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Diabetic nephropathy (DN) leads to high morbidity and disability. Inflammation plays
a critical role in the pathogenesis of DN, which involves renal cells and immune
cells, the microenvironment, as well as extrinsic factors, such as hyperglycemia,
chemokines, cytokines, and growth factors. Epigenetic modifications usually regulate
gene expression via DNA methylation, histone modification, and non-coding RNAs
without altering the DNA sequence. During the past years, numerous studies have
been published to reveal the mechanisms of epigenetic modifications that regulate
inflammation in DN. This review aimed to summarize the latest evidence on the interplay
of epigenetics and inflammation in DN, and highlight the potential targets for treatment
and diagnosis of DN.
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INTRODUCTION

The latest Diabetes Atlas by the International Diabetes Federation indicates that the current number
of patients with diabetes mellitus (DM) is 463 million in 2019, which is estimated to increase to 578
million by 2030 and to 700 million by 2045 (International Diabetes Federation, 2019). DM and
its complications seriously affect patients’ quality of life and result in tremendous socioeconomic
burdens (GBD, 2017 Disease and injury incidence and prevalence collaborators, 2018; Lin et al.,
2020b). Diabetic nephropathy (DN), one of the most common microvascular complications of DM,
is the major contributor to chronic kidney disease (CKD) and end-stage renal disease (Ruiz-Ortega
et al., 2020). Approximately 30–40% of DM patients gradually develop DN (Lim, 2014). Current
therapies, including intensive glucose control and the treatment of hypertension through renin-
angiotensin-aldosterone system (RAAS) blockers, only slow down the progression of DN and fail
to reverse or stop it (Sanz et al., 2019; Ruiz-Ortega et al., 2020). Therefore, early diagnosis and novel
treatment for DN are of great significance while recognizing its etiology remains urgent.

The biologist Conrad Waddington firstly introduced ‘epigenetics’ which describes a
phenomenon of inheritance that is independent of DNA sequence (Russo et al., 1996;
Goldberg et al., 2007). This concept has become one of the frontiers of genetic research
over the years. Epigenetic modifications modulate gene expressions through DNA methylation,
histone modification, and non-coding RNAs involving in the pathogenesis of DN (Keating
and El-Osta, 2013; Reddy et al., 2015). Studies have also shown that the modifications are
reversible indicating potential therapeutic value for DN (Hotamisligil, 2017; Kato and Natarajan,
2019). Low grade chronic inflammation is a major characteristic in the pathogenesis of DN,
but the pathophysiological relevance between epigenetics and inflammation has not been
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fully summarized. In this review, we highlighted recent epigenetic
modifications relevant to inflammation and its signaling
pathways in DN. The prespecified search strategies were shown
in the Supplementary Material 1.

INFLAMMATION IN THE PROGRESSION
OF DN

The Role of Renal Resident and Immune
Cells in the Inflammatory Response
Hyperglycemia and glucose metabolites such as advanced
glycation end products (AGEs) have long been regarded as
initial factors of DN which promote the loss of podocytes, the
hyperfiltration of endothelial cells, the expansion of mesangial
cells and the thickening of glomerular basement membrane,
and finally result in the deposition of extracellular matrix
in the glomerulus (Schena and Gesualdo, 2005; Grabias and
Konstantopoulos, 2014). The injured resident cells in kidney
release chemokines and cytokines to attract the infiltration of
immune cells (e.g., monocytes, macrophages, dendritic cells, and
lymphocytes) (Tang and Yiu, 2020). Macrophages/monocytes are
found to be the most predominant immune cells through both
clinical and experimental studies. Previous study shows that
macrophages are positively associated with pathological lesions
in DN (Chow et al., 2004). A recent study of single cell RNA
sequencing (scRNA-seq) indicates proportions of endothelial
cells and immune cells are significantly increased while mesangial
cells and podocytes are decreased in the glomerular cells in
diabetic mouse kidney (Fu et al., 2019a). Among of immune
cells in this study, macrophages are predominant, particularly
M1 phenotype macrophages (Fu et al., 2019a). It has been also
demonstrated that infiltration of macrophages in the glomeruli
and tubulointerstitial tissues was increased in renal biopsies of
patients (Klessens et al., 2017). In addition, the depletion of
macrophages significantly reduces proteinuria and glomerular
pathological changes in diabetic mice (You et al., 2013). The
scRNA-seq analysis of kidney cortex from diabetic (n = 3) and
non-diabetic patients (n = 3) shows patients in early diabetic
nephropathy have 78 folds of leukocytes, including T cells, B cells,
monocytes and plasma cells, compared to non-diabetic patients
(Wilson et al., 2019). Few macrophages are observed in early
diabetic kidneys (Wilson et al., 2019). Proportions of kidney cells
and immune cells, and their roles at different stages of DN needed
to be further studies. Epigenetic modifications in diabetic kidneys
are shown in Figure 1.

