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Abstract

Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer
much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their
characterization has been hampered by the many variables to produce them as well as their described phenotypic and
functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood
derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic
progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2,
CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8)
or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional
studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density
lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis
factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-
dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by
CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that
intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore,
functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress.
We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic
target to control aberrant vasculogenesis.
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Introduction

The identification of progenitor cells in adult peripheral blood

has significant clinical implications for the treatment of multiple

diseases. Particular emphasis has been placed on the research and

development of vascular progenitor cells with pro-angiogenic

potential for wound healing [1], limb ischemia [2], myocardial

ischemia [3,4] as well as the increased vascularisation associated

with tumor development, sensitivity to chemotherapy and cancer

progression [5,6,7,8]. In addition, the balance between normal

and pathological states for cardiovascular disease and diabetes has

been linked to the number of circulating endothelial progenitor

cells (EPCs) [9,10,11,12]. Despite the exact contribution of EPCs

in vasculogenesis still being under intense debate [10,13,14,15,16],

the ability of human EPCs to rescue diminished blood flow in

preclinical animal models [17,18] provided rationales to initiate

clinical trials. The results of these studies have found infusion of

CD34+ and CD133+ EPCs to be safe and beneficial in certain

circumstances, though the effects in humans have been less robust

and much more variable than in preclinical rodent studies [10].

With continued promise of modulating both overzealous and

suboptimal vasculogenesis in disease, clearly these cells warrant

further investigation.
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Despite the absence of a definitive EPC marker and the

ambiguous terminology used to define EPCs, the functional

distinction between different groups of EPCs (eg ‘early EPCs’ and

‘late outgrowth EPCs’ (also known as endothelial colony forming

cells (ECFCs)) is becoming clearer and has been extensively

discussed in recent reviews by Yoder, Ingram [15], Dimmeler [19]

and Hagensen [20]. Briefly, it is becoming increasingly evident

that simple phenotyping for the surface expression of CD34 and

VEGFR2 as well as uptake of acetylated-low density lipoprotein

(Ac-LDL) and lectin binding are not adequate descriptors of ‘true’

EPCs rather it is the capacity to incorporate into an endothelial

lining and conduct endothelial cell functions which are the strict

criteria required and can not be obtained outside the living

organism [15,19,21,22]. The inclusion of CD133 as a marker of

EPCs by Peichev and colleagues provided the first opportunity to

distinguish EPCs from CD34+VEGFR2+ ECs [23]. Interestingly,

our current understanding of EPC biology has been largely

restricted to ECFCs which are derived from ,3 week in vitro cell

culture and do not express CD133 which suggests a more mature

phenotype likely compromised by extensive cell culture [15,24].

This is critical, as it was the immature EPCs which first

demonstrated an ability to contribute to the formation of arteries,

capillaries and veins [25] and it is the non-adherent cells in

circulation that would be the first responders to a site of vascular

injury. To this end, Asahara’s laboratory recently demonstrated in

an EPC clonogenic assay that a single human umbilical cord blood

(HUCB) derived CD133+ cell can develop into a colony forming

EPC as well as a hematopoeitic progenitor cell [26]. It is our

contention that isolating and extensively characterising cells which

meet the essential criteria of (i) surface expression of progenitor cell

and endothelial cell markers and (ii) functional assays which

validate that postnatal endothelial differentiation capacity in vitro

and in vivo; will be an essential prerequisite to discovering

meaningful surface biomarkers with which the clinical promise of

vasculogenesis may ultimately be realised.

Herein, we have isolated cells from HUCB-derived non-

adherent CD133+ progenitor cell population, enriched for EPCs

over 4 days and compared their genomic and proteomic profile

against donor matched human umbilical vein endothelial cells

(HUVEC). Flow cytometry confirmed an EPC phenotype with

surface expression of CD133, CD117, CD34, VEGFR2 and

CD31 (PECAM-1) but not lymphocyte, myeloid and platelet

surface markers (CD3, CD4, CD8, CD11b, CD14, CD19, CD20

and CD41a). Functional studies also supported an endothelial

phenotype as these cells demonstrated binding to Ulex europaeus

lectin (UEA-1), uptake of acetylated-low density lipoprotein (Ac-

LDL), enhancement of 3-dimensional tubes, tubule branching and

loops in vitro and upregulation of vascular cellular adhesion

molecule (VCAM)-1 following tumor necrosis factor-a (TNFa)

stimulation.

Although most studies suggest that the cells gained by the short-

term culture assays (eg ‘early’ EPCs) predominantly enhance vessel

formation via a paracrine mechanism rather than directly

contributing to tube formation [27,28] we demonstrate in vivo

that our cells display the postnatal vasculogenic capability of

maturation into an endothelial cell and lining of tubule structure in

vivo. Moreover, with an intention to increase the clarity and rigour

of the use of the name ‘EPC’, we have coined the term ‘non-

adherent endothelial forming cells’ (naEFCs) to define these cells

as it highlights their capabilities (endothelial forming) as well as

their physical properties (non-adherent).

Genomic profiling identified the increased expression of

intercellular cell adhesion molecule (ICAM)-3 on naEFCs when

compared to donor matched HUVEC. Tandem mass spectrom-

etry using a periodate oxidation-hydrazide resin capture approach

for N-glycosylated surface proteins and flow cytometry confirmed

the surface expression of ICAM-3 on the naEFCs but not

HUVEC. Importantly, flow cytometry also confirmed the surface

expression of ICAM-3 on freshly isolated peripheral blood derived

CD133+CD117+ progenitor cells. Functional analysis demonstrat-

ed that ICAM-3 mediated naEFC rolling and adhesion events

under shear stress in vitro. Collectively, our studies recognise

ICAM-3 as a new adhesive molecule by which circulating naEFCs

may contribute to the aberrant vasculogenesis during disease.

Materials and Methods

Ethics statement
The collection of primary human umbilical vein endothelial

cells (HUVEC) and peripheral blood mononuclear cells (PBMC)

for use in this study was given ethical clearance from the Royal

Adelaide Hospital (RAH), Adelaide, South Australia. The

collection of primary human umbilical cord blood (HUCB) for

use in this study was given ethical clearance from the Human

Research Ethics Committee of the Children, Youth and Women’s

Health Service (CYWHS), North Adelaide, South Australia and

informed written consent was obtained from all subjects in

accordance with the ‘Declaration of Helsinki’. Animal experiments

(detailed below) were approved by the Animal Ethics Committee

of SA Pathology and conform to the guidelines established by the

‘Australian Code of Practice for the Care and Use of Animals for

Scientific Purposes’.

Isolation and culture of HUCB CD133+ non-adherent
endothelial forming cells (naEFCs) and early EPCs

HUCB (20–130 ml) was collected from healthy pregnant

women undergoing elective caesarean section into MacoPharma

cord blood collection bags (MSC1201DU; MacoPharma, Mou-

vaux, France) prior to dilution 1:1 with sterile phosphate buffered

saline (PBS) and mononuclear cells (MNCs) isolated via Lympho-

prepTM (Axis-Shield, Oslo, Norway). MNCs were incubated with

100 ml of human FcR blocking reagent (Miltenyi Biotec, Bergisch

Gladbach, Germany) and 100 ml of CD133+ microbeads (MACS,

Miltenyi Biotec) for 30 minutes at 4uC prior to isolation using the

AutoMacsPro (Miltenyi Biotec) as per manufacturer’s instructions.

CD133+ cells were resuspended at a concentration of 0.5–16106

cells/ml in endothelial growth media (EGM-2, Lonza, Basel,

Switzerland) complete with Bullet kit and supplemented with 10%

FCS, VEGF (5 ng/ml; Sigma, St Louis, MO, USA), insulin-like

growth factor-1 (IGF-1; 0.005 ng/ml; Gibco Invitrogen), basic

fibroblast growth factor (bFGF; 1 ng/ml; R&D, Minneapolis,

MN, USA) and ascorbic acid (0.1 mM; Sigma). Cells were seeded

onto pre-coated fibronectin (50 mg/ml, Roche, IN, USA) wells in a

falcon 24-well plates (BD Biosciences) and incubated at 37uC and

5% CO2 in a Hera Cell incubator (Thermo Scientific, Waltham,

MA, USA). Whilst in culture the non-adherent cells were

transferred to a new pre-coated fibronectin well with fresh

EGM-2 media (plus supplements) every 48–72 h. Unless otherwise

stated, naEFCs were cultured for 4–5 days prior to harvesting for

further analysis.

As comparator cells, ‘early EPCs’ were obtained by HUCB-

derived MNC CD133+ isolation using magnetic beads and

cultured, as above, on fibronectin in EGM-2 for 5 days as an

adherent population of cells which adopted a spindle-shaped

cluster similar to the first morphological description of ‘early

EPCs’ [22].

Endothelial Progenitor Cell Adhesion via ICAM-3
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Peripheral blood MNCs and human umbilical vein
endothelial cells (HUVEC)

Peripheral blood MNCs (PBMNCs) were isolated from healthy

individuals collected in lithium heparin coated Vacuette tubes

(Greiner Bio-One, Kremsmuenster, Austria). Primary HUVEC

were extracted from human umbilical veins by collagenase

digestion and cultured in HUVE media (Media 199 (Sigma);

containing 20% FCS (Hyclone, Utah, USA), endothelial growth

factor supplement (BD BioSciences, North Ryde, NSW, Aust.),

1.5% sodium bicarbonate, 2% HEPES buffer solution, Penicillin

Streptomycin, sodium pyruvate (Gibco Invitrogen, Gaithersburg,

MD, USA), heparin and non-essential amino acids (Sigma)) as

previously described [29,30] and were used no later than two

passages.

Flow cytometric analysis of cell surface protein
expression

Cells (naEFCs, early EPCs, freshly isolated CD133+ cells,

HUVEC and PBMNCs) were analysed for cell surface expression

of various markers by flow cytometry. Where indicated, cells were

treated with 5 ng/ml TNFa (R&D Systems) for 24 hours prior to

harvest. Cells were treated with 10 ml Human FcR block diluted in

30 ml HUVE wash (Media 199 (Sigma), 2% FCS, 1% 10 mM

HEPES and 1% penicillin streptomycin solution (Gibco) prior to

addition of primary antibodies. Cells were incubated in 100 ml

HUVE wash with either mouse anti-human VEGFR2 (1 mg,

Santa Cruz Biotechnology, Inc, Santa Cruz, CA, USA), mouse

anti-human vascular cell adhesion molecule-1 (VCAM-1, 2 mg,

generated in-house, clone 61.10F12), mouse anti-human ICAM-3

(1 mg, BD Biosciences) or relevant isotype control (1 mg, BD

Biosciences) followed by 1 mg biotinlyated goat anti-mouse Ig in

100 ml HUVE wash. Cells were blocked with 5 ml normal mouse

serum (SA Pathology, Adelaide, Australia) then immediately

incubated with conjugated streptavidin (PE, APC or PE-Cy7)

(BD Biosciences) added at 0.2 mg per test along with panels of

mouse anti-human conjugated antibodies; anti-CD117-APC or

PerCP-Cy5.5, anti-CD11b-pacific blue, anti-CD14-APC, anti-

CD144-FITC or PE, anti-CD31-PE or V450, anti-CD34-Percp-

Cy5.5, anti-CD45-FITC or Amcyan, anti-CD41a-FITC, anti-

CD3-FITC, anti-CD4-PE, anti-CD8-FITC, anti-CD19-APC,

anti-CD20-PE, anti-CD10-APC, anti-CD90-APC, anti-CD38-

PE-Cy7 or FITC (all BD Biosciences) and anti-CD133-PE

(Miltenyi Biotec) used as per manufacturer’s instructions for flow

cytometry in a final volume of 80 ml of HUVE wash. Cells were

resuspended in FACS fix (1% formaldehyde, 20 g/L glucose,

5 mM sodium azide in PBS) prior to analysis using a FACS Aria II

(BD Biosciences) with FACS DIVA (BD Biosciences). Further

analysis was performed using FCS Express 4 Flow Cytometry:

Research Edition (De Novo Software, CA, USA).

Incorporation of Acetylated-low density lipoprotein (Ac-
LDL) with Ulex europaeus lectin (UEA-1) binding

Cells were incubated at 37uC for 4 hours with 10 mg/mL 1,19-

dioctadecyl-3,3,39,39-tetramethylindocarbocyanine (DiI) perchlo-

rate-Ac-LDL (DiI-Ac-LDL; Biomedical Technologies, Stoughton,

MA, USA) and 10 mg/mL UEA-1-FITC (Sigma). The percentage

of cells within each population that incorporated DiI-Ac-LDL and

bound UEA-1-FITC was assessed using flow cytometry.

Matrigel tube formation assay – in vitro
In vitro tube formation of HUVEC and naEFCs was assessed

using a Matrigel matrix. HUVEC were stained with 10 mg/ml

DiI-Ac-LDL (Biomedical Technologies, Stoughton, MA) for

4 hours at 37uC, 5% CO2, washed once and incubated overnight

at 37uC, 5% CO2; naEFCs were stained with 0.5 mM CFDA-SE

(CFSE, Invitrogen) in 0.1% FCS in PBS for 10 minutes prior to

washing. The next day, 12 ml Matrigel (BD Biosciences) was added

to wells in a pre-warmed ibiTreat Angiogenesis m-slide (Ibidi,

Martinsried, Germany) and incubated at 37uC for $30 minutes.

Labelled HUVEC and naEFCs were seeded together in Matrigel

at a cell density of 1.76104 HUVEC alone or with 0.76104

naEFCs per well, in duplicate. Tube formation was monitored

regularly and 10–15 overlapping phase contrast images were

captured using an inverted IX70 microscope 46/0.13NA obj, an

S15 F view camera and Analysis Life Sciences software (Olympus)

after 6 hours. These overlapping images were ‘‘stitched’’ together

using PTGui Pro software (New House Internet Services B.V.,

Rotterdam, The Netherlands) and tube, branch and loop numbers

were quantified from each entire well using the WimTube

algorithm (Wimasis GmbH, Munich, Germany) [31]. Fluorescent

and phase contrast images were also captured using an IX81

microscope (Olympus) with 106/0.4NA obj and a Hamamatsu

Orca-ER camera. Fluorescence images were acquired using CellR

software (Olympus Soft Imaging System).

Matrigel plug assay – in vivo
Female NOD/SCID mice (Animal Resources Centre, Western

Australia) were used between 6–8 weeks of age and housed in

specific pathogen-free conditions in the SA Pathology Animal

Care Facility. naEFCs were stained with 0.5 mM CFSE in 0.2%

FCS in PBS for 7 minutes prior to 56105 naEFCs being mixed in

500 ml Matrigel with 2 mg/ml basic fibroblast growth factor

(bFGF, R&D) and 50 units/ml heparin (Sigma-Aldrich) and

injected subcutaneously into one flank. Each mouse also received a

control plug of 500 ml Matrigel with bFGF and heparin without

cells in the alternate flank. Mice were humanely killed by cervical

dislocation 7 days post Matrigel injection. Plugs were removed,

washed in PBS and frozen in O.C.T. compound (Tissue-Tech,

Tokyo, Japan) prior to 10 mM sections being cut, acetone fixed

and stained for CD144 (1:500, Sigma) for 2 hours at RT prior to

being washed and incubated with Alexa594-conjugated anti-goat

(1:500 dilution, Invitrogen) for 30 min on ice and mounted with

Prolong Gold antifade reagent with DAPI (Invitrogen). Negative

controls were secondary antibody alone. Images were produced

using Nikon C1-Z Confocal Microscope at the Detmold Imaging

Core Facility, SA Pathology where the C1-Z was equipped with

three solid lasers, (Sapphire 488 nm, Compass 532 nm, and

Compass 405 nm near UV) and an inverted Nikon E-2000

Fluorescence Microscope. The objective used was a Nikon Plan

Apo-chrome 606water (NA = 1.2) and the triple labelled samples

were imaged with three separate channels (PMT tubes).

