao et al., 2010).

Escaping from contact inhibition provides advantages for
cancer cells, and facilitates tumorigenesis (Hanahan and
Weinberg, 2011). However, analysis of human cancer gen-
omes suggests that abnormalities of core components of the
Hippo pathway, including mutations involving GNAQ (Yu
et al., 2012; Feng et al., 2014), GNA11 (Yu et al., 2012,
2014) and NF2 (Xiao et al., 2003; Zhang et al., 2010; Yin
et al., 2013), deletions involving VGLL4 (Jiao et al., 2014;
Zhang et al., 2014), MST1 (Zhou et al., 2009; Song et al.,
2010) and LATS1 (Yu et al., 2013), as well as amplifications
involving YAP and TAZ (Overholtzer et al., 2006; Zender
et al., 2006; Fernandez-L et al., 2009; Song et al., 2014),
occur in a relatively small fraction of human cancer (San-
chez-Vega et al., 2018). Epigenetic silencing of MST1/2 and
LATS1/2 has also been observed in mesothelioma (Maille
et al., 2019) and sarcomas (Seidel et al., 2007; Merritt et al.,
2018), as well as lung (Malik et al., 2018) and colorectal
cancer (Wierzbicki et al., 2013). It remains unclear whether
deregulation of other unknown components of the Hippo
pathway may occur in human cancer and contribute to
cancer growth.

In order to answer this question, we performed a genome-
wide overexpression screen for novel Hippo pathway regu-
lators in Drosophila and cross-referenced the screen hits
with human cancer genome data to identify potential onco-
genes with a role in Hippo signaling. Our results suggest
SHANK2 is such an evolutionarily conserved regulator of
Hippo pathway, commonly amplified in human cancer and
potently promotes tumor formation.

cFigure 1. Prosap overexpression causes tissue over-

growth via deregulation of the Hippo pathway in

Drosophila. (A) The location of p-element insertion inProsap

EP-1 (A569) andProsapEP-2 (A723) fly lines in chromosome.

In both cases, insertions are located at 1,518 base pair

upstreamof theProsapstart codon.The insertedsequences in

these two lines are different. (B) Eye overgrowth phenotype

causedbyykiexpressionwas furtherenhancedbyProsapEP-

1 andProsap EP-2. Shown are representative side views and

dorsal views of eyes of indicated genotypes. Expression of

Prosap EP-1, Prosap EP-2 and Yki in Drosophila eyes was

driven by GMR-Gal4. Scale bars: 100 μm. (C) Wing sizes

increased in MS1096 driven Prosap EP-1 and Prosap EP-2

lines. Shown are representative images of wings of indicated

genotypes. Expression of Prosap EP-1, Prosap EP-2 and Yki

in Drosophilawings was driven byMS1096-Gal4. Scale bars:

500 μm. In the right panel, data represent mean ± SEM

from results of three independent experiments; n = 13 for

each group. P value was calculated by Student’s t test;

***P < 0.001. (D) Expression of Prosap caused nucleus

localization of Yki. There are several isoforms encoded by the

Drosophila Prosap gene. The Prosap-PA isoform was used in

this study. Shown are representative images of Drosophila

third-instar larval wing discs. Prosap overexpression was

achieved in the posterior of wing discs in hhgal4-Prosap EP-1

Drosophila. Ci (blue) expressed in anterior wing discs was

used to show the Anterior/Posterior boundary. The images on

thebottompanel showed furthermagnificationofYkiandDAPI

staining. In posterior wing discs of hhgal4-Prosap EP-1

Drosophila, where Prosap was overexpressed, Yki mainly

localized in the nucleus. White dotted lines were used to mark

nucleus area stained by DAPI. A, anterior compartment; P,

posterior compartment. (E and F) Overexpression of Prosap

increasedYki transcriptionalactivity.Shownare representative

images ofDrosophila third-instar larval wing discs of indicated

genotypes. The transcription level of Yki targetsexpandedand

diap1were analyzed. In the fly strains used in this experiment,

theexpressionofLacZ (E)orGFP (F)wasdrivenbyenhancers

ofexpandedor diap, respectively.Prosapoverexpressionwas

achieved by hhGgal4 promoter in the posterior wing discs of

hhgal4-ProsapEP-1flies.This led tomoderately increasedYki

activity in the center of posterior wing discs when compared to

anterior wing discs. The edge of the posterior wing discs

(arrowhead) showed significantly increased Yki activity. Scale

bars: 100 μm. (G)Wts regulates tissue growth downstream of

Prosap. Shown are representative images of wings of

indicated genotypes. Expression of Prosap EP-1 and Wts in

Drosophila wings was driven by MS1096-Gal4. Prosap

overexpression increased wing size, while co-expression of

Wts suppressed the increase.Scalebars: 500μm. In the lower

panel, data represent mean ± SEM from results of three

independent experiments; n = 9 for each group. P value was

calculated by Student’s t test; ***P < 0.001.
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Figure 2. Hippo signaling and SHANK2 expression in human cell lines. (A and B) Analysis of human cell lines regarding their