The infiltration of macrophages is promoted by chemokines
and adhesion molecules which are released from resident cells
under the stimulation of high glucose and AGEs (Hickey and
Martin, 2013). Notably, MCP-1 is an important mediator in the
infiltration of macrophages and the progression of inflammation
(Chow et al., 2006). The deletion of MCP-1 in mice and inhibition
of MCP-1 in type 2 diabetic patients have been shown to improve
renal function (Chow et al., 2006). Previous studies have shown
that an increase in M1 macrophages is negatively associated with
renal function (Wang et al., 2017), while the induction of M2

macrophages has been shown to attenuate renal damage in DN
mouse model (Sun et al., 2015). High glucose and AGEs promote
macrophages to M1 polarization and the release of inflammatory
cytokines, such as tumor necrosis factor (TNF), contributing
to pathogenesis in the early stage of diabetes (Webster et al.,
1997). Additionally, macrophages can also act as myofibroblasts
through the process of macrophage-myofibroblast transition
(MMT) to deteriorate renal fibrosis, replace parenchyma tissue
with (Tang et al., 2020b) extracellular matrix (ECM), and also
contribute to the production of reactive oxygen species (ROS)
and proteases (Meng et al., 2014; Torres et al., 2020). Orchestrated
by TGF-β/Smad signaling pathway, MMT is a newly known
fibrosis process which has been rarely found neither in acute
inflammation, nor in normal kidney, indicating that chronic
inflammation was the principle contributor to fibrosis (Meng
et al., 2016; Tang et al., 2019). A recent study has found that brain-
specific transcription factor POU4F1 is the only transcription
factor taking part in the TGF-β1/Smad3-driven MMT and thus
could be a new therapeutic target in chronic inflammation
induced MMT fibrosis (Tang et al., 2020b). The proto-oncogene
tyrosine protein kinase SRC presents as a direct SMAD3 target
gene and is also essential for MMT in macrophages (Tang
et al., 2018b). In general, the accumulation of macrophage are
not only related to the degree of inflammation and kidney
function, but also correlated to glomerulosclersis and the degree
of interstitial fibrosis (Tang et al., 2019). Studies have shown
that aberrant intrarenal infiltration and activation of T cells are
involved in the pathogenesis of DN in both clinical samples and
streptozotocin (STZ)-induced diabetes mice (Moon et al., 2012).
Clinical findings show that T cell immunity and TNF-α signaling
pathway are activated during the early development of DN in
patients (Moon et al., 2012; Lampropoulou et al., 2020). The
proportions of T helper cells (Th1, Th2, Th17 and regulatory T
(Treg) cells) in DN are altered with the increased levels of Th1
and Th17, and the decreased level of Treg (Zhang et al., 2014).
Adoptive transfer of CD4 + Foxp3 + Treg cells in mice have
been found to ameliorate diabetic kidney injuries and insulin
resistance by inhibiting inflammation (Eller et al., 2011).

The Role of Inflammatory Mediators and
Signaling Pathways in DN
Several signaling pathways contribute to the inflammation and
the release of inflammatory cytokines (Figure 2; Newton and
Dixit, 2012). Interleukins (ILs) play critical roles in the regulation
of the immune system. Studies have shown that the circulating
level of IL-6 is positively correlated with the progression of DN
in patients (Saraheimo et al., 2003), and IL-1β, IL-18, and IL-
17A are associated with the occurrence and development of
DN (Cortvrindt et al., 2017; Lemos et al., 2018; Lin et al.,
2020a). TNF-α is involved in the development of various
diseases, such as psoriasis, rheumatoid arthritis, and CKD (Elliott
et al., 1994; Pina et al., 2016). Studies have demonstrated
that macrophages are the main source of renal TNF-α (Awad
et al., 2015). In diabetic mice, