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Abstract
This assessment describes the enteric colonization of German soldiers 8–12 weeks after

returning from mostly but not exclusively subtropical or tropical deployment sites with third-

generation cephalosporin-resistant Enterobacteriaceae, vancomycin-resistant enterococci

(VRE), and methicillin-resistant Staphylococcus aureus (MRSA). Between 2007 and 2015,

828 stool samples from returning soldiers were enriched in nonselective broth and incu-

bated on selective agars for Enterobacteriaceae expressing extended-spectrum beta-lacta-

mases (ESBL), VRE and MRSA. Identification and resistance testing of suspicious colonies

was performed using MALDI-TOF-MS, VITEK-II and agar diffusion gradient testing (bioMér-

ieux, Marcy-l’Étoile, France). Isolates with suspicion of ESBL were characterized by ESBL/

ampC disc-(ABCD)-testing and molecular approaches (PCR, Sanger sequencing). Among

the returnees, E. coli with resistance against third-generation cephalosporins (37 ESBL, 1

ESBL + ampC, 1 uncertain mechanism) were found in 39 instances (4.7%). Associated

quinolone resistance was found in 46.2% of these isolates. Beta-lactamases of the blaCTX-M
group 1 predominated among the ESBL mechanisms, followed by the blaCTX-M group 9,

and blaSHV. VRE of vanA-type was isolated from one returnee (0.12%). MRSA was not iso-

lated at all. There was no clear trend regarding the distribution of resistant isolates during

the assessment period. Compared with colonization with resistant bacteria described in

civilians returning from the tropics, the colonization in returned soldiers is surprisingly low

and stable. This finding, together with high colonization rates found in previous screenings

on deployment, suggests a loss of colonization during the 8- to 12-week period between

returning from the deployments and assessment.
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Introduction
Spread of multidrug-resistant bacteria is a global concern, involving subtropical and tropical
war and crisis zones where international armed forces are deployed. Extended-spectrum beta-
lactamase (ESBL)-producing Enterobacteriaceae are frequent colonizers in the gastrointestinal
tract of civilian returnees from the tropics [1–4]. Contacts with medical infrastructure in cen-
tral African settings have been described with subsequent colonization rates with ESBL-posi-
tive Enterobacteriaceae up to>90% [5]. Antibiotic pressure contributes to the colonization
with ESBL-expressing or multidrug-resistant bacteria [1].

Enteric colonization with atypically resistant or multidrug-resistant pathogens does not nec-
essarily mean obligate progression to infections [1], however. Decolonization of the gut in such
cases is usually neither possible nor necessary, at least in healthy travelers or returnees. The
average colonization time in case of enteric colonization with ESBL-expressing Gram-negative
bacteria is estimated to be between a few months and a year, although cases of long-term shed-
ding have been described [6].

In cases of vancomycin-resistant enterococci, however, enteric colonization with resistant
bacteria could be shown also to increase the risk of infections due to these pathogens, at least in
high-risk populations [7–9]. Both the suppression of the natural flora of the gut and the coloni-
zation density were shown to be of prognostic importance for the development of endogenous
infections [10, 11]. The increased risk of invasive infections with methicillin-resistant Staphylo-
coccus aureus (MRSA) in patients with nasal MRSA colonization can be considered as well
established [12].

Studies on enteric colonization of deployed soldiers with atypically resistant and multidrug-
resistant pathogens are scarce. Accordingly, only analogous conclusions are possible for mili-
tary staff. Nevertheless, the hypothesis seems sound that harmless colonization might bear the
risk of endogenous infections in physically injured soldiers. Transmission to family members
poses a further risk scenario.

As a first step in the assessment of risks due to colonization with resistant bacteria after
deployment of personnel, this study assessed the rates of persisting colonization with resistant
bacteria in stool samples of soldiers who had returned from deployments 8 to 12 weeks previ-
ously to estimate the extent of the problem.

Materials and Methods

Study group
The study group consisted of returned soldiers who attended routinely for medical returnee
screenings at the Department of Tropical Medicine at the Bernhard Nocht Institute, German
Armed Forces Hospital of Hamburg, after military deployments between 2007 and September
2015. Their deployments were mainly but not exclusively in tropical or subtropical settings.

The appointments for the screenings were scheduled between 8 and 12 weeks after the return
to Germany. Stool analyses were routinely offered to the returnees as a one-time screening per
soldier. A total of 828 returnees provided sufficient quantities of fresh, nonfixed stool and could
thus be included in the assessment. The assessed soldiers comprised returnees from Afghanistan
(n = 172), Argentina (n = 2), Bosnia and Herzegovina (n = 1), Brazil (n = 1), the Central African
Republic (n = 1), China (n = 1), the Democratic Republic of the Congo (n = 112), Djibouti
(n = 16), Ethiopia (n = 1), French Guyana (n = 5), Gabon (n = 6), Ghana (n = 9), Indonesia
(n = 3), Jamaica (n = 1), Kosovo (n = 42), Lebanon (n = 3), Liberia (n = 3), Mali (n = 43), Malta
(n = 1), Morocco (n = 1), Nigeria (n = 13), not-further-defined African destinations (n = 3),
not-further-specified regions in the Indian Ocean (n = 1), Pakistan (n = 2), Panama (n = 1),
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Senegal (n = 5), Somalia (n = 1), South Sudan (n = 35), Sudan (n = 202), Tanzania (n = 7), Thai-
land (n = 3), Uganda (n = 41), unknown or multiple deployment settings (n = 14), Uzbekistan
(n = 73), Venezuela (n = 1), Vietnam (n = 1), and Zimbabwe (n = 1).

Returnee-related data associated with the bacterial isolates, i.e. age and sex of the returnees,
are not presented for ethical considerations. Participation in the medical returnee screenings
was by order. No informed consent was obtained from the returnees regarding the presentation
of their personal data in this study. Accordingly, no details regarding the returnees colonized
by the strains can be shown.

Culture screening for resistant bacteria in the stool samples
Cherry-pit-sized volumes from the stool samples provided were used for broth enrichment in
thioglycolate broth (Heipha, Eppelheim, Germany) for 16–24 hours at 37°C. Subsequently,
10 μl preincubated broth was cultured on Brilliance ESBL selective agar (Oxoid, Basingstoke,
UK) for the selection of third-generation cephalosporin-resistant bacteria. This agar is made
for selective growth of ESBL-positive Enterobacteriaceae. An additional 10 μl for each was
incubated on Brilliance VRE agar (Oxoid) for the selection of vancomycin-resistant entero-
cocci (VRE) and on CHROMagar MRSA (CHROMagar, Paris, France) for the selection of
methicillin-resistant Staphylococcus aureus (MRSA).

Agar plates were incubated at 37°C for 40–48 hours. All colonies that looked suspicious for
Enterobacteriaceae on Brilliance ESBL selective agar (blue, green, brown colonies) were iso-
lated, while suspected Gram-negative nonfermentative rod-shaped bacteria (i.e., yellow or
yellowish-brown or greenish-brown colonies) were discarded. Similarly, only colonies that
appeared suspicious for MRSA and VRE were selected for further analysis. Suspected entero-
cocci were of blue or violet color; suspected MRSA were of mauve color.

All suspicious isolates were frozen at −80°C in Microbank tubes (Pro-Lab Diagnostics,
Bromborough, UK) until further assessment.

Identification and phenotypic resistance testing
Identification of isolates was performed with VITEK-II GN-cards (bioMérieux, Marcy-l'Étoile,
France) and matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) using a Shimadzu/Kratos “AXIMA Assurance”MALDI-TOF mass spec-
trometer (Shimadzu Germany Ltd., Duisburg, Germany). For MALDI-TOF analyses, isolates
were prepared using alpha-cyano-4-hydroxycinnamic acid (bioMérieux) as matrix. Spectral
fingerprints were analyzed using the Vitek MS-ID IVD-mode database version 3.2.0.-6. (bio-
Mérieux). Automated antibiotic susceptibility testing was performed with VITEK-II
AST-N263-cards (bioMérieux). In case of uncertain results, E-testing (bioMérieux) was added.
Interpretation of resistance testing results was based on the CLSI 2014 D and the EUCAST
guideline (version 4.0, 2014, http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/
Breakpoint_tables/Breakpoint_table_v_4.0.pdf, VITEK 2 systems version 06.01). In third-gen-
eration cephalosporin-resistant Enterobacteriaceae, the presence of ESBL- or ampC-type resis-
tance was phenotypically confirmed or excluded by the commercial ESBL/ampC disc-based
ABCD test kit Mast ID D68C (Mast Diagnostic, Amiens, France) as described by the manufac-
turer and others [13].

Genotypic resistance testing
Genotypic resistance typing was performed exactly as described [14]. In short, the approach
comprised PCRs with subsequent Sanger sequencing for the blaTEM and blaSHV beta-lactamases
[15, 16], as well as PCRs for the blaCTX-M groups I–IV [15, 17]. Of note, group I comprises
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blaCTX-M-1, -3, -10, -11, -12, -15, -22,-23, -28, -29, -30, group II blaCTX-M-2, -4, -5, -6, -7, -20, group III
blaCTX-M-8, and group IV blaCTX-M-9, -13, -14, -16 to -19, -21, -27 [17, 18].

Ethical clearance
Ethical clearance for the retrospective assessment of detected multidrug resistant pathogens by
the country of deployment was provided by the ethics committee of the University Medicine
Rostock (registration number A2015-0077) in line with national and ICH-GCP guidelines.

Results

Detected third-generation cephalosporin-resistant Enterobacteriaceae,
MRSA, and VRE
Enterobacteriaceae with resistance against third-generation cephalosporins were detected in 39
out of 828 samples analyzed (4.7%). The only species detected was Escherichia coli without
exemption. The distribution on the regions of deployment that were assessed is shown in
Table 1. High percentages of resistant isolates were found predominantly for regions with low
numbers of returnees. For a representative selection of countries of deployment, detection rates
in returned deployed soldiers, and detection rates in local patients are compared in Table 2. No
clear trend for an increase in detected resistant Enterobacteriaceae over the years was demon-
strated. The distribution of the detected third-generation cephalosporin-resistant E. coli ranged
from 0% to 18.7% of analyzed samples (Table 3).

No MRSA was detected and there was only one VRE isolate (0.1%). The VRE isolate, an
Enterococcus faecalis strain, was isolated from a returnee from Afghanistan in 2007.

Phenotypic resistance characteristics of the isolated resistant bacteria
ABCD testing of the 39 third-generation cephalosporin-resistant E. coli strains demonstrated
37 strains with ESBL-type resistance, 1 strain with a combined ESBL-/ampC-type resistance,

Table 1. Detection of third-generation cephalosporin-resistant Enterobacteriaceae in returning soldiers.

Country of deployment Analyzed samples, n Resistant isolates, n Samples with resistant isolates, %

Afghanistan 172 3 1.7

Democratic Republic of the Congo 112 3 2.7

Djibouti 16 1 6.3

Ghana 9 1 11.1

Lebanon 3 1 33.3

Mali 43 3 7.0

Nigeria 13 1 7.7

Not-further-defined African destinations 3 1 33.3

South Sudan 35 7 20

Sudan 202 9 4.5

Tanzania 7 1 14.3

Thailand 3 1 33.3

Uganda 41 3 7.3

Unknown or multiple deployment settings 14 1 7.1

Uzbekistan 73 3 4.1

No third-generation cephalosporin-resistant Enterobacteriaceae were observed in returnees from Argentina, Bosnia and Herzegovina, Brazil, the Central

African Republic, China, Ethiopia, French Guyana, Gabon, Indonesia, Jamaica, Kosovo, Liberia, Malta, Morocco, not-further-specified regions in the Indian

Ocean, Pakistan, Panama, Senegal, Somalia, Venezuela, Vietnam, and Zimbabwe.

doi:10.1371/journal.pone.0162129.t001
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and 1 strain with a noninterpretable result pattern. Concomitant cotrimoxazole resistance was
frequent, with 29/39 affected strains (74.4%). Resistance against both ciprofloxacin and levo-
floxacin was observed in 16/39 strains (41.0%); 2/39 additional strains (5.1%) tested intermedi-
ate sensitive for ciprofloxacin but sensitive for levofloxacin. Gentamycin resistance was
observed in 10/39 isolates (25.6%), and nitrofurantoin resistance in 2/39 (5.1%). Carbapenems,
fosfomycin, and tigecycline were effective against all assessed E. coli strains.

Of note, the single VRE isolate showed high-level resistance against streptomycin but not
against gentamycin. Phenotypic E-testing suggested a vanA-resistance type (minimum inhibi-
tory concentration (MIC) for vancomycin: 256 μg/ml; MIC for teicoplanin: 32 μg/ml).

Table 2. Detection of enteric colonization with third-generation cephalosporin-resistant Enterobacteriaceae in returned soldiers and previously
reported detection rates in selected African and Asian countries (in alphabetic order).

Country Resistant isolates in
returned soldiers, n (%)

Percentage of resistant isolates within all analyzed Enterobacteriaceae in
studies in the named countries (years of analysis)

References from
previous studies

Central African
Republic

0/1 (0) 12% of infections (2004–2006) [19]

China 0/1 (0) 41% colonization (2011–2012) and 38–69% of infections (2011) [20, 21]

Ethiopia 0/1 (0) 33% of infections (2003–2004) [22]

Gabon 0/6 (0) 45% colonization (2012) and 15% of infections (2009–2012) [5, 23]

Ghana 1/9 (11.1) 49% of infections (2011–2012) [24]

Indonesia 0/3 (0) 2% colonization (2001–2002) and 36% of infections (2005) [25, 26]

Morocco 0/1 (0) 43% colonization (2012) and 8% of infections (2010–2011) [27, 28]

Nigeria 1/13 (7.7) 37% of infections (2013) [29]

Pakistan 0/2 (0) 60% of infections (2009) [30]

Senegal 0/5 (0) 4% of infections (2004–2006) [31]

Tanzania 1/7 (14.3) 79% of infections (2011–2012) [32]

Thailand 1/3 (33.3) 12% of infections (2004–2010) [33]

Uganda 3/41 (7.3) 79% of infections (2011–2012) [34]

Vietnam 0/1 (0) 40–49% of infections (2009–2011) [35]

Interpretation has to be performed with care due to the very low numbers of assessed returned soldiers. A trend to very low colonization rates in the

returnees is nevertheless detectable.

doi:10.1371/journal.pone.0162129.t002

Table 3. Detection of third-generation cephalosporin-resistant Enterobacteriaceae per year and yearly percentage of respective detections.

Year Assessed samples, n Resistant isolates, n Samples with resistant isolates, %

2007a 405a 8 2.0

2008 49 1 2.0

2009 67 3 4.5

2010 47 4 8.5

2011 38 3 7.9

2012 34 0 0

2013 68 4 5.9

2014 75 14 18.7

2015 45 2 4.4

aThere was a high number of analyses in 2007 because the submission of samples was supervised by the field doctors in the peripheral barracks. In the

following years this supervision did not take place.

doi:10.1371/journal.pone.0162129.t003
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Genotypic analysis of third-generation cephalosporin-resistant E. coli
strains
PCR detected blaTEM- and blaSHV-type beta-lactamases in 8 and 2 stains, respectively. Sequence
analysis of the blaTEM-type beta-lactamases showed non-ESBL-associated blaTEM-1 genes in all
instances. The affected returnees came from deployments in South Sudan (n = 3), the Demo-
cratic Republic of the Congo (n = 2/3), Afghanistan (n = 1/3), Sudan (n = 1/9), and Uzbekistan
(n = 1/3). Sequence analysis of the blaSHV-type beta-lactamases showed blaSHV-2a in a returnee
from Uganda (1/3) and blaSHV-12 in a returnee from Djibouti (1/1). Of note, the strain with the
blaSHV-12-type beta-lactamase had shown the noninterpretable pattern in ABCD testing.

Beta-lactamases of the blaCTX-M group 1 were most frequently observed with 26 positive
strains, isolated from soldiers who had returned from South Sudan (n = 5/7), Sudan (n = 4/9),
the Democratic Republic of the Congo (n = 3/3), Uganda (n = 3/3), Uzbekistan (n = 3/3),
Afghanistan (n = 1/3), Ghana (n = 1/1), Lebanon (n = 1/1), Mali (n = 1/3), Nigeria (n = 1/1),
not-further-defined African destinations (n = 1/1), Tanzania (n = 1/1), and unknown or multi-
ple deployment settings (n = 1/1). Beta-lactamases of the blaCTX-M group IV were observed in 6
instances, comprising returnees fromMali (n = 2/3), South Sudan (n = 2/7), Sudan (n = 1/9),
and Thailand (n = 1/1).

The PCR protocols applied failed to identify the genetic resistance mechanisms in 6 strains
from Sudan (n = 4/9), and Afghanistan (n = 2/3). Each of the 6 strains had been phenotypically
characterized as ESBL-positive by ABCD testing.

Discussion
Influx of resistant pathogens due to soldiers returning from tropical deployments poses a
potential public health issue. Close household contacts have been identified as a major source
for the spread and as a reservoir for long-term persistence and distribution of resistant bacteria
outside of the hospital environment [36].

In Germany, such colonization of soldiers with resistant bacteria is known from the Interna-
tional Security Assistance Force (ISAF) mission in Afghanistan [37, 38]. Further, high coloni-
zation rates with ESBL-positive Enterobacteriaceae have been demonstrated in European
soldiers with diarrhea during the European Union Training Mission (EUTM) in Western Afri-
can Mali [14, 39]. Such screening results are not surprising but simply reflect the known phe-
nomenon of increased colonization with ESBL-positive bacteria in civilian returnees from the
tropics [1–4]. Resistance surveillance at the respective sites of deployment can contribute to a
specific risk assessment.

However, our assessment of enteric colonization with resistant pathogens in German sol-
diers returning from tropical and nontropical deployments at the Department of Tropical
Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, sug-
gests only low to very moderate colonization of the gut at 8–12 weeks after returning home.
MRSA strains were absent and VRE virtually absent, while the colonization rates with ESBL-
positive Enterobacteriaceae resembled the situation in Germany or were only slightly increased
for most deployment settings. Accordingly, a broth enrichment protocol was used to increase
sensitivity as has been suggested [40]. Broth enrichment increases the yield of resistant bacteria
after swabbing: e.g., by a factor of 2 for ESBL-expressing bacteria in upper respiratory tract
samples [41]. The selective agar media used were reported to show good sensitivity and to be
rather likely to lack specificity for the VRE as shown in a previous study [42]. In detail, sensitiv-
ity of 94.9–97.9% and specificity of 95.7–100% have been reported for Brilliance ESBL selective
agar [43, 44]. This agar also detects Klebsiella spp. and other Enterobacteriaceae with resistance
against third-generation cephalosporins, so the identification of resistant Escherichia coli only
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is not due methodical features. The reported sensitivity and specificity of CHROMagar MRSA
are 95.4–100% and 95–100%, respectively [45–47]. The sensitivity and specificity of Brilliance
VRE agar are reported to be 95% and 87.1%, respectively [42]. For vanB-type VRE, a compara-
ble sensitivity of 94% has been described [48].

Considering that soldiers are ordered to come to the Department of Tropical Medicine for
returnee assessments if they have been particularly exposed to the often suboptimal local
hygiene conditions on deployment, the low colonization rates after return in comparison with
the high rates at the deployment sites suggest a rapid drop after the end of deployment.

This hypothesis is in line with previously published data from the civilian setting, indicating
a high acquisition rate but mostly short durations of carriage of multidrug-resistant Enterobac-
teriaceae in travelers returning from tropical areas [49]. The postulated risk of household-asso-
ciated spread [36] is therefore highest shortly after return. Stricter adherence to standard
hygiene precautions in the weeks after return, possibly combined with screening efforts, there-
fore seems advisable.

Nevertheless, some soldiers’ guts remained colonized even 8–12 weeks after the end of
deployment, allowing for potential intermediate-term to long-term spread of resistant bacteria.
The displacement of resistant bacteria acquired from deployments by susceptible flora of the
gut remains a stochastic process that can to some extent be predicted at population level [6]
but not so far for the individual patient. At present, reliably efficient methods for the eradica-
tion of resistant bacteria from the gastrointestinal tract are also not available [50].

Colonization with resistant bacteria makes the formulation of antibiotic therapy difficult in
cases of severe endogenous infection in military forces, both during subtropical and tropical
deployments [14, 37–39] and—to a considerably lesser degree, as shown here—also after
deployment. The deployment history of soldiers should therefore be included in consideration
of antimicrobial therapeutic approaches.

In the deployment setting, microbiological routine diagnostic equipment is usually not
available in small medical units. Therefore, it is advisable to avoid antibiotic therapy in case of
questionable indications—in order not to select resistant strains—but to use broad-spectrum
or even combined antibiotic therapy in case of emergency indications to override expected
resistance in line with available surveillance data. If the appropriate microbiological laboratory
equipment is available in medical field camps to permit cultural growth and resistance testing,
resistance-guided antibiotic therapy should be preferred for the treatment of severe infections
on deployment.

Although a substantial number of stool samples from returned soldiers were analyzed, the
study is limited by the small numbers of returnees from various deployment settings, the shift-
ing of the deployment sites over time, and the retrospective design of the study. Further, pre-
deployment samples prior to the missions and samples taken directly after deployments were
not available, preventing patient-specific serial comparisons. Future studies should address
these issues.

Considering that the analysis was performed 8–12 weeks after the return of the soldiers
from deployment, acquisition of the resistant colonizing isolates back in Germany cannot be
completely excluded. In the same way, one cannot exclude persistent colonization that already
existed prior to the deployments in individual cases, because no pre-deployment samples were
taken. Phylogenetic typing, e.g. based on multi-locus sequence typing (MLST) [51] or next-
generation sequencing (NGS) [52], would also not have been suitable to identify the place of
acquisition of the bacteria for the following reasons. First of all, no MLST or NGS databases
exist so far that cover the study sites of deployment in a comprehensive way to allow for a con-
firmation or exclusion of origin of the bacteria from the respective sites. Even if clonal com-
plexes that have been described in individual papers to be prevalent in certain geographic
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regions had been identified, this would not have definitely excluded transmission after the sol-
diers’ return home. Soldiers typically work in contact with other soldiers who are also on vari-
ous international deployments, so nosocomial transmission of strains of regionally unusual
clonal complexes can occur back in Germany as well. Typing to exclude nosocomial transmis-
sion [51, 52], on the other hand, was not useful because the described isolation events did not
occur in a temporally associated manner that would make nosocomial transmission etiologi-
cally plausible. Because the additional information from typing approaches such as MLST or
NGS would have been marginal, these assessments were not performed. The general finding
that the enteric colonization of returning German soldiers with resistant bacteria after deploy-
ment including subtropical and tropical deployment settings is low at assessment time points
8–12 weeks after deployment remains unaffected by this.

Given the finding that persistence of resistant pathogens as enteric colonizers can still be
detected 8–12 weeks after the end of deployments, screening of military returnees for long-
term shedding of resistant bacteria seems advisable. Although reliable eradication from the gut
cannot be offered, results will allow for individualized consultation on hygiene precautions
regarding household transmission [36], in particular if severely ill or even immune-compro-
mised patients at risk of acquiring potentially life-threatening infections [7–9] occupy the same
accommodation as the affected soldier.
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