functional status of Hippo signaling. Hippo signaling was analyzed in human cell lines at low or high cell density (LD or HD) with

indicated antibodies. Western blot analysis was used to analyze YAP phosphorylation status (A), and immunofluorescence was used

to analyze subcellular localization of YAP. Scale bars: 10 μm (B). (C) Expression level of CTGF and CYR61 in 293T (Hippo-proficient)

and Huh1 (Hippo-deficient) cell lines at low or high cell density (LD or HD). The expression level of CTGF and CYR61 was analyzed

by qPCR. Data represent mean ± SEM from results of three independent experiments. P value was calculated by Student’s t test;

**P < 0.01, ****P < 0.0001. (D and E) mRNA and protein level of SHANK2 in indicated human cell lines. For qPCR analysis in (D),

data represent mean ± SEM from results of three independent experiments. P value was calculated by Student’s t test;

****P < 0.0001.
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RESULTS

Prosap overexpression causes tissue overgrowth
via deregulation of Hippo signaling in Drosophila

We first searched for novel regulators of Hippo pathway in
Drosophila using a screening system based on Hippo
pathway’s regulation of tissue growth. In Drosophila, yki
(ortholog of YAP) overexpression under the control of the
GMR-Gal4 driver (GMR>yki) causes an overgrown eye
phenotype. This provides a sensitive platform for identifying
additional Hippo pathway regulators (Huang et al., 2013; Hu
et al., 2016) that may compound or ameliorate such an eye
overgrowth phenotype.

To perform the screen, we employed the p-element
transposon system (Engels, 1996), which can induce gene
overexpression when inserted into the promoter region
(Rørth, 1996). We crossed 12,000 p-element inserted flies
crossed with GMR>yki flies and searched for lines that could
enhance the eye overgrowth phenotype induced by yki
overexpression. Among the fly lines with the most pro-
nounced effect in this screen, two independent Drosophila
lines, A569 (EP-1) and A723 (EP-2) both exhibited p-ele-
ment insertion at the 5′ UTR region of the Prosap gene
(Fig. 1A). Both lines showed enhanced eye overgrowth
phenotype induced by yki overexpression (Fig. 1B). These
two lines also showed increased wing size, which is another
phenotype associated with deregulated Hippo signaling
activity (Fig. 1C) (Hu et al., 2016). Immunostaining experi-
ments confirmed that in these two lines, Prosap was over-
expressed (Fig. S1A and S1A’).

Interestingly, one of Prosap’s mammalian homologs,
SHANK2, is highly amplified in human cancer. Therefore, we
generated transgenic flies that overexpress Prosap to further
confirm Prosap’s ability to promote tissue overgrowth. Con-
sistent with the initial screen results, flies overexpressing
Prosap caused a moderate eye overgrowth phenotype
(Fig. S1B). Prosap overexpression also further enhanced the
overgrowth phenotype caused by GMR>yki (Fig. S1B). In
addition, we confirmed that in control flies the endogenous
Prosap gene was expressed (Fig. S1C and S1D), and RNAi
knockdown of Prosap caused reduction of wing size
(Fig. S1E).

Next, we examined whether Prosap regulates Yki.
Immunostaining of the imaginal wing discs of Drosophila
third-instar larvae showed that Prosap overexpression

caused Yki nuclear localization (Fig. 1D) and elevated
transcriptional level of Yki transcriptional targets expanded
and Diap (Fig. 1E and 1F), confirming that Prosap is a novel
regulator of Hippo signaling.

Several additional lines of evidence suggest that Prosap
functions in the Hippo pathway. First, overexpression of wts
(orthology of LATS) suppressed Prosap’s ability to increase
wing size (Fig. 1G). The wing size increase and eye over-
growth phenotypes of Prosap-overexpressing flies were also
suppressed by yki RNAi (Fig. 1F and 1G). Lastly, Prosap
knockdown could not suppress eye overgrowth phenotype
induced by yki overexpression (Fig. S1B).

Taken together, these results established Prosap as a
novel regulator of Hippo signaling in Drosophila and showed
that its overexpression leads to tissue overgrowth.

Overexpression of SHANK2 deregulates Hippo
signaling activity in mammalian cells

In mammals, there are three Prosap homologs, SHANK1,
SHANK2 and SHANK3 (Naisbitt et al., 1999; Hayashi et al.,
2009). Of these three genes, SHANK2 is highly amplified in
human cancer. According to TGCA copy number portal
(Zack et al., 2013), 11% of human epithelial cancers exhib-
ited focal amplification of SHANK2. In comparison, SHANK1
and SHANK3 are focally amplified each in 2% of human
epithelial cancers (Table S1). Therefore we focused on the
potential role of SHANK2 as a growth-promoting gene in
human cancer.

First, we asked whether similar to its ortholog Prosap in
Drosophila, SHANK2 also affects Hippo signaling in mam-
malian cells. We first analyzed human cell lines with regards
to their Hippo pathway status and SHANK2 expression level.
Cell lines are designated as Hippo-proficient if they are able
to phosphorylate YAP and sequester YAP in cytoplasm at
high cell density (Figs. 2A, 2B, and S2A). In contrast, Hippo-
deficient cell lines fail to phosphorylate YAP, and YAP stays
in nucleus at high cell density (Figs. 2A, 2B, and S2A). In
addition, at high cell density, YAP transcription activities are
low in Hippo-proficient cell lines and high in Hippo-deficient
cell lines (Figs. 2C and S2B). Consistent with the finding that
Prosap deregulates Hippo signaling in Drosophila, in two
Hippo-proficient cell lines SHANK2 is not expressed,
whereas in Hippo-deficient human cell lines SHANK2 is
highly expressed (Fig. 2D and 2E).
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Next, we asked whether SHANK2 deregulates mam-
malian Hippo signaling and promotes cell growth. Ectopic
expression of SHANK2 in Hippo-proficient cells suppressed
YAP phosphorylation at high cell density (Fig. 3A). SHANK2
expression also caused YAP nuclear retention and high YAP
activity despite high cell density (Figs. 3B, S3A, and S3B).
This suggests that SHANK2 overexpression leads to
deregulation of Hippo signaling in mammalian cells.

SHANK2 potently promotes tumor growth

Next, we asked whether it functions as an oncogene to
promote cancer. We first tested SHANK2’s ability to trans-
form cells. In 293Tcells, tumor suppressors Rb1 and p53 are
inactivated by the SV40 large T antigen (Stepanenko and
Dmitrenko, 2015), however, this cell line grows poorly in soft
agar (Li et al., 2008). When SHANK2 was ectopically
expressed in 293T cells, significant increased number of
colonies formed in soft agar growth assay (Fig. 3C),
demonstrating that SHANK2 indeed was able to transform
human cells. SHANK2’s pro-growth effect likely depends on
YAP activity, since YAP inhibition suppressed such pheno-
type (Fig. S3C). However due to the potential off-target effect
of YAP inhibitor used in this experiment, we cannot rule out
other possibilities. Lastly, when 293T cells were engrafted in
nude mice, SHANK2 significantly enhanced growth in vivo
(Figs. 3D and S4A).

In another experiment, we tested whether SHANK2 could
promote in vivo growth of a mouse mammary cell line
CommA-Dβ. Control or SHANK2-expressing cells were
transplanted to mammary fat pad to analyze their rate of
growth in vivo. The results showed that SHANK2 also sig-
nificantly enhanced tumor growth in this model (Figs. 3E and
S4B).

We further asked whether SHANK2 can promote tumor
formation by endogenous cells in mice. Using a transposon
system (Yant et al., 2004), murine versions of c-Myc and the
p53 R246S dominant negative mutant were integrated into
genomes of mouse liver cells via hydrodynamic injection.
Such a genetic combination resulted in one small liver tumor
in three mice. When SHANK2 is also included in the
experiment, numerous huge liver tumors were observed in 4
weeks after hydrodynamic injection in all three mice,
demonstrating that SHANK2 indeed potently promotes
cancer formation in vivo (Fig. 3F and 3F’).

Importantly, in all three in vivo models, SHANK2-overex-
pressing tumors showed increased CTGF and CYR61 levels
(Figs. 3F’’, S4C, and S4D), indicating enhanced YAP activity.
In addition, immunostaining of the liver model showed that
SHANK2 promotes YAP nuclear retention in vivo (Fig. S4E).

Lastly, we examined potential correlation between
SHANK2 and CTGF,CYR61 expression levels. Analysis of
uterine corpus endometrial carcinoma and esophageal car-
cinoma, two cancer types with the most prominent SHANK2

b Figure 3. SHANK2 deregulates Hippo pathway, transforms

primary cells and promotes tumor growth. (A) Ectopic

expression of SHANK2 reduced YAP phosphorylation at high

cell density in 293T cells. (B) In Hippo-proficient cell line 293T,

ectopic expression of SHANK2 caused YAP to remain in

nucleus at high cell density. Scale bars: 10 μm. (C) Expression

of SHANK2 transformed 293T cells and enabled growth on soft

agar. Lower panel, data represent mean ± SEM from results of

three independent experiments. P value was calculated by

Student’s t test; ***P < 0.001. (D and E) Expression of SHANK2

promoted tumor growth in nude mice. 2 million of 293T cells

expressing vector control or exogenous SHANK2 were trans-

planted into nude mice (n = 7) (D). 2 million of CommA-Dβ

mouse mammary cells expressing vector control or exogenous

SHANK2 were transplanted into the fat pad of breast of nude

mice (n = 8) (E). Measurement of tumor growth started after 12

days (D) or 27 days (E) post injection. Data present mean ±

SEM. P value was calculated by Student’s t test; **P < 0.01,

*P < 0.05. (F and F’’) Expression of SHANK2 promoted liver

tumor formation in the context of Myc and p53 mutation. Liver

tumors were induced in mice by hydrodynamically injecting the

transposon vector control or exogenous SHANK2 combined

with p53R246S and Myc. p53R246S is the murine version of

p53R249S, a hotspot mutation commonly observed in human

liver cancer. Shown are images of mice liver tumors (F), the

statistics of tumor number (n = 3) (F’) and the expression level

of YAP transcriptional target genes CTGF and CYR61 in tumors

(F’’). Data represent mean ± SEM. P value was calculated by

Student’s t test; **P < 0.001, ***P < 0.001. (G) Correlation of

SHANK2 and CTGF, CYR61 expression in uterine corpus

endometrial carcinoma (UCEC). The TCGA UCEC datasets

were used for this analysis. Correlations between CTGF,

CYR61 with YAP and two established positive regulators of

YAP (WBP2 and STK26) were also shown in comparison.
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overexpression, showed that expression of SHANK2 posi-
tively correlates with CTGF and CYR61 (Fig. 3G). The
degree of correlation is close to YAP-CTGF/CYR61 corre-
lation. We also examined two established positive regulators
of YAP, WBP2 (Lim et al., 2016) and STK26 (Sansores-
Garcia et al., 2013) and found the degree of correlation
between these two genes and CTGF/CYR61 is also close to
SHANK2-CTGF/CYR61 correlation (Fig. S4F). Such corre-
lations provide further support to our hypothesis that
SHANK2 positively regulates YAP in cancer. Taken together,

our results strongly support SHANK2’s role as a novel
oncogene that deregulates Hippo pathway.

SHANK2 interferes with Hippo signaling through
sequestration of ARHGEF7

Next, we investigated the mechanism by which SHANK2
deregulates Hippo signaling. It is known that YAP is phos-
phorylated and inactivated by LATS1/2. SHANK2 is an actin-
associated scaffold protein primarily expressed in nervous
system (Naisbitt et al., 1999). Previous study reported that
SHANK2 interacts with β-PIX/ARHGEF7 at synapses in
cultured neurons (Park et al., 2003). Interestingly, it was
recently shown that ARHGEF7 interacts with LATS1 and
YAP, and functions as an platform for LATS1-mediated YAP
phosphorylation (Heidary Arash et al., 2014). Based on
these two studies, we hypothesized that in cancer cells,
overexpressed SHANK2 interacts with and sequesters
ARHGRF7 away from LATS1, which then leads to reduced
LATS1 activity and enhanced cell growth.

Through Co-immunoprecipitation assays, we confirmed
that both LATS1 and SHANK2 interact with ARHGEF7
(Fig. 4A and 4B). Importantly, upon SHANK2 overexpres-
sion, significantly less amount of ARHGEF7 interacts with
LATS1 (Fig. 4C and 4C’) and YAP (Fig. S5). Therefore,
overexpressed SHANK2 is indeed capable of sequestering
ARHGEF7 from LATS1 and YAP.

Of note, the Drosophila ortholog gene of ARHGEF7, Pix,
has been shown to activate Hpo kinase, the homologous of
MST (Dent et al., 2015). This, and the ARHGEF7-LATS
interaction in mammalian cells (Heidary Arash et al., 2014)
(Fig. 4A) suggest that ARHGEF7/Pix functionally interacts
with the Hippo pathway core kinases, but the mechanism of
regulation may slightly diverge between species.

Consistent with previous report (Park et al., 2003), we
found the PDZ domain of SHANK2 is crucial for its interac-
tion with ARFGEF7 (Fig. 4D, 4D’, and 4D’’). Importantly,
ΔPDZ SHANK2 could not interfere with ARHGEF7-LATS1
binding (Fig. 4D’ and 4D’’). Deletion of PDZ from SHANK2
also diminished its ability to deregulate the phosphorylation,
localization and activity of YAP (Fig. 4E–G) and to promote
liver cancer formation in vivo (Fig. 4H). Based on these
experimental results, we speculate that overexpressed
SHANK2 caused sequestration of ARHGEF7, resulting in

b Figure 4. SHANK2 deregulates Hippo pathway by antagoniz-

ing LATS1 activity through sequestration of ARHGEF7.

(A) Co-immunoprecipitation of ARHGEF7 and LATS1. (B) Co-

immunoprecipitation of ARHGEF7 and SHANK2. (C and C’)

SHANK2 overexpression reduced ARHGEF7-LATS1 interac-

tion. For data shown in (A) to (C), Myc-MCL1 was used as

negative control and the experiments were done in 293T cells.

The relative amount of ARHGEF7-LATS1 interactions were

quantitated in (C’) as mean ± SEM from results of three

independent experiments. P value was calculated by Student’s

t test; **P < 0.01. (D and D’’) The PDZ domain of SHANK2

mediated SHANK2-ARHGEF7 interaction and was crucial for

SHANK2’s ability to disrupt ARHGEF-LATS1 interaction. A

schematic representation of SHANK protein domains was

shown in (D). Deletion of PDZ domain (SHANK2 ΔPDZ)

rendered SHANK2 unable to bind ARHGEF7 and abolished

SHANK2’s ability to disrupt ARGHEF7-LATS1 interaction (D’).

The relative amount of ARHGEF7-LATS1 interactions were

quantitated in (D’’) as mean ± SEM from results of three

independent experiments. P value was calculated by Student’s

t test; *P < 0.05, **P < 0.01. (E and F) Deletion of PDZ domain

rendered SHANK2 unable to reduce YAP phosphorylation

(E) or promote YAP nuclear localization (F) in high cell density.

Experiments were done in 293T cells. Scale bars: 10 μm.

(G) CTGF and CYR61 expression level in control, SHANK2 and

SHANK2 ΔPDZ groups. Experiments were done in 293T cells.

Data represent mean ± SEM from results of three independent

experiments. P value was calculated by Student’s t test; ***P <

0.001. (H) Deletion of PDZ domain abolished SHANK2’s ability

to promote liver cancer formation in vivo. Vector control or

SHANK2, ΔPDZ SHANK2 combined with p53R246S and Myc

were hydrodynamically injecting into mouse tail vain to induce

liver cancer.
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decreased YAP phosphorylation and deregulated Hippo
signaling.

Cancer cell lines that overexpress SHANK2 are
dependent on SHANK2 for growth

Lastly, we examined cancer cell lines that overexpress
SHANK2 and exhibit deregulated Hippo signaling. We asked
whether knockdown of SHANK2 could restore Hippo sig-
naling in these cell lines and reduce their proliferation. In
multiple human cancer cell lines that overexpress SHANK2,
upon SHANK2 knockdown, YAP phosphorylation was
restored at high cell density, and YAP were sequestered in
cytoplasm under such conditions (Fig. 5A and 5B). This
indicated that SHANK2 knockdown restored Hippo signaling
in such cells. Moreover, knockdown of SHANK2 resulted in
significantly reduced cell number in these cell lines (Fig. 6A).
Live cell imaging of these cells indicated that upon SHANK2
knockdown, cellular proliferation was significantly sup-
pressed (Fig. 6B). A small number of cells also underwent
cell death over time (Fig. 6B). In contrast, SHANK2 shRNA
had little effect on the proliferation of Hippo-proficient cell
lines (Fig. 6C). When injected into nude mice, SHANK2
depletion also severely reduced the ability to form tumor
in vivo (Fig. 6D). In many cases, after SHANK2 depletion no

cancer cell mass was discovered in vivo. These data further
supported SHANK2’s role in Hippo signaling, and suggested
SHANK2 may provide a potential target for treating cancer.

SHANK2 is prominently amplified in human cancer

To further understand the relative significance of SHANK2
amplification in human cancer, we referenced the COSMIC
(Catalogue Of Somatic Mutations In Cancer) database,
which provided gene amplification information of approxi-
mately 15,000 cancer samples. Interestingly, judging by the
number of cancer samples carrying gene amplification,
SHANK2 was more frequently amplified than many well-
established oncogenes (Fig. 7A).

To more clearly estimate the significance of SHANK2
amplification in human cancer, we compiled gene amplifi-
cation status for all human coding genes based on the
COSMIC dataset. In human cancer, Myc is the most fre-
quently amplified gene. Many genes that are neighboring
Myc on chromosome 8q are also significantly co-amplified in
cancers. Strikingly, out of the 100 most frequently amplified
genes in human cancer, SHANK2 is the only exception that
does not reside on chromosome 8q (Fig. 7B, and Table S2).
Such a striking amplification status for SHANK2 suggests
that it’s a very prominent genomic event for human cancer.
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Since SHANK2’s ortholog Prosap promotes tissue over-
growth in Drosophila, such genomic data suggest that
SHANK2 may functions as an important oncogene. To our
knowledge, so far no studies have shown SHANK2 pro-
motes cancer formation.

SHANK2 is located at the 11q13 tumor amplicon, a rela-
tively large amplicon containing several focal amplification
peaks. Cyclin D1, which drives cell cycle progression, is also
located in one of such amplification peaks. The TCGA copy
number portal database showed Cyclin D1 is located in an

amplification peak that only contains Cylcin D1 and
ORAOV1. This suggests that during cancer formation,
SHANK2 is selected independent of Cyclin D1.

To further understand this, we performed a detailed
analysis of the SHANK2 and Cyclin D1 amplification status
in COSMIC tumor samples. There appears to be separate
amplification peaks involving SHANK2 and Cyclin D1
(Fig. 7C). Among the 11q13-amplified cancer samples that
carry amplification of SHANK2 and/or Cyclin D1, 233
amplified both SHANK2 and Cyclin D1, 412 amplified only
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SHANK2 and 50 amplified only Cyclin D1 (Fig. 7C and
Table S3). This suggests that there are separate selective
pressures for SHANK2 and Cyclin D1 amplification, and they
may both promote cancer. Importantly, in addition to ampli-
fication, SHANK2 is also overexpressed in multiple types of
human cancer (Fig. 7D) (Tang et al., 2017). A recent study of
esophageal squamous cell carcinoma from South Africa also
confirmed SHANK2 overexpression via immunohistochem-
istry staining (Brown et al., 2020). In their analysis, focal
amplification of 11q13.3 was observed in 37% of cancer

samples and 79% of these samples showed overexpression
of SHANK2. Together with our experimental data, this further
strengthens a role for SHANK2 in promoting cancer. Given
that in human cancer, SHANK2 is the most frequently
amplified gene outside of the Myc amplicon, it may provide
explanation for how a significant portion of human cancer
disables Hippo signaling and evades contact inhibition.

DISCUSSION

In this report, we present multiple lines of evidence sup-
porting SHANK2’s potential role as a novel oncogene that
affects Hippo signaling. Genetically, overexpression of
SHANK2’s ortholog Prosap deregulates Hippo signaling and
promotes tissue overgrowth in Drosophila. Genomically,
SHANK2 is the most frequently amplified gene outside the
Myc amplicon in human cancer. Both our analysis of the
COSMIC dataset (Fig. 1C) and the Broad cancer gene copy
number analysis (Table S1) of the 11q13 tumor amplicon
clearly indicates a selection for SHANK2 amplification. Bio-
chemically, SHANK2 regulates Hippo signaling, and its
overexpression leads to YAP activation and cellular trans-
formation. Taken together, these results indicate SHANK2 is
an evolutionarily conserved regulator of Hippo signaling with
oncogenic function in human cancer.

In the Hippo pathway, SHANK2 functions as an upstream
regulator. In both Drosophila and human cells, depletion or
inhibition of YAP/yki blocked the pro-growth effect of
SHANK2 (Fig. S1F, S1G, and S3C). Given that many can-
cers amplify SHANK2, this finding may help understand how
cancer cells managed to escape from contact inhibition. Our
results, and the recent finding that cancerous SWI/SNF
mutations cause YAP activation (Chang et al., 2018) will
further expand the picture of Hippo pathway’s broad
involvement in human cancer.

Prior to our study, there were no reports demonstrating
SHANK2’s oncogenic role in human cancer. Several studies
noted SHANK2’s amplification in esophageal and oropha-
ryngeal cancer and its association with poor prognosis
(Carneiro et al., 2008; Qin et al., 2016; Barros-Filho et al.,
2018; Yu et al., 2019; Brown et al., 2020). For example, in a
recent analysis of esophageal cancer, a tumor type with
frequent 11q13 amplification, SHANK2 overexpression was

b Figure 6. SHANK2 knockdown inhibits growth of SHANK2

high-expressing cell lines. (A) SHANK2 shRNA resulted in

reduced cell number of Huh1, Huh7 and MDA-MB-468, three

cancer cell lines that showed high expression of SHANK2 and

defective Hippo signaling. Cells were plated at 0.5 × 105cells/

plate and counted each day. Data represent mean ± SEM from

results of three independent experiments. P value was calcu-

lated by Student’s t test; ***P < 0.001. (B) The impact of

SHANK2 knockdown on cell proliferation and cell death. Real-

time imaging was performed for Huh1, Huh7 and MDA-MB-468

that express control vector or SHANK2 shRNA. From each

video, three different areas containing ∼100 cells were counted

for cell division and cell death events during 48 h. Scale bars:

200 μm. In the left panel, data represent mean ± SEM. P value

was calculated by Student’s t test; ****P < 0.0001. (C) SHANK2

shRNA had minimal effects on cellular proliferation in 293T and

SNU449, which express low levels of SHANK2. Cells were

plated at 0.5 × 105cells/plate and counted every other day. Data

represent mean ± SEM from results of three independent

experiments. P value was calculated by Student’s t test. ns, not

significant. (D) SHANK2 knockdown suppressed tumor growth

in vivo. 2 million of Huh7 cells expressing vector control or

SHANK2 shRNA were transplanted into nude mice, and tumor

volume and weight were analyzed at day 27 post injection. Data

represent mean ± SEM; n = 5. P value was calculated by

Student’s t test; ***P < 0.001.
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identified as one of the most significant factors for poor
patient survival, second only to tumor stage (Qin et al.,
2016). These findings further suggest that SHANK2 plays an
important role in cancer.

As a novel oncogene, SHANK2 could potentially provide
a new target for treating cancer. SHANK2 mutation has been
recently linked to autism (Berkel et al., 2010; Won et al.,
2012; Schneider et al., 2014), and SHANK2 expression is
mostly restricted to the nervous system (Naisbitt et al., 1999;
Hayashi et al., 2009; Berkel et al., 2010; Won et al., 2012;
Schneider et al., 2014). Immunoblot analysis of various
mouse tissues confirmed the lack of expression of SHANK2
in most non-neuron tissues, including bone marrow and

intestine, two major sites of toxicities for cancer treatment
(Fig. 8A). Querying of public databases (Pontén et al., 2011;
Wu et al., 2016) suggests the expression pattern of SHANK2
in human is similar to mouse, and protein expression of
SHANK2 is mainly observed in brain and spinal cord (Fig. 8B
and 8C).

Consistent with such expression pattern, full-body
SHANK2 knockout mice showed expected neuronal phe-
notypes and smaller body size but were otherwise normal
(Schmeisser et al., 2012; Won et al., 2012). Although low
level of SHANK2 expression was observed in mouse liver
(Fig. 8), no liver-associated phenotypes were reported for
the SHANK2 knockout mice, suggesting that SHANK2 may
not be needed for liver function under physiological condi-
tions. Whether SHANK2 is needed in liver under pathological
conditions (regeneration after resection and liver damage)
remains to be tested in such mice.

Considering the expression pattern of SHANK2 and the
knockout mice phenotype, it is possible that SHANK2 is
necessary for growth only in cancer cells that overexpress
SHANK2, and that most human normal adult tissues do not
utilize SHANK2 for growth. Therefore, therapies targeting
SHANK2 could potentially be achieved with low toxicity.
Given that SHANK2 is a scaffold protein (Naisbitt et al.,
1999; Hayashi et al., 2009; Berkel et al., 2010; Won et al.,
2012; Schneider et al., 2014), chemically inhibiting its func-
tion may prove difficult. However, with the recent advances
in siRNA and antisense oligos therapies (Stein and Cas-
tanotto, 2017; Setten et al., 2019), it is possible to suppress
SHANK2 with these approaches. Vehicles that spare the
nervous system could be utilized to limit the side effects of
such SHANK2-targeting siRNA and antisense oligos. Alter-
natively, targeted protein degradation techniques (Gadd
et al., 2017) can be utilized. It may be possible to generate
PROTACs (proteolysis targeting chimeric molecules) that
target SHANK2 for degradation, but do not pass the blood
brain barrier. Such drugs could be useful in treating cancers
that depend on SHANK2. Given the recent finding that 11q13
amplification does not sensitize cancers to CDK4/6 inhibitor

b Figure 7. SHANK2 is highly amplified and overexpressed in

human cancer. (A) SHANK2 on 11q13 is one of the most

frequently amplified genes in human cancer. Shown are the

numbers of tumor samples with amplification of major onco-

genes. Data were tallied from COSMIC database. (B) The top

100 most frequently amplified genes in human cancer. Gene

amplification status of all human genes were tallied from the

COSMIC database and ranked with amplification frequency.

Except for SHANK2, all other genes on the top 100 list are on

the Myc amplicon at Chromosome 8. (C) Amplification status of

11q13 genes in tumor samples according to COSMIC database.

On the Y axis, genes in 11q13 are aligned according to their

chromosomal location. On the X axis, each line represents one

tumor sample. Tumor samples that amplify both SHANK2 and

CCND1 (cyclin D1) are shown in orange. Tumor samples that

amplify SHANK2 but not CCND1 are shown in purple. Tumor

samples that amplify CCND1 but not SHANK2 are shown in

blue. The results indicate there are separate selective pres-

sures for SHANK2 and CCND1 amplification in human cancer.

(D) Multiple types of human cancer overexpress SHANK2.

Analysis of tumor (red) vs. normal tissue (black) was done base

on TCGA dataset. UCEC: uterine corpus endometrial cancer;

ESCA: esophageal cancer; CHOL: cholangiocarcinoma; OV:

ovarian cancer. *P < 0.05..
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(Li et al., 2018), SHANK2 may present an alternative target
for treating cancers with 11q13 amplification.

Among the three mammalian homologs of Prosap,
SHANK2 is the most prominently amplified gene in human
cancer. About five-fold more cancer samples exhibit
SHANK2 amplification compared to SHANK1 and SHANK3.
The protein domains of these three SHANK genes are very
similar (Fig. S6), however due to the big size of these pro-
teins and the difficulty to clone them, we only focused on
SHANK2 in this study. We cannot speculate whether
SHANK1 and SHANK3 similarly interfere with Hippo sig-
naling. If they do, they may also represent potentially inter-
esting therapy targets, since their expression pattern and
knockout mice phenotypes (Hung et al., 2008; Peça et al.,
2011; Wang et al., 2011) are similar to those of SHANK2.

With regard to how SHANK2 regulates Hippo signaling,
our study points to a possible explanation that SHANK2
disrupts the interaction between LATS1 and ARHGEF7.
Interestingly, SHANK2 is an actin cytoskeleton bundling
protein, and it is known that actin affects Hippo signaling
(Dupont et al., 2011; Yu et al., 2012; Zhao et al., 2012).
Therefore, other possibilities as to how SHANK2 affect
Hippo pathway also exists. For example, considering
SHANK2’s interaction with the actin cytoskeleton, its over-
expression may also affect cell junctions to alter Hippo sig-
naling. Our data suggests that deletion of PDZ domains from
SHANK2 abolished its ability to regulate LATS1/2. It is
possible that aside from ARHGEF7,other cell junction

proteins may also interact with the PDZ domain of SHANK2
and contribute to such phenotype. This remains a question
for further research.

Of note, the molecular events from actin to Hippo sig-
naling remain a subject of study, our study of the SHANK2-
ARHGEF7-LATS1 interactions provided such a possible
route. Considering that in human SHANK2 is not expressed
in most adult tissues, such a mechanism may be more rel-
evant to pathological conditions, when SHANK2 is amplified
in cancers. On the other hand, knocking down of SHANK2 in
several cell lines led to severe block of cell growth (Fig. 6A).
It is possible that mechanisms other than LATS1/2 inhibition
also contributed to such a dramatic phenotype.

Taken together, our study for the first time assigned an
oncogenic function for SHANK2, one of the most prominently
amplified genes in human cancer. Our results indicate that
SHANK2 is an evolutionarily conserved regulator of Hippo
signaling. This study provides further insight into how cancer
cells deregulate Hippo signaling and evade contact inhibi-
tion, and points to a potential intervention target for cancer
therapy.
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