To determine functionality of tubes formed in Matrigel plugs

mice were injected i.v. with 200 mg of tetramethylrhodamine

isothiocyanate (TRITC)-labeled lectin (Ulex europeaus, Sigma) 7

days post Matrigel injection. After 20 min of circulation, mice

were heart-perfused with PBS followed by 4% paraformaldehyde

(PFA) in PBS. Plugs were removed, washed in PBS and frozen in

O.C.T. compound. Four mm frozen sections were analyzed. For 2-

photon microscopy a LSM 710 NSO microscope (Carl Zeiss Pty

Ltd, Jena, Germany) with plan-Neofluar objective 206/0.8 (,36
digital magnification) and laser lines of 488 nm wavelength for

CFSE, 555 nm wavelength for TRITC-lectin and 405 nm

wavelength for DAPI detection was used. Images were processed

by Zen system 2011 (Carl Zeiss) and PHOTOSHOP CS4 (Adobe

Systems, San Jose, CA).

Endothelial Progenitor Cell Adhesion via ICAM-3
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Dispase digestion of Matrigel plugs
Using the aforementioned protocol of Matrigel plug assay, plugs

were harvested from NOD/SCID mice 7 days post CFSE-naEFC

and Matrigel injection and washed in PBS. Plugs were macerated

and incubated in 3 ml of Dispase (BD Biosciences) for 2 hours at

RT to isolate the cells within the excised plug. The mixture was

then pipetted repetitively to disperse the cells and 0.01M EDTA/

PBS was added to stop the Dispase activity. Cells were put through

a 70 mm cell strainer (BD Biosciences) to remove debris before

flow cytometry staining as described above in ‘Flow cytometric

analysis of cell surface protein expression’.

Hematopoietic colony formation assay
Freshly isolated CD133+, CD1332 cells as well as naEFCs were

plated in methylcellulose with a 106 cell solution (200 ml, IMDM

with 2% FCS) mixed with 2 ml of MethoCult (Stem Cell

Technologies) containing erythropoietin (EPO; 3 U/ml), granulo-

cyte macrophage colony-stimulating factor (GM-CSF; 20 ng/ml),

stem cell factor (SCF; 50 ng/ml) and interleukin 3 (IL-3, 10 ng/

ml). The cell/MethoCult mix (0.37 ml) was added to 24 well plate

wells at 1670 cells/well. Assays were incubated at 37uC, 5% CO2

and hematopoietic colonies were scored after 14 days. Cytospins

were prepared from hematopoietic colonies and stained by May

Grunwald/Giemsa stain (both BDH).

Cytokine and Adhesion bead assays
The secretion of cytokines and adhesion molecules by naEFCs

into day 4 culture supernatant was assessed using the FlowCyto-

mix Human Th1/Th2 11 plex Kit and the FlowCytomix Human

Adhesion 6 plex Kit (both Bender MedSystems, GmbH Campus,

Vienna, Austria) as per the manufacturer’s instructions and

analysed using the FC500 (Beckman Coulter) and FlowCytomix

Pro (Bender MedSystems).

Protein expression analysis by mass spectrometry
naEFCs and adherent HUVEC were oxidized by adding 1 mM

of sodium periodate (Sigma) in PBS at 4uC for 10 minutes. After

removal of sodium periodate with PBS the cells were lysed for

15 minutes (100 mM CH3COONa, pH 5.5, 1% Glucoside, 1%

Triton X100) and the oxidised glycoproteins were conjugated to

the hydrazide-linked beads at room temperature for at least

24 hours. Non specifically bound proteins were removed by

several washes with 6 M guanidine HCl in 50 mM Tris pH 8.0.

Proteins coupled to the beads were reduced with 0.01 M DTT in

50 mM Tris, pH 8.0 at 60uC for 1 hour followed by alkylation

with 5 times molar excess of Iodoacetamide for 30 minutes in the

dark at room temperature. After several washes the proteins were

digested for 2 hours with 1 mg of trypsin in 60 ml of 50 mM Tris.

pH 8.0, 10% ACN. The released tryptic peptides were removed

by further washes. Residual trypsin was inactivated by reduction

and alkylation as described above followed by a wash with 6 M

Guanidine HCl, 50 mM tris, pH 8.0 buffer. N-linked glycopep-

tides were released from the beads by addition of 500 Units of

PNGase F and incubated overnight at 35uC. The released peptides

were dried and resuspended in 1 ml of 8M urea and diluted with

0.1% formic acid(aq). The peptides were analysed by LC-MALDI-

tof/tof mass spectrometry or LC-MicroTOF-Q-MS/MS (Bruker

Daltonics, Bremen, Germany).

For MALDI-MS, tryptic peptides were separated by RP-HPLC

(Ultimate 3000 system, Dionex, USA) using capillary column

(Vydac Everest, C18 300 Å, 5 mm, 150 mm ID, 150 mm length).

Samples were washed for 10 minutes with buffer A (5% (v/v)

ACN and 0.05% (v/v) TFA(aq)) at 1 mL/min. Peptides were

eluted with a gradient of 1% increment/minute of buffer B (80%

(v/v) ACN in 0.05% TFA(aq)) for 12 minutes followed by 1.5%

increment/minute of buffer B for 25 minutes. The column eluate

was spotted onto a Anchorchip 800/384 plate (Bruker Daltonics,

Germany) with a sheath flow of CCA (a-cyano-4-hydroxycin-

namic acid) matrix using Proteineer fc fraction collector (Bruker

Daltonics) with 10 seconds for each spotted fraction. Each spot

was analysed using a UltraflexIII MALDI-tof/tof-MS (Bruker

Daltonics) under control of Bruker’s proprietary software, WARP-

LC.

For LC-MicroTOF-Q-MS, tryptic peptides were separated by

RP-HPLC (RSLCnano system, Dionex, USA) using a nano

column (Acclaim Pepmap RSLC, 2 mm C18 75 mm6150 mm)

following trapping on a trap column (Acclaim Pepmap 100

nanotrap C18 100 mm620 mm) prior to injection into the

MicroTOF-Q MS instrument. The MS-instrument was setup for

the highest sensitivity and the data collected were analyses by

Bruker Data Analysis software package.

All MS and MS/MS data were searched using three search

engines: Mascot (Matrixscience.co.uk), X!Tandem (The Global

Proteome Machine) and OMSSA (NCBI). Initial search results

from all three search engines were then statistically analysed at the

peptide level using Peptide Prophet [32]. Peptide Prophet results

were then analysed using iProphet [33], which combines evidence

from multiple identifications of the same peptide across multiple

search engines and spectra, and finally with Protein Prophet [34]

to assess confidence in identifications at the protein level. Only

identifications satisfying a 1% false discovery rate were accepted.

Isolation of total RNA from naEFCs and HUVEC
Total RNA was isolated from naEFCs and HUVEC using

RNEasy micro plus or RNEasy mini kits (QIAGEN, Hilden,

Germany). RNA integrity and quantity was determined using

Agilent 2100 bioanalyzer.

Gene expression analysis by microarray
150 ng of RNA from naEFCs or donor matched HUVEC was

amplified and labelled using ApplauseTM WT-AmpST/WT-Amp

Plus ST Systems. (NuGen Technologies Inc., San Carlos, CA,

USA). The labelled and amplified RNA was hybridized to

Genechip Affymetrix Human Exon 1.0ST arrays as per the

manufacturer’s protocol (Affymetrix, Santa Clara, CA, USA) in

the microarray facility at Mater Adult Hospital, Brisbane,

Australia. Human Affymetrix exon arrays were scanned with

Gene chip 3000 7G scanner. Robust multi-array analysis (RMA)

was applied for normalizing and summarizing probe level intensity

measurements from Affymetrix gene chips. Hybridization quality

for each array was assessed using box plots and principal

component analysis (PCA) of probe-level data. A parametric

Welch’s t-test (where variances were not assumed equal) was

performed on 19524 probes for naEFCs with a p-value cut off of

0.05 and a fold change cut off of 1.5. Multiple significant probes

for the same were removed and the probe with the highest fold

change retained for further analysis. Multiple testing correction

(Benjamini and Hochberg False Discovery Rate) was then applied

to genes that had passed the parametric Welch’s t-test based on the

total detected probe-set of 14246 probes to reduce false positives.

Significantly upregulated genes were grouped according to their

potential relevant functions in progenitor cells. Functional

categorization of genes was performed using a combination of

Agilent technologies gene ontology classifications and Ingenuity

Pathway Analysis (IPA). The data discussed in this manuscript

have been deposited in the NCBI gene expression omnibus (GEO

Accession number: GSE25979).
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Quantitative Polymerase Chain Reaction (qPCR)
Quantification of mRNA levels was carried out using qPCR.

Primers designed for human ICAM-3 (F-59AGTGACGACG-

GACGCAGCTT39, R-59GGGCATGTGGCTCGGTCAAT39)

using Primer Blast (NIH, MD, USA), and purchased from

GeneWorks (Hindmarsh, SA, Aust.). Where possible, primers

were designed to span an intron/exon border to ensure no

genomic DNA amplification. qPCR amplification was performed

using QuantiTectTM SYBR Green master mix (QIAGEN) on a

Rotor-Gene thermocycler (Corbett Research, Mortlake, NSW,

Aus.) with reaction parameters: 15 minutes at 95uC, then cycling

of 10 seconds 95uC, 20 seconds 55uC and 30 seconds 72uC; for 45

cycles followed by a melt phase. Data obtained was analysed using

Rotor-Gene Analysis Software version 6 (Corbett Research).

Relative gene expression levels were calculated using standard

curves generated by serial dilutions of cDNAs normalised to the

human house-keeping gene cyclophillin A (CycA) (F-

59GGCAAATGCTGGACCCAACACAAA-39, R-59CTAGG-

CATGGGAGGGAACAAGGAA39).

Parallel Plate Flow Chamber Assay
HUVEC were cultured until confluent on mSlideIV0.4 chambers

(Ibidi) and treated with or without 5 ng/mL TNFa for 5 hours.

naEFCs or heparinized whole blood at 1:10 dilution with Hanks

Balanced Salt Solution (HBSS, Sigma) were treated with or

without antibodies to ICAM-3 (1 mg, BD Biosciences) or isotype

control (1 mg, IgG2b, BD Biosciences) 30 minutes prior to cell

perfusion at 0.8–16106 cells/ml across substratum by syringe

pump (NE-1000, New Era Pump System, Inc, Wartagh, NY,

USA) at constant rate of 2 dynes/cm2 for 5 minutes followed by

HBSS wash. Notably, due to the low proportion of naEFCs in

HUCB (,3% of cells) [35], the number of cells (0.5–26106 cells at

day 4) available was limited so donors were pooled immediately

prior to the experiments. Cells were visualised using 106/0.3 NA

objectives and phase-contrast microscopy on an inverted micro-

scope and images recorded using a digital camera (Olympus IX70

and SIS F-view, Olympus, Mount Waverly, Vic, Aus). Five

random areas per slide recorded for analysis using AnalySIS Life

Sciences software (Olympus). Adherent cells were defined as those

remaining stationary for at least 10 seconds.

Statistical Analysis
Results were expressed as mean 6 standard error of the mean

(SEM) from at least 3 experiments. Unless otherwise stated, an

unpaired Student T-test, 1- or 2-way ANOVA for multiple

comparisons was performed to determine statistical significance

between groups with p values,0.05 considered significant.

Results

Enrichment of a non-adherent CD133+ with an
endothelial progenitor cell phenotype

MNCs were isolated from HUCB via lymphoprep density

gradient centrifugation prior to enrichment for the progenitor cell

marker CD133 cells using magnetic sorting. CD133+ enriched

MNCs were cultured in EPC specific growth media on fibronec-

tin-coated wells at a concentration of 0.5–16106 cells/ml. At day 2

of culture, the majority of cells remained non-adherent and were

replated into a new fibronectin-coated well with fresh media for

continued culture.

Phenotyping of cell surface markers on the HUCB-derived

naEFC population was performed after 4 days of culture by flow

cytometry and compared to mature ECs (HUVEC) isolated from

the same donor. Investigation of the hematopoetic progenitor cell

markers CD133, CD117 and CD34 profile [15] on the naEFCs

suggests that the percentage of cells expressing CD133 is sustained

at approximately 6965% at day 4 of culture (Figure 1A). Also

shown in Figure 1A, CD117 was expressed on 8065% of the

naEFCs at day 4 of culture. The third progenitor marker, CD34

demonstrated a similar profile with approximately 7864% of the

naEFCs expressing CD34 at day 4 of cell culture (Figure 1A). As

expected, CD133 and CD117 expression was significantly lower

on HUVEC (261% and 1065%, respectively) while CD34

exhibited robust expression of 8269% on these cells (Figure 1A).

We next investigated the mature endothelial cell markers of

VEGFR2, CD31 and CD144. Also shown in Figure 1A, CD31

was expressed on 8662% of the 4 day cultured naEFCs and was

similar to the 9861% expression by HUVEC. The number of

naEFCs expressing VEGFR2 was uniformly lower in the naEFCs

at 1562% when compared to the HUVEC population at

45610%. Notably, the need for a commercially available reliable

antibody to VEGFR2 is still missing [36] and as such the data

presented herein may under represent the true levels of VEGFR2

expressed by these cells. CD144 was not detected by flow

cytometry on the naEFCs, but was expressed at high levels on

9962% of the HUVEC population (Figure 1A). These data

suggest that 4 days of culture allows for enrichment of a non-

adherent EPC population which express both hematopoietic

progenitor cell and endothelial cell markers are the subject of

further investigation in this study.

As circulating EPCs can be subdivided into two main categories,

hematopoietic lineage and non-hematopoietic lineage [15,28,37],

we investigated the naEFCs for surface expression of CD45,

CD11b and CD14. Flow cytometric analysis suggested that CD45

was expressed by a majority of the naEFCs with little to no CD45

expression observed on the HUVEC population (Figure 1B).

Notably, the ratio of mean fluorescence intensity (MFI) of CD45

expression over isotype control staining on the naEFCs was

significantly lower than that expressed by CD14+ monocytes from

freshly isolated PBMNCs (ratio MFI naEFCs 2166 versus

monocytes 4862, n = 3). Also shown in Figure 1B, we were

unable to detect both CD11b and CD14 on both the naEFCs and

HUVEC. This is in contrast to the 100% expression by the

monocyte population gated by forward and side scatter profile

from PBMNCs (not shown).

To investigate whether the culture conditions may have

contributed to the naEFC phenotype we compared these cells to

freshly isolated CD133+ cells. As shown in Figure S1, CD133+

isolated cells which have not been subjected to a 4 day enrichment

process exhibit a mostly uniform expression of CD133, CD117

and CD31, but a heterogeneous expression of CD34, CD144,

CD45, CD11b and CD14. These data support previous reports of

CD133 being expressed on a variety of cell types [38]. To confirm

that the naEFCs are different from other ‘early EPCs’ we

compared the non-adherent naEFCs to the established protocol

of adherent CD133+ cells cultured in EGM-2 for 5 days

[15,19,22]. As shown in Figure S1, the ‘early EPCs’ expressed a

very different surface antigen profile with little to no CD117,

CD34 and CD144 but a homogeneous expression of CD31,

CD45, CD11b and CD14. Taken together, these data suggest that

we have enriched for a non-adherent EPC-like cell within 4 days of

CD133+ cell isolation and that these cells differ from both the

heterogeneous population of freshly isolated CD133 cells as well as

‘early EPCs’ [15,19].

A recent study by Prokopi et al suggested that MNCs may

acquire ‘endothelial’ characteristics of CD31 expression by taking

up platelet microparticles [39]. To confirm that expression of

CD31 is not platelet microparticle derived, we investigated the

Endothelial Progenitor Cell Adhesion via ICAM-3

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e46996



surface expression of the platelet-specific marker CD41a on

naEFCs. As shown in Figure S2A, the CD133+CD117+ double

positive cells (left panel) did not express CD41a at the cell surface

(right panel) and as such are not platelet microparticle derived.

As CD45 is considered to be a pan-leukocyte marker typically

expressed by hematopoietic cells, its moderate expression on the

naEFCs warranted investigation of additional lineage markers. As

shown in Figure S2B, the naEFCs did not express CD3, CD4,

CD8, CD20, they showed low expression of CD19 (864%

positive) and significant expression of CD90 (6365% positive) and

CD38 (8463% positive). Taken together, these results suggest that

the heterogeneous nature of CD133+ HUCB derived MNCs

enriches into an ‘EPC-like’ progenitor population by day 4 of

culture.

Functional characterization of naEFCs
The naEFCs were next scrutinized for their functional

capabilities. First, we examined their capability to take up

acetylated low-density lipoprotein (Ac-LDL) and bind Ulex

europeaus lectin (UEA-1). As shown in Figure 2A, flow cytometric

analysis suggests that the progenitors take up Ac-LDL and bind

UEA-1 with the single cluster supporting a homogeneous

population. Importantly, the number of these cells double positive

for Ac-LDL uptake and lectin binding is statistically lower than

donor matched HUVEC, this is indicative of an immature

vascular phenotype [26,40].

To begin to explore a pro-angiogenic potential of the naEFCs

we investigated their secretion of cytokines and soluble adhesion

molecules. Using the Human Th1/Th2 11 plex and Human

Adhesion 6 plex FlowCytomix bead arrays we detected high levels

of interleukin (IL)-8 (10086380 pg/ml from 106 cells) and soluble

Figure 1. Surface expression profiling of freshly isolated CD133+ cells, naEFCs and HUVEC. In (A), freshly isolated CD133+ cells were
phenotyped for hematopoietic progenitor cell and endothelial cell markers by flow cytometry. In the histograms, the light dotted lines represent
unstained cells and the dark lines represent stained cells of one representative experiment from n$3. In (B), CD133+ enriched cells at 4 days of culture
(naEFCs) and HUVEC were more extensively assessed for surface antigen phenotype. The histograms show one representative experiment from n$3
with the light and dark lines as above. In (C), the pan-leukocyte marker CD45 and the myeloid markers CD11b and CD14 were examined with the light
dotted lines representing unstained cells and the dark lines representing stained cells of one representative experiment from n$3.
doi:10.1371/journal.pone.0046996.g001

Endothelial Progenitor Cell Adhesion via ICAM-3

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e46996



CD31 (4969 pg/ml from 106 cells) in the culture supernatant of

the untreated naEFCs when compared to media alone.

We next tested the naEFCs in endothelial tube formation assays

using Matrigel; an extracellular matrix derived from murine

sarcoma cells that supports vascular tube formation in vitro and

thus mimics in vivo vasculogenesis. In an in vitro assay, while the

naEFCs did not form tubules on their own (not shown), when co-

cultured with HUVEC, naEFCs demonstrated an ability to

migrate to each other as well as the HUVEC to interact and

form a capillary-like network within 6 hours of seeding. This is

shown in Figure 2B where DiI-Ac-LDL and CFSE were used in a

dual labelling system to distinguish HUVEC and naEFCs,

respectively. As shown in Figure 2C, quantification of the

angiogenic effect of the naEFCs in vitro was executed using the

Figure 2. Vascular properties of naEFCs. In (A), representative dot plots from one experiment show the incorporation of DiI-Ac-LDL and binding
of UEA-1-FITC by naEFCs and HUVEC. The percentage of cells double positive for DiI-Ac-LDL uptake and binding of UEA-1-FITC was quantified.
*p,0.05, versus naEFCs, n$3. In (B), representative image of a Matrigel assay at 6 hours post seeding of CFSE-labeled naEFCs (green) and DiI-Ac-LDL
positive HUVEC (red). Results represent one experiment of n = 5 with images captured by transmission and confocal microscopy. In (C), the number of
tubes, branches and loops formed in the endothelial tube formation Matrigel assay in vitro with HUVEC alone or HUVEC co-cultured with naEFCs.
#p = 0.05 versus HUVEC alone, *p,0.05 versus HUVEC alone, n = 5. In (D), a representative image of the tube formation of HUVEC alone (upper
image) or HUVEC co-cultured with naEFCs (lower image) in vitro. Results represent one experiment of n = 5 with images captured by transmission
microscopy. In (E), representative histograms showing increased surface expression of VCAM-1 following TNFa administration for 24 hours on naEFCs
(left panel) and HUVEC (right panel), n = 4–6.
doi:10.1371/journal.pone.0046996.g002
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WimTube algorithm [31] and identified a significant increase in (i)

the number of tubes formed, (ii) the number of branching points

extruding from the tubes (exemplified in Fig. 2D) and (iii) the

number of loops formed.

Expression of the endothelial cell predominant adhesion

molecule vascular cell adhesion molecule (VCAM)-1 was assessed

on naEFCs and HUVEC following stimulation with TNFa by flow

cytometry. As expected, HUVEC exhibited increased levels of cell

surface VCAM-1 following TNFa treatment for 5 hours. Howev-

er, this was not observed on the naEFCs (not shown). Suarez et al

performed a TNFa exposure time-course on HUVEC wherein

VCAM-1 expression was significantly elevated at 24 hours

compared to 5 hours [41]. We thus increased the TNFa exposure

to 24 hours for both the naEFCs and HUVEC and observed that

surface expression of VCAM-1 was significantly increased on both

the naEFCs and HUVEC populations when compared to

untreated controls (Figure 2E).

An in vivo Matrigel plug assay supports the generation of lumen

containing vasculature lined by mature human ECs. As shown in

Figure 3A, when 56105 CFSE-labelled naEFCs were mixed with

500 ml Matrigel (without co-culture with HUVEC) and injected

subcutaneously into the flank of NOD/SCID mice, within 7 days

the green fluorescent naEFCs generated lumen, forming vascula-

ture within the plug. This is shown using confocal microscopy with

the naEFCs (green) and a counterstain for nuclei (blue) from

frozen sections wherein nuclei can be identified within the circular

structure formed by the CFSE-naEFCs (Figure 3A, arrows).

Figure 3A also shows CD144 expression (red) on a cross-section of

a CFSE-naEFC formed vessel (left image) as well as intercellular

expression of CD144 on CFSE-naEFCs (right image). Although,

the anti-CD144 antibody used here is cross-reactive with both

human and mouse CD144, with the increased intensity of CD144

staining at the exact location of the green CFSE-naEFC it is

tempting to speculate that the naEFCs have differentiated into a

mature CD144+ EC in vivo, a marker which we could not readily

detect on the in vitro cultured naEFCs (Figure 1B).

Further investigation of tube forming capabilities was under-

taken by i.v. injection of with 200 mg of tetramethylrhodamine

isothiocyanate (TRITC)-labeled UEA lectin and after 20 min of

circulation, mice were heart-perfused with PBS followed by 4%

paraformaldehyde (PFA) in PBS. Matrigel plugs were explanted,

postfixed and sections analysed by 2-photon microscopy. As shown

in Figure 3B, CFSE-naEFCs (green) formed a tubule structure

within which the circulating TRITC-lectin bound (red) suggesting

lumen formation by the human cells.

To determine the homogeneity of the naEFCs following 7 days

in vivo, we executed flow cytometric analysis on dispase digested

cells from the explanted Matrigel plugs. As shown in Figure 3C,

mononuclear cells isolated from the naEFC containing plugs, but

not the contra-lateral control plugs (which contained no naEFCs),

held CFSE expressing cells. Gating on the CFSE positive cells and

using human specific monoclonal antibodies revealed their high

expression of CD133, CD34 and CD144, low expression of

CD117 and VEGFR2, and no expression of CD31. As important,

these cells were CD45 low and did not express CD14 (Figure 3C,

right panel histograms). As expected, surface expression of the

aforementioned human antigens was not detectable on the MNC

gated cells digested out of the control plugs (Figure 3C, left panel

histograms).

Multipotency of naEFCs
Asahara recently demonstrated that a single HUCB derived

CD133+ cell could give rise to cells of either the hematopoietic or

endothelial lineage [26]. Using a similar methylcellulose hemato-

poietic colony formation assay we executed a fate analysis of

naEFCs. As shown in Figure 4, when the naEFCs were cultured

with GM-CSF, SCF, IL-3 and EPO for 14 days a variety of cell

types were detected including early progenitors of both erythrocyte

and myeloid lineages (CFU-GEMM), the erythrocyte lineage

(BFU-E), the granulocyte/monocyte progenitor lineages CFU-

GM, CFU-G and CFU-M. May Grunwald/Giemsa-stained

cytospin preparations of methylcellulose cultured cells confirmed

the presence of hematopoietic cells, including those of the myeloid

lineage (Figure 4). Also shown in Figure 4, a comparison of freshly

isolated HUCB derived CD133+ and CD1332 cell fractions

alongside the naEFCs which suggests a similarity between the

naEFCs and the CD133+ cells with respect to the number and type

of colonies formed. These functional assays suggest that the

naEFCs have multipotential lineage capabilities and that given the

correct growth factor cocktail that a variety of lineages can be

obtained.

Intercellular adhesion molecule (ICAM)-3 mRNA is
upregulated in naEFCs

Gene expression profiling of naEFCs versus their donor

matched HUVEC was performed using Genechip Affymetrix

Human 1.0 ST Exon arrays (Figure 5A). Figure 5B illustrates the

gene expression scatter profile after robust multi-array analysis

(RMA) normalization and the complete microarray data set is

available via the NCBI Gene Expression Omnibus (GEO)

(Accession number GSE25979). Using a p-value cut-off of #0.05

(see methods for full statistical analysis) and a fold change cut-off of

1.5, a total of 977 had a significantly higher expression and 1128

genes had a significantly lower expression in naEFCs when

compared to HUVEC. Notably, data analysis confirmed a higher

expression of progenitor cell markers CD133, CD117, CD44 and

chemokine (C-X-C motif) receptor 4 (CXCR4) in the naEFC

population when compared to HUVEC (Table 1). Similarly,

mRNA expression of the mature endothelial cell markers (CD31,

CD144, CD62E and von Willebrand Factor) was significantly

higher in HUVEC when compared to the naEFCs (Table 1).

We next investigated the potential relevant function of the genes

upregulated in the naEFCs using a combination of Gene spring

GX11 Gene Ontology classifications, ingenuity pathway analysis

(IPA) and Ace view search engines. The most significantly

represented biological processes include cancer, cardiovascular

diseases, cardiovascular system development and function, cell

signaling, cellular growth and proliferation, haematological

disease, cellular function and maintenance, lipid metabolism and

metabolic disease. Importantly, all of these processes are known to

be associated with or involved in vascular dysfunction [42].

Using the aforementioned search engines, we next mined the

data for genes which may contribute to the functional activity of

circulating naEFCs. Within this search, ICAM-3 was identified as

a new putative adhesion molecule for naEFCs, exhibiting a 4.3

fold increase in mRNA expression over their donor matched

HUVEC (Table 1). To validate these results new biological

replicates were examined by qRT-PCR with results demonstrating

,30-fold increase in mRNA expression of ICAM-3 in progenitors

versus donor matched HUVEC (Figure 4C).

Mass spectrometry confirms ICAM-3 surface expression
on naEFCs

Proteome profiling using tandem mass spectrometry is an

established technology for the detection of cell surface proteins.

Protein glycosylation is a common post-transcriptional modifica-

tion with N-linked glycosylation prevalent in proteins destined for
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Figure 3. naEFCs express mature EC markers and form perfused tubes in vivo. In (A), CFSE-labelled naEFCs mixed with Matrigel prior to
injection into the flank of NOD/SCID mice, after 7 days the plugs were removed, processed and sections counterstained for nuclei with DAPI prior to
imaging by confocal microscopy. The upper left image shows the cross section of a CFSE-naEFC generated tube-like structure (green) within which
the nuclei of cells can be seen (blue) at 606 mag (arrows). The upper right image is the control plug in which no naEFCs were added. Images
represent one experiment of n$3. Similar sections were stained for CD144 and images captured by confocal microscopy with CFSE-naEFCs (green)
exhibiting CD144 (red) as a cross section of a tube (lower left image) and CD144 staining in the junctions of the CFSE-naEFCs (lower right panel).
Images are a representative of n$3. In (B), similar experiments were executed and at day 7 post-implant the mice were injected i.v. with TRITC-lectin

Endothelial Progenitor Cell Adhesion via ICAM-3

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e46996



the extracellular environments [43]. Herein we enriched for

surface glycoproteins on the naEFCs and donor matched HUVEC

by selective capture of N-glysocylated membrane proteins onto

beads using hydrazide chemistry followed by enzymatic release of

the peptides and subsequent MALDI-tof/tof-MS and MicroTOF-

Q-MS/MS tandem mass spectrometry. Protein hit lists were

generated by searching Swissprot database. The integrity of the

hits was ensured by the inclusion of N-glycosylations sites as well as

an increment of the mass of 1 Da due to the change of Asn to Asp.

Multiple MS runs using up to 3 biological replicates identified over

750 glycoproteins from the naEFC preparations with recognition

of CD133, CD117 and CD44 on these cells but not HUVEC

(Table 2); CD31 was detected on both cell types and CD144 was

detected on HUVEC but not the naEFCs. Within this list, ICAM-

3 was repeatedly detected on the naEFCs but was not observed in

the HUVEC glycoprotein preparations. As shown in Figures 5D

and 5E, flow cytometric analysis confirmed the surface expression

of ICAM-3 on the naEFCs and not on HUVEC. Confirmation of

ICAM-3 expression on bona fide circulating progenitor cells was

obtained using flow cytometry which repeatedly demonstrated its

expression on freshly isolated CD133+CD117+ progenitor cells

circulating in the peripheral blood (Figure 5F).

ICAM-3 mediates naEFC cell rolling and adhesion events
under shear stress

To investigate the potential use of ICAM-3 by naEFCs, a

parallel plate flow chamber assay was performed. As shown in

Figure 6A–C and Video S1, when naEFCs were perfused over

untreated HUVEC at a rate of 2 dynes/cm2, negligible naEFC

rolling or adhesion was observed. By contrast, when the HUVEC

were stimulated with TNFa for 5 hours a significant increase in

naEFC rolling and adhesion was observed (Figures 6A–C and

Video S1). When naEFCs were pre-treated with a blocking

ICAM-3 antibody 30 minutes prior to perfusion over TNFa

activated HUVEC a significant decrease in the number of rolling

and adherent naEFCs was observed when compared to both

isotype control and untreated cells (Figure 6A–C and Video S1).

Interestingly, studies investigating the role of ICAM-3 in whole

blood rolling and adhesion on TNFa-treated HUVEC suggested a

different role for this adhesion molecule. As shown in Figures 6D–

E, when compared to an isotype control antibody, the adminis-

tration of a blocking antibody to ICAM-3 did not affect the rolling

of whole blood cells on the endothelium but demonstrated a

significant attenuation in cell adhesion.

Based on these results we returned to the Matrigel assay and

investigated the role of ICAM-3 in tubule formation using

progenitor cell co-culture experiments with HUVEC. In repeated

experiments we were unable to demonstrate that administration of

a blocking antibody to ICAM-3 altered tube formation (not

shown).

Discussion

Regulation of blood vessel homeostasis and turnover is essential

for the function of all organs and tissues during embryonic

development and in adulthood. Thus, there is great interest in

understanding the mechanisms that regulate endothelial cells in

different vessels as well as identifying possible sources for their

replacement when vascular complications occur. A seminal article

identified EPCs as cells that circulate in peripheral blood and

express CD34 and VEGFR2 [17], however mature EC and

hematopoietic cells also express these cellular markers and they

can be mobilised to sites of neovascularisation. A decade and a half

later, a definitive delineation of EPCs and protocols to unambig-

uously isolate these cells in vivo remains elusive. In fact, a human

EPC clonogenic assay recently developed by Asahara’s laboratory

demonstrated that a single HUCB derived CD133+ cell can

develop into a colony forming EPC as well as a hematopoeitic

prior to exsanguinations, plugs removed, processed and sections counterstained for nuclei with DAPI prior to imaging by confocal microscopy. The
representative image shows the cross section of a CFSE-naEFC generated tube-like structure (green, upper left image), TRITIC-lectin (red, upper right
image), DAPI counterstain (blue, lower left image) and the merged image (lower right). In (C), CFSE-naEFCs were digested from explanted Matrigel
plugs using dispase and phenotyped for hematopoietic progenitor cell and endothelial cell markers by flow cytometry (right panel); cells from contra-
lateral control Matrigel plugs were similarly examined for antigen expression (left panel). In the histograms, the light dotted lines represent unstained
cells and the dark lines represent stained cells of a representative of repeated experiments.
doi:10.1371/journal.pone.0046996.g003

Figure 4. Hematopoietic properties of naEFCs. naEFCs were seeded in MethoCult and growth factors GM-CSF, IL-3, SCF and EPO for 14 days
prior to colony counting and staining with May Grunwald/Giemsa to assess cellular morphology. naEFCs formed blast-forming unit-erythroid (BFU-E),
colony-forming units (CFU)-GEMM, -GM, -G and -M colonies in methylcellulose. Colony formation was photographed and quantified after 14 days and
compared between naEFCs and freshly isolated CD133+ and CD1332 cells (mean 6 sem, n = 3).
doi:10.1371/journal.pone.0046996.g004
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progenitor cell. This is congruent with the identification of a

CD133+CD34+CD45+CD38+ common progenitor for endothelial,

myeloid and lymphoid precursors in HUCB [44] and multipotent

progenitor cells in human peripheral blood [45]. An important

role for CD133 on EC precursors was recently demonstrated by

Janic et al who showed that HUCB-derived CD133+ cells in

culture contained mainly EPCs and that long term in vitro

conditions facilitated the maintenance of these cells in the state of

commitment towards endothelial lineage [46].

In this study we have extensively characterized a tube-forming

non-adherent population of EPCs (naEFCs) and executed a

genomic and proteomic comparison between these cells and donor

matched HUVEC. Herein we demonstrate that HUCB derived

CD133+ non-adherent progenitor cells cultured for 4 days in

vascular cell supportive media expressed CD133, CD117, CD34,

CD31, VEGFR2, CD45, CD90 and CD38 at the cell surface but

not CD3, CD4, CD8, CD10, CD11b, CD14, CD19, CD20 or

CD41a. These progenitor cells demonstrated multipotent pro-

angiogenic potential with colony formation in Methocult, indic-

ative of hematopoietic cell growth, as well as features of

endothelial cells with (i) incorporation of Ac-LDL and binding of

UEA-1, (ii) the release the pro-angiogenic cytokine IL-8 and

soluble adhesion molecule CD31, (iii) upregulation of VCAM-1

when stimulated with TNFa, (iv) when seeded together with

HUVEC in Matrigel in an in vitro assay the progenitor cells

exhibited vascular potential by aligning with tubular structures,

increasing tube number, vascular branching from the tubes as well

as loops and (v) a capability to contribute to lumen containing

tubule structures in vivo which express CD144. A genomic and

proteomic profile comparison between the naEFCs and HUVEC

Figure 5. Gene expression analysis of naEFCs versus HUVEC. In (A), a heat map illustrating the hierarchical clustering of Log2 relative gene
expression in 3 separate HUVEC and naEFC samples. In (B), scatter data showing the average gene expression data in naEFCs and HUVEC. The dots
represent the gene expression of UCB CD133+ 4 day cultured naEFCs versus HUVEC. The diagonal lines indicate the cut off value of 1.5 fold activation
and genes coloured on the basis of expression level (yellow, evenly expressed genes; blue, naEFC upregulated genes; red, naEFC downregulated
genes). In (C), ICAM-3 mRNA levels in naEFCs and HUVEC as determined by qPCR with relative gene expression normalised to CycA. Data are
expressed as relative fold change (mean 6 sem) normalised to HUVEC, n = 3,*p,0.05 versus HUVEC. In (D–F), flow cytometric analysis of ICAM-3 on
(D) naEFCs, (E) HUVEC and (F) freshly isolated peripheral blood CD133+CD117+ gated cells. Light dotted line represents the unstained control and the
dark line represents cells stained for ICAM-3. One representative experiment is shown n$3.
doi:10.1371/journal.pone.0046996.g005
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identified ICAM-3 as a previously undescribed biomarker of

naEFCs. Functional analysis using adhesion assays under shear

flow, identified ICAM-3 as new adhesion molecule for circulating

naEFCs.

Gene expression profiling of human EPCs is not new, with

nearly a dozen published reports currently available. However,

our investigation of non-adherent CD133+ human naEFCs in

short-term culture is novel with the most closely reported studies

including those of Igreja and colleagues, who investigated day 0

and 13 cultured CD34+CD133+VEGFR2+ adherent and non-

adherent cells derived from HUCB [47] and Jaatinen and

coworkers who compared HUCB derived freshly isolated

CD133+ sorted versus CD1332 cells [48]. A close comparison of

their published gene expression profiles with that of our study

supports the identification of the adhesion molecule ICAM-3 on

freshly isolated and short-term cultured EPCs [47] and as such

supports our contention of ICAM-3 as an adhesion molecule for

circulating progenitors with vasculogenic potential. Importantly,

we have taken the next critical step by using glycoproteomics by

mass spectrometry together with flow cytometry to confirm the

surface expression of ICAM-3 on the surface of naEFCs as well as

freshly isolated CD133+CD117+ circulating PBMNCs.

Cellular adhesion molecules (CAMs) serve to anchor serum

factors and blood cells to the endothelium and play a role in

establishing the phenotype or inflammatory and tumor vascula-

ture. Of the 5 identified intercellular CAMs in humans, ICAM-3 is

best known for its constitutive expression on human leukocytes

and while there is little evidence for its expression on endothelial

cells in vitro [49], it has been identified on vessels in benign and

malignant tumors [50,51,52,53,54,55] while weakly or not at all

found on endothelial cells during inflammation [53,56]. Moreover,

ICAM-3 has been identified in early stages of vascular prolifer-

ation [53], shown to be inversely correlated with the level of

vascular differentiation in infantile hemangiomas [55] and that it

contributes to the control of the integrity of human bone marrow

endothelial layers, likely via an association with an ERM protein

moesin and production of reactive oxygen synthase [57]. Herein,

parallel plate flow chamber assays identified a new role for ICAM-

3 on naEFCs, namely promoting them to roll and adhere to the

TNFa-activated HUVEC. Also in this study we investigated the

role of ICAM-3 in tubule formation using Matrigel. In repeated

experiments we were unable to demonstrate that administration of

a blocking antibody to ICAM-3 attenuated tube formation in vitro

and in vivo. This is consistent with endothelial cell adhesion

molecules being expressed on the luminal side of the vasculature

and as such provides additional information for the function of

ICAM-3 on circulating endothelial progenitor cells.

With respect to a binding ligand for ICAM-3, it is well described

as the third known ligand for the b2-integrin lymphocyte function

associated antigen (LFA)-1 [58] and has also shown binding

capabilities to CD209 (Dendritic Cell-Specific Intercellular adhe-

sion molecule-3-Grabbing Non-integrin; DC-SIGN). While DC-

SIGN is primarily known for establishing the first contact between

DCs and resting T cells [59] there is some evidence that it is

expressed on a select population of endothelium with one report

identifying DC-SIGN on placental vasculature [60]. We were

unable to identify CD18 or DC-SIGN on TNFa-activated

HUVEC (not shown) which suggests that an additional ligand

for ICAM-3 on activated HUVEC is yet to be identified. One

report by Oostendorp et al suggests that ICAM-3+ bone marrow

MNCs can bind to stroma via the integrin a5b1 (VLA5) [61]. We

recently demonstrated that TNFa increases the surface expression

of a5b1 on HUVEC [62], and together with data showing that

ligation of integrin a5b1 promotes tumor angiogenesis [63] and a5-

null carcinomas exhibit reduced blood vessel formation [64] it is

tempting to speculate that ICAM3+ naEFCs bind to activated

endothelium via a5b1 to promote vascular development. When we

investigated the contribution of ICAM-3 in the rolling and

adhesive events of whole blood leukocytes we observed a striking

difference to that of the naEFCs inasmuch as blocking ICAM-3

attenuated the adhesion but had no effect on leukocyte rolling.

The lack of a direct homologue to ICAM-3 in rodents limits the

tools available to easily dissect and characterize the adhesive

Table 1. Fold change values of well-established markers in
the naEFCs when compared with HUVEC.

Gene Symbol Gene Name naEFCs

CD133 prominin-1 8.8 q

CD117 proto-oncogene c-Kit 5.9 q

CD44 CD44 5.7 q

CXCR4 Chemokine (C-X-C motif) receptor 4 6.2 q

CD31 PECAM-1 2.1 Q

CDH5 VE-cadherin 25.0 Q

CD62E E-selectin 20.7 Q

vWF von Willebrand Factor 16.0 Q

CD34 CD34 No change

eNOS nitric oxide synthase 3 1.4 Q

VEGFR2 vascular endothelial growth factor receptor 2 12.9 Q

ICAM-3 intercellular adhesion molecule 3 4.4 q

qdenotes significantly higher mRNA expression;
Qdenotes significantly lower mRNA expression.
doi:10.1371/journal.pone.0046996.t001

Table 2. MALDI-tof/tof-MS of N-glysocylated naEFC membrane proteins using hydrazide-bead capture.

Gene symbol Protein name Sequences of identified glycopeptides

PROM1_HUMAN Prominin-1 (CD133) VLNSIGSDIDNVTQR

KIT_HUMAN Proto-oncogene c-kit (CD117) SLYGKEDNDTLVR

CD44_HUMAN CD44-antigen (CD44) AFNSTLPTMAQMEK

PECA1_HUMAN Platelet endothelial cell adhesion molecule (CD31) LNLSCSIPGAPPANFTIQK

CDH5_HUMAN Vascular endothelial cadherin (CD144) NTSLPHHVGKIK

ICAM3_HUMAN Intercellular adhesion molecule-3 (ICAM-3) EIVCNVTLGGER

The consensus motif for N-linked glycosylation is highlighted in bold.
doi:10.1371/journal.pone.0046996.t002
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properties of this molecule in vivo. In mouse and rat genomes,

remnants of the Icam3 gene are detectable; however, in these

species it has been inactivated during rodent evolution with

numerous mutations such as base substitutions, small indels and

retrotransposon insertions identified [65].

Conclusions

Herein we have isolated, enriched for and then characterized a

human umbilical cord blood derived CD133+ population of non-

adherent endothelial forming cells (naEFCs) which expressed both

hematopoietic progenitor cell markers and mature endothelial cell

markers. Non-adherent EFCs demonstrated functional capabilities

expected of EPCs in vitro and are distinguished from ‘early EPCs’

Figure 6. ICAM-3 mediates rolling and adhesion of naEFCs. In (A), still images of Video S1 illustrate the interaction of naEFCs with untreated
(left panel), TNFa treated (5 ng/ml for 5 hours, middle and right panels) where naEFCs were pre-treated with an isotype control antibody (middle
panel) or an antibody to ICAM-3 (right panel) prior to perfusion over HUVEC at 2 dynes/cm2. In (B and C), data of rolling and adherent naEFCs is
represented as the mean 6 sem per field of view (fov) for n = 3;*p,0.05 versus untreated; #p,0.05 versus iso ctl. In (D and E), data of rolling and
adherent whole blood treated with an isotype control or antibody to ICAM-3 is represented as the mean 6 sem per field of view (fov) for n = 4–
5;*p,0.05 versus untreated; #p,0.05 versus iso ctl.
doi:10.1371/journal.pone.0046996.g006
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as they did not express the myeloid markers CD11b or CD14 and

demonstrated vessel formation in vivo. Extensive genomic and

proteomic analyses of naEFCs showed that ICAM-3 is expressed

on their cell surface which may act as an adhesion molecule to

mediate their rolling and adhesive events to the vasculature under

shear stress. The mechanisms and factors controlling progenitor

cell recruitment are not well known and are loosely based on the

leukocyte recruitment cascade of events which includes the selectin

family (ie P-, E- and L-selectin) for transient interactions to initiate

tethering and rolling of circulating cells along the endothelium,

integrin binding to vascular and intercellular adhesion molecules

(eg VCAM-1) [66,67]. The percentage of EPCs is ,0.01% of the

circulating white blood cells, their recruitment to sites for

vascularisation must therefore be governed by specific profile of

adhesion molecules. With our identification of ICAM-3 on the

surface of freshly isolated, and importantly not cultured, circulat-

ing CD133+CD117+ progenitor cells it is our contention that

ICAM-3 may contribute to the neovascularisation and warrants

further investigation as a new opportunity for diagnostic and/or

therapeutic potential.

Supporting Information

Figure S1 Surface expression profiling of early EPCs.
Early EPCs were phenotyped for hematopoietic progenitor cell

(CD117, CD34), endothelial cell (CD31, CD144) and leukocyte

cell (CD45, CD11b, CD14) markers by flow cytometry. In the

histograms, the light dotted lines represent unstained cells and the

dark lines represent stained cells of one representative experiment

from n$3.

(TIF)

Figure S2 Surface expression profiling of naEFCs and
PBMNCs. In (A), a representative dot plot of CD133+CD117+

double positive naEFCs were examined for CD41a surface

expression by flow cytometry. The light dotted line represents

the unstained control and the dark line represents cells stained for

CD41a. One representative experiment is shown from n = 5. In

(B), naEFCs and PBMNCs were assessed for the expression of

lineage markers CD3, CD4, CD8, CD20, CD19 or CD90. Light

dotted line represents the unstained control and the dark line

represents cells stained for the surface antigen. One representative

experiment is shown from n$3.

(TIF)

Video S1 Parallel plate flow chamber video of HUVEC
pre-treated without or with TNFa (5 ng/ml, 5 hours)
prior to perfusion of naEFCs pre-treated with an isotype
control (iso control) antibody or an ICAM-3 blocking
antibody (1 mg, 30 min) at 2 dynes/cm2 for 5 minutes.
Playback speed is 16.

(MP4)
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