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Abstract: For accurate gene expression quantification, normalization of gene expression data against
reliable reference genes is required. It is known that the expression levels of commonly used reference
genes vary considerably under different experimental conditions, and therefore, their use for data
normalization is limited. In this study, an unbiased identification of reference genes in Caenorhabditis
elegans was performed based on 145 microarray datasets (2296 gene array samples) covering different
developmental stages, different tissues, drug treatments, lifestyle, and various stresses. As a result,
thirteen housekeeping genes (rps-23, rps-26, rps-27, rps-16, rps-2, rps-4, rps-17, rpl-24.1, rpl-27, rpl-33,
rpl-36, rpl-35, and rpl-15) with enhanced stability were comprehensively identified by using six popular
normalization algorithms and RankAggreg method. Functional enrichment analysis revealed that
these genes were significantly overrepresented in GO terms or KEGG pathways related to ribosomes.
Validation analysis using recently published datasets revealed that the expressions of newly identified
candidate reference genes were more stable than the commonly used reference genes. Based on
the results, we recommended using rpl-33 and rps-26 as the optimal reference genes for microarray
and rps-2 and rps-4 for RNA-sequencing data validation. More importantly, the most stable rps-23
should be a promising reference gene for both data types. This study, for the first time, successfully
displays a large-scale microarray data driven genome-wide identification of stable reference genes for
normalizing gene expression data and provides a potential guideline on the selection of universal
internal reference genes in C. elegans, for quantitative gene expression analysis.
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1. Introduction

Genome-wide expression analysis has always played a crucial role in the field of the functional
genome. However, the data generated by high-throughput RNA-sequencing (RNA-seq) and microarray
requires an authentic tool for validation [1]. Quantitative real-time PCR (qPCR) has been widely used
for validating gene expression data due to its high sensitivity, rapid execution and specificity [2,3].
However, the reliability of qPCR reactions is inevitably affected by the quality and integrity of RNAs,
the efficiency of cDNA synthesis, and PCR efficiency [4–6]. To accurately quantify gene expressions in
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different spatial-temporal conditions, reference genes are widely used as internal controls to minimize
the misinterpretation of expression data.

The free-living nematode Caenorhabditis elegans has been widely used as a model organism for a
range of studies, spanning from development to drug discovery. Gene expression analysis in this model
organism constitutes a powerful tool to discover new roles for different types of molecules. Traditionally, a
set of housekeeping genes encoding actin (act-1) [7,8], tubulin (tba-1) [9–11], glyceraldehyde-3-phosphate
dehydrogenase (gpd-2) [12,13], translation initiation factor 3C (eif-3.C) [14,15], calsequestrin (csq-1) [13,16],
Rho GTPase (cdc-42) [17–20], and peroxisomal membrane protein related (pmp-3) [18,21] were thought
to be appropriate reference genes for the normalization of gene expression in C. elegans. However, some
reports indicated that the transcription levels of these conserved reference genes may be changed under
different conditions, such as developmental stages, drug treatments, and hypoxia [22,23]. Therefore,
selecting such biased reference genes can lead to misinterpreting qPCR results, and consequently,
output misleading expression data.

With the development of sequencing and microarray technology, analyzing RNA-seq and
microarray data allows to identify reliable reference genes in diverse organisms such as Homo sapiens [24],
Setaria viridis [25], Malus × domestica Borkh [26], Mizuhopecten yessoensis [27], Gossypium hirsutum [28],
Ciona savignyi [29], Streptomyces coelicolor [30], Arabidopsis thaliana [31], and so on. However, the main
focus of these studies was to evaluate a set of known reference gene candidates for the stability of
expression using several bioinformatics algorithms: geNorm [32], RefFinder (http://www.leonxie.com/

referencegene.php), NormFinder [33], BestKeeper [34], and delta-Ct method [35]. Additionally, in
all the above studies, the identification of suitable reference genes was based on tightly controlled
experimental conditions, whereas it is supported that the expression of these genes can vary in different
tissues under different experimentally controlled conditions. Indeed, strictly speaking, an ideal reference
gene should be expressed universally among different tissues and stably under different conditions.

Despite the availability of extensive microarray and RNA-seq data in C. elegans, an unbiased
genome-wide search from the large-scale datasets to identify reliable reference genes is still lacking. For
this reason, to obtain accurate results for systematic gene expression analysis, 145 publicly available
microarray datasets encompassing a wide range of biological and experimental conditions, including
different developmental stages, different tissues, drug treatments, lifestyles, and various stresses
(microwave and toxic chemicals exposure, pathogen infection, hypoxia, starvation, and so on), were
systematically analyzed to identify stable reference genes. Subsequently, the stability of 13 newly
identified and 13 commonly used reference genes was further validated using six independent gene
expression datasets. The validated genes here are expected to serve as potential resources for further
investigating molecular mechanisms under diverse experimental conditions using the qPCR method.

2. Materials and Methods

2.1. Data Collection and Filtration

Theoretically, an ideal housekeeping gene (HKG) or reference gene should be expressed constantly
in all cell types and under various experimental conditions. To obtain universal, robust and reliable HKG
candidates possibly used as reference genes in C. elegans, datasets obtained under various experimental
conditions were retrieved from Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/).
Considering the consistency of experimental results, only the published microarray datasets from
GPL200 [Celegans] Affymetrix C. elegans Genome Array were used for further analysis. Annotation
information of microarray used in matching probes with corresponding genes was also downloaded
from GEO database. To describe genes in detail, more annotation data from Wormbase database
(https://wormbase.org/), Gene Ontology Consortium (http://geneontology.org/), and Interpro (https:
//www.ebi.ac.uk/interpro/) were mapped to probe sets in Genome Array.

http://www.leonxie.com/referencegene.php
http://www.leonxie.com/referencegene.php
http://www.ncbi.nlm.nih.gov/geo/
https://wormbase.org/
http://geneontology.org/
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
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All downloaded microarray datasets were filtrated according to the following criteria: (1) the total
number of samples is more than three in an individual microarray dataset; (2) no duplicated samples
in other datasets; and (3) the raw data in *.CEL format is available in GEO.

2.2. Methodology

2.2.1. Normalization of Microarray Data

Figure 1 shows the methodology used in this study. Raw signal intensities for each probe set in
the CEL files were analyzed using a series of algorithms implemented in R and Bioconductor package,
including Robust Multiarray Analysis (RMA) [36], Affymetrix Microarray Suite version 5 (MAS5) [37],
Cheng Li and Wing Hung Wong’s method (Li–Wong) [38], GeneChip RMA (GCRMA) [39], Probe Logarithmic
Intensity Error (PLIER) [40], and Variance Stabilization Normalization (VSN) [41].Cells 2020, 8, x FOR PEER REVIEW   4 of 18  
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stability. And then, multiple GLs derived from the algorithm-specific normalization were merged as 
the second-round ranked gene list (abbr. SGL) using RankAggreg algorithm and produced six SGLs 
(SGLR, SGLM, SGLd, SGLG, SGLP, and SGLV). Finally, these six SGLs were intersected to obtain the final 
reliable HKG candidates. 

2.2.2. First-Round Ranking of Gene Expression Stability 

After the data normalization using the specific algorithm, top 5000 robustly expressed genes 
with the lowest standard deviations were chosen according to the following three criteria derived 
from the improved Eli’s approach: (1) gene expressions must be detected in all tissues and under 
various conditions; (2) genes were sorted based on the increased variance across various tissues and 
experimental conditions; and (3) no exceptional expression in any single tissue or experimental 
conditions for each gene. It means that log2-expression value is not significantly different from the 
averaged log2-normalized expression level by two-fold or more. 

2.2.3. Second-Round Ranking of Gene Expression Stability 

To obtain more stable reference genes, the first-round ranked gene lists (GLs) derived from 
normalized data using the specific algorithm (such as RMA) were integrated into a corresponding 
second-round ranked gene list (such as SGLR) by RankAggreg, which is the most popular algorithm 
to perform aggregation of ordered lists based on the ranks via the Cross-Entropy Monte Carlo 
algorithm or the Genetic Algorithm [43]. Similarly, five SGLs (SGLM, SGLL, SGLG, SGLP, and SGLV) 
were obtained. 

2.2.4. Identification of HKG Candidates Used as Reference Genes 

Figure 1. The workflow for the identification of housekeeping gene (HKG) candidates. Briefly, gene
expression matrix (GEM) for each microarray dataset was obtained by normalizing raw data using six
algorithms (RMA, MAS5, Li-Wong, GCRMA, PLIER, and VSN, respectively), and the corresponding
first-round ranked gene lists (abbr. GL, from GL1 to GLn) were achieved based on gene expression
stability. And then, multiple GLs derived from the algorithm-specific normalization were merged as
the second-round ranked gene list (abbr. SGL) using RankAggreg algorithm and produced six SGLs
(SGLR, SGLM, SGLd, SGLG, SGLP, and SGLV). Finally, these six SGLs were intersected to obtain the
final reliable HKG candidates.

(1) Robust Multiarray Analysis (RMA). RMA is the most widely used preprocessing algorithm for
Affymetrix and Nimblegen gene expression microarray [42]. For RMA normalization, the raw intensity
values of microarray are background corrected, log2-transformed, and then quantile-normalized in
order. Then a linear model is fitted to the normalized data to obtain an expression measure for each
probe set in each array.

(2) Affymetrix Microarray Suite version 5 (MAS5). MAS5 is a sensitive algorithm to normalize
and summarize the standard probe level [37], which offers a robust and non-logarithmic mean value
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generated by subtracting the MisMatch (MM) value from their Perfect-Match (PM) values. Thus, the
increased variation is easily observed at low signal strength.

(3) Cheng Li and Wing Hung Wong’s method (Li–Wong). Li–Wong is a commonly used algorithm
to compute gene expression levels of microarray data [38], which normalizes microarrays using an
invariant set of genes and then fits a parametric model to the probe set data, without background
correction in data preprocessing.

(4) GeneChip RMA (GCRMA). As an improved RMA algorithm, GCRMA is popular for
preprocessing microarray data [39]. This normalization strategy is achieved by calculating a background
adjustment that ignores the MisMatch (MM) intensities but incorporates sequence information from
the probes (GC content).

(5) Probe Logarithmic Intensity Error (PLIER). This method can improve signal value by accounting
for experimentally observed patterns in probe behavior and handling error at the appropriately low and
high signal values. It is assumed that the error is proportional to the PM intensity without background
correction and log-transformation.

(6) Variance Stabilization Normalization (VSN). VSN is a non-linear method that aims to keep
the variance constant over the entire data range. It comprises data calibration, the quantification of
differential expression, and the quantification of measurement error. The VSN normalized data is not
logged again for comparisons based on logarithmic intensities of the data.

2.2.2. First-Round Ranking of Gene Expression Stability

After the data normalization using the specific algorithm, top 5000 robustly expressed genes
with the lowest standard deviations were chosen according to the following three criteria derived
from the improved Eli’s approach: (1) gene expressions must be detected in all tissues and under
various conditions; (2) genes were sorted based on the increased variance across various tissues
and experimental conditions; and (3) no exceptional expression in any single tissue or experimental
conditions for each gene. It means that log2-expression value is not significantly different from the
averaged log2-normalized expression level by two-fold or more.

2.2.3. Second-Round Ranking of Gene Expression Stability

To obtain more stable reference genes, the first-round ranked gene lists (GLs) derived from
normalized data using the specific algorithm (such as RMA) were integrated into a corresponding
second-round ranked gene list (such as SGLR) by RankAggreg, which is the most popular algorithm to
perform aggregation of ordered lists based on the ranks via the Cross-Entropy Monte Carlo algorithm or
the Genetic Algorithm [43]. Similarly, five SGLs (SGLM, SGLL, SGLG, SGLP, and SGLV) were obtained.

2.2.4. Identification of HKG Candidates Used as Reference Genes

After data normalizing and gene ranking, six second-round ranked gene lists, including SGLR,
SGLM, SGLL, SGLG, SGLP, and SGLV, were intersected to identify the most reliable HKG candidates.
A gene is considered as a reliable HKG candidate when it appears in at least three SGLs.

2.3. Functional Annotation and Enrichment Analysis

Functional annotation is crucial for understanding the biological functions and mechanisms, and
therefore Gene Ontology (GO) was used for this purpose in this study. It arranges annotation terms
in a hierarchical manner and thus makes annotations in a gene list amenable to automated analysis.
Moreover, the gene enrichment analysis was performed to explore the biological processes and signal
pathways in which housekeeping genes may participate, for the union of the six groups (top 50 of SGLR,
SGLM, SGLL, SGLG, SGLP, and SGLV). All gene function annotations in this study were performed by
Bioconductor package org.Ce.eg.db and biomaRt [44,45], enriched and visualized by Metascape [46]
and Cytoscape (v3.7) [47], respectively.
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2.4. Evaluation of HKG Candidates

2.4.1. Evaluation of HKG Candidates Using Newly Published Datasets

The Gini coefficient (GC) has been used to quantify the inequality of gene expression levels across
different and experimental conditions [48] and is very helpful for identifying housekeeping genes [49].
To investigate the stability of gene expression, two independent indexes, Gini coefficient (GC) and
standard deviation (SD) were adopted in this study. The GC is calculated as follows:

GC =
2
∑n

i=1 ixi

n
∑n

i=1 xi
−

n + 1
n

(1)

where
GC: Gini coefficient;
xi: the gene expression value in the i-th sample;
n: sample numbers.
The SD is analyzed as follows:

σ =

√√
1
n

n∑
i=1

(xi − x)2 (2)

where
σ: standard deviation of gene expression values;
xi: the gene expression value in the i-th sample;
n: sample numbers.

2.4.2. Comparison of Newly Identified HKG Candidates and Commonly Used Reference Genes

To compare the reliability of HKG candidates identified in this study with commonly used
reference genes (CRGs), the expression levels of 13 genes (cyc-1, tba-1, atp-3, mdh-1, gpd-2, eif-3.C, act-1,
cdc-42, pmp-3, act-2, csq-1, ama-1, and rbd-1) were validated using the independent microarray and
RNA-seq datasets. The microarray datasets from Affymetrix Inc. and Agilent Inc. were normalized
using RMA and log-quantile, respectively. For RNA-seq datasets, the log2(CPM+1) was used to
normalize read counts for gene expression level comparison [50].

3. Results

3.1. Large-Scale Microarray Datasets Collection

By the end of 2018, 171 GEO series from microarray GPL200 platform had been released in GEO
database. Among them, 26 datasets were excluded because of sample duplication, no raw data or a
smaller sample size (n < 3). Finally, 145 datasets containing 2296 high-quality samples were used for
further analysis. The detailed information is listed in Supplementary Material Figures S1–S3.

3.2. Data Normalization and Gene Probe Matching

All 145 microarray datasets were normalized to gene expression matrices using the rma (for
RMA), mas5 (for MAS5), expresso (for Li–Wong), gcrma (for GCRMA), justPlier (for PLIER), and vsnrma
(for VSN) from R packages as affy, gcrma, plier, and vsn, respectively. After data normalization, each
gene expression matrix (GEM) contained 22,652 probes (rows in GEM) which correspond to 23,556
genes (rows in GEM). After the filtration of missing values, a total of 21,112 rows were kept in GEM.
When one probe was matched to multiple genes, it was deleted. If a gene was matched by more than
one probe, its expression level was measured by the median of gene expression values. Finally, 16,724
genes and their expression values were obtained.
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3.3. First-Round Ranking Based on Gene Expression Stability

For each GEM, 16,724 genes were ranked based on parameter SD. Considering the feasibility of
datasets and the computing power, the top 5000 genes in each ranked gene list (GL) were used for
the subsequent analysis. Detailed information of all GLs containing top 5000 genes obtained by six
normalization algorithms is shown in Supplementary Material Figure S4.

3.4. Second-Round Ranking Using RankAggreg

To get a more reliable gene list, all 145 first-round ranked gene lists were aggregated into a single
ranked gene list using the RankAggreg algorithm. Top 50 genes from this single ranked gene list were
selected to generate the second-round ranked gene list (SGL). All SGLs are shown in Supplementary
Material Figure S5.

3.5. Overlapping for Determining the HKG Candidates Used as Reference Genes

Due to the inconsistency of gene ranking analysis, a reliable HKG candidate is considered when it
is included in at least three SGLs. In total, 13 HKG candidates were identified and are listed in Table 1,
of which rps-23 was shared by SGLR, SGLM, SGLL, and SGLP, while rps-27, rps-16, rps-26, rps-4, rps-2,
rps-17, rpl-24.1, rpl-15, rpl-35, rpl-36, rpl-27, and rpl-33 were shared by SGLR, SGLL, and SGLP (Figure 2).
These results also show that 32 genes were shared by two SGLs. However, the majority of genes are
specific to one SGL.Cells 2020, 8, x FOR PEER REVIEW   7 of 18  
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Table 1. Reliable housekeeping gene candidates of C. elegans identified in this study.

Gene Symbol Entrez
Gene ID Description Chromosome Location Size (bp)

rps-23 178188 40S ribosomal protein S23 Chr. IV: 12390264–12391396 550
rps-27 178538 40S ribosomal protein S27 Chr. V: 103394–104064 356
rps-16 179998 40S ribosomal protein S16 Chr. V: 15000011–15000594 533
rps-26 173342 40S ribosomal protein S26 Chr. I: 14759918–14760654 440
rps-4 177481 40S ribosomal protein S4 Chr. IV: 7083694–7084682 849
rps-2 177583 40S ribosomal protein S2 Chr. IV: 7925298–7926391 998

rps-17 172313 40S ribosomal protein S17 Chr. I: 6220090–6220766 465
rpl-24.1 172062 60S ribosomal protein L24 Chr. I: 4585115–4586177 552
rpl-15 176891 60S ribosomal protein L15 Chr. IV: 653436–654576 732
rpl-35 176097 60S ribosomal protein L35 Chr. III: 7855118–7855680 460
rpl-36 176007 60S ribosomal protein L36 Chr. III: 7180249–7180677 355
rpl-27 171750 60S ribosomal protein L27 Chr. I: 1834881–1835439 466
rpl-33 174166 60S ribosomal protein L35 Chr. II: 7105556–7106462 440

3.6. Gene Annotation and Enrichment

After merging, 241 genes were obtained from six SGLs (50 genes/each). Among them, 13 HKG
candidates were identified as the most reliable reference genes, including seven genes encoding small
ribosomal proteins (rps-23, rps-27, rps-16, rps-26, rps-4, rps-2, and rps-17) and six genes encoding large
ribosomal proteins (rpl-24.1, rpl-15, rpl-35, rpl-36, rpl-27, and rpl-33).

Annotation analysis shows that the majority of genes are associated with ribosome, protein
synthesis, protein degradation, protein processing and transporting, and neuronal synapses and signal
transmission. Enrichment analysis of KEGG pathway, GO biological process, and Reactome Gene
Sets generated 12 clusters with an enrichment factor ≥ 1.5, gene count ≥ 3 and the p-value < 0.01.
Membership similarity analysis reveals that these genes are mainly involved in GTP hydrolysis and
assembly of the 60S ribosomal subunit, ribosome biogenesis and aging (Supplementary Material Figure
S6). To better show their functional relations, statistically significant terms were selected to represent
the corresponding clusters (Figure 3).Cells 2020, 8, x FOR PEER REVIEW   8 of 18  
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By a manual literature survey, these enriched terms were grouped into six main categories:
ribosome and protein translation, excitatory postsynaptic potential, protein degradation and aging,
regulation of protein complex assembly, processing and maturation of rRNA, and inflammasomes
(Figure 3).

3.7. Validation of HKG Candidates Used as Reference Genes

To confirm the reliability of 13 HKG candidates identified in this study, the validation was
performed using three newly published microarray datasets (GSE118294 [51], GSE108968 [52], and
GSE76380 [53]) and three RNA-seq datasets (GSE63528 [54], GSE60755 [55], and GSE98919 [56])
(Table 2). The validation result of dataset GSE118294 revealed that the variation of standard deviation
(SD) of 13 newly identified reference genes (NRGs) (dark green boxplot in Figure 4A) was much lower
than that of commonly used reference genes (CRGs) (orange boxplot in Figure 4A). Similar results were
also obtained for dataset GSE108968 (Figure 4B), GSE76380 (Figure 4C), GSE60755 (Figure 4D), and
GSE98919 (Figure 4F). It is worth noting that SD variations of CRGs and NRGs were not statistically
different, but the former was slightly more unstable than the latter for dataset GSE63528 (Figure 4E).
In summary, gene expression levels of the 13 HKG candidates potentially used as reference genes
are stable.

3.8. Comparison between HKG Candidates Identified in This Study and Commonly Used Reference Gene

To further confirm the availability of 13 HKG candidates used as reference genes, gene expression
profiles of 13 NRGs and another 13 CRGs were compared (Table 2 and Figure 4). To better show the
comparison results, the top 10 genes among all 26 genes (13 NRGs + 13 CRGs) were selected for further
analysis. As shown in Table 2, the frequency of occurrence of NRGs in the top 10 genes is higher
(≥ 60%) than that of CRGs based on SD value and GC ranking. Additionally, their expression levels are
more stable than those of CRGs (Figure 4). For one given test dataset (such as GSE118294 in Figure 4A),
the variations of expression levels for 13 NRGs (dark green violins and boxplot) are generally lower
than another 13 CRGs. Similar results were also found in the other five test datasets (Figure 4B–F),
although the pattern is not very obvious in the GSE63528 (Figure 4E).
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Table 2. Validation and comparison for housekeeping gene candidates in C. elegans.

Accession
Number Journal, Year Technique Sample

Size Data Source Normalization
Method

Top 10 Genes Sorted by
SD 1

Top 10 Genes Sorted by
GC 2

GSE118294 Eur. J. Cell Biol.,
2019

DNA
Microarray 12

GPL200
Affymetrix C. elegans

Genome Array
RMA

rps-26, rpl-36, rpl-33, rpl-15,
rps-27, rpl-35, rpl-27, rps-4,

rps-23, rpl-24.1

rps-26, rpl-33, rpl-36,
rps-27, rpl-15, rpl-35, rpl-27,

rps-4, rps-23, rpl-24.1

GSE108968 Nat. Commun.,
2019

DNA
Microarray 32

GPL10094
Agilent-020186 C. elegans

(V2) Microarray
Quantile, log

rpl-24.1, rpl-27, rps-16,
rpl-35, cyc-1, rps-23, rpl-33,

atp-3, rps-2, rpl-36

rpl-33, rpl-24.1, rps-16,
rpl-35, rpl-27, rps-23, rpl-36,

atp-3, rps-2, cyc-1

GSE76380 Cell Metab.,
2016

DNA
Microarray 48

GPL10094
Agilent-020186 C. elegans

(V2) Microarray
Quantile, log

rpl-33, rps-2, rps-16,
rpl-24.1, rpl-35, rps-23,

rps-4, rpl-36, rpl-27, cyc-1

rpl-33, rps-23, rps-2, rpl-35,
rps-4, rpl-36, rps-16, rpl-15,

rpl-24.1, cyc-1

GSE63528 eLife, 2015 RNA-sequencing 36
GPL13657

Illumina HiSeq 2000
(C. elegans)

log2(CPM+1)
rps-2, rps-4, pmp-3, atp-3,

rbd-1, rpl-27, rps-17, rpl-35,
rps-26, act-2

rps-4, rps-2, atp-3, rps-26,
rps-17, rpl-27, rpl-35,

rps-16, pmp-3, rpl-24.1

GSE60755 Nature, 2016 RNA-sequencing 139
GPL13657

Illumina HiSeq 2000
(C. elegans)

log2(CPM+1)
rps-2, atp-3, mdh-1, rpl-36,
rps-17, rpl-33, rpl-35, rps-4,

cyc-1, rpl-15

rps-2, atp-3, rpl-36, cyc-1,
rpl-35, rpl-33, mdh-1,

rps-27, rps-17, rpl-24.1

GSE98919 Cell Syst., 2017 RNA-sequencing 42
GPL18730

Illumina HiSeq 1500
(C. elegans)

log2(CPM+1)
tba-1, rps-4, rpl-27, mdh-1,

rpl-15, rps-26, rps-2, rps-23,
cyc-1, rpl-24.1

rpl-4, rpl-15, rps-23, rpl-27,
rpl-24.1, rps-2, rps-26,
rps-27, rps-17, rps-16

1 SD and 2 GC were abbreviations of standard deviation and Gini coefficient, respectively. Top 10 genes were selected based on the ranking results of the combination gene list of 13 newly
identified reference genes (NRGs) and 13 commonly used reference genes (CRGs) in this study.
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4. Discussion

Despite the availability of extensive transcriptome data in C. elegans, to our best knowledge, the
systematic analysis of large-scale gene expression datasets for the identification of stable reference genes
has not been conducted. This work aims to identify housekeeping gene candidates potentially used
as reference genes for quantitative gene expression analysis. Theoretically, HKGs are constitutively
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expressed in all tissues and experimental conditions to maintain the basal cellular functions. They are
characterized by wide distribution and constant and high expression. In this study, 13 HKG candidates
potentially used as reference genes for gene expression analysis in C. elegans were identified by
large-scale data integration and systematic analysis.

4.1. Data Integration and Its Advantages

Data integration has been widely used in omics studies, which can facilitate information mining
from large-scale omics data [57]. For transcriptome data, there are two methods widely used for data
integration: direct data merging and result combining after the analysis. In this study, the latter was
applied to screen HKG candidates used as reliable reference genes. For the direct data merging method,
batch effects cannot be avoided. To remove batch effects, the real biological differences may also be
removed, which can compromise the integration and interpretation of the data [58,59].

The integration of multiple transcriptome datasets has been advocated to increase the sample
size and maximize the statistics power, such as reducing the probability of false-negative results [60].
Therefore, 145 microarray datasets obtained from diverse developmental stages, tissues or experimental
conditions were selected to identify reliable reference genes from HKG candidates for quantitative
gene expression analysis in C. elegans.

4.2. Why Microarray Datasets Were Adopted?

With the development of high throughput expression technologies (microarray and RNA-seq),
massive gene expression datasets are produced daily. There is a good agreement between RNA-seq
and microarray relative to gene expression, despite some data variability in low-expression genes that
may be due to the difference in expression platform and data analysis [61,62]. Microarray data were
used in this study by considering the following reasons: (1) microarray is a mature genomic platform
with a well-established data analysis pipeline; (2) microarray is reliable in model organisms [63] and
we just focus on well-annotated genes in model organism C. elegans; and (3) despite the fact that
RNA-seq enables to identify non-coding differentially expressed genes or not well-annotated genes
that offer a potential for improved mechanistic clarity, we do not consider those genes. Therefore,
DNA microarray datasets in GEO database were used for the identification of reliable reference genes
for gene expression analysis in C. elegans. Additionally, to reduce the heterogeneity, only the datasets
from GPL200 (Celegans) Affymetrix C. elegans Genome Array were selected, which is the most popular
microarray platform used by thousands of studies of C. elegans worldwide [64].

4.3. Importance of Normalization Methods

For omics data analysis, the normalization of raw data is one of the most pivotal steps [65], which
significantly affects the reproducibility of data and the reliability of experimental results [66]. Similarly,
for microarray data, the normalization is helpful for removing biases and increasing the accuracy of
the analysis [67]. Available normalization methods for microarray data generally assume a similar
global expression pattern among samples being studied. Currently, there are many algorithms used
for microarray data normalization, such as RMA, MAS5, Li–Wong, GCRMA, and so on. However, data
normalized by diverse methods shows distinct shapes of statistical distributions and even leads to
totally different analysis conclusions. To obtain more credible and pervasive conclusions, six widely
used algorithms (RMA, MAS5, Li–Wong, GCRMA, PLIER, and VSN) for microarray data were applied
in this study.

4.4. Reliability of Newly Identified HKG Candidates Possibly Used as Reference Genes

An ideal reference gene should be stably, highly, and universally expressed in tissues or cells
regardless of the histology, pathological conditions, or cellular physiological-metabolic states [57,68].
Therefore, the large-scale transcriptome datasets under various kinds of conditions were integrated to
identify HKG candidates, which will be potentially used as reliable reference genes for quantitative
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gene expression studies in C. elegans. The systematic analysis revealed that 13 HKG candidates could
be used as reference genes, including seven genes encoding small ribosomal proteins (rps-23, rps-27,
rps-16, rps-26, rps-4, rps-2, and rps-17), and six genes encoding large ribosomal proteins (rpl-24.1, rpl-15,
rpl-35, rpl-36, rpl-27, and rpl-33).

Previous studies suggested that the structure of ribosomes is highly conserved and its composition
is constant within a species [69]. Correspondingly, genes encoding ribosomal proteins were considered
as housekeeping genes [70]. In Homo sapiens, 79 ribosomal and mitoribosomal genes were regarded as
housekeeping genes [71,72]. Hence, in this context, 13 housekeeping gene candidates identified in this
study are quite credible.

Among 13 HKG candidates, rps-23 was present in four SGLs, and also widely used as a reference
gene for qPCR in many species, such as Bos indicus [73], Homo sapiens [74], and Harmonia axyridis [75].
Additionally, our results strongly support that rpl-33 and rps-26 are stable and reliable reference genes in
microarray data. Likely, rps-26 has been widely used as a reference gene to normalize gene expression
in Homo sapiens [76], Bovine corpus [77], Monotropa hypopitys [78], and Millerozyma (Pichia) farinose [79].
Housekeeping genes rps-2 and rps-4 were also identified as stable reference genes in RNA-seq data of
C. elegans. They were validated and used as suitable references for quantifying gene expressions in
Monotropa hypopitys [78]. It is worth noting that the most stable gene rps-23 should be a promising
reference gene for both microarray and RNA-seq data. None of the commonly used reference genes in
C. elegans presented in the top 10 HKG candidates identified in this study. Although some studies
confirmed that the orthologous of housekeeping genes identified in this study were reliable and feasible
in many species, the utilization of these 13 HKG as reference genes for gene expression quantification
in C. elegans is quite limited.

It is worth noting that a gene included in at least three second-round ranked gene lists (SGLs)
was considered a reliable HKG candidate in this study. Based on this rigorous standard, 13 reliable
HKGs were obtained. When we used a more relaxed standard (i.e., the gene included in at least two
SGLs is defined as the HKG candidate), another 32 HKGs were also obtained. Among them, several
non-ribosomal protein-coding genes, such as eef-1A.1, ubl-1, rack-1, srh-174, ZK721.4, and Y116A8C.33,
were included. Some of them were also used as reference genes in some studies where the ribosomal
genes would be inappropriate to use as reference genes.

5. Conclusions

In this study, 145 microarray datasets generated from 2296 gene array samples of different
developmental stages and under various experimental conditions were used to identify stable reference
genes for gene expression quantification in C. elegans. Based on data normalization, ranking, and
integration, our systematic analysis identified and strongly supported 13 HKGs could be used as
reliable reference genes, including seven genes encoding small ribosomal proteins (rps-23, rps-27,
rps-16, rps-26, rps-4, rps-2, and rps-17) and six genes encoding large ribosomal proteins (rpl-24.1, rpl-15,
rpl-35, rpl-36, rpl-27 and rpl-33). Taken together, our results provide useful guidelines for reference
gene(s) selection under different experimental conditions and a possible resource for more accurate
and widespread use of qPCR in C. elegans and other nematode species.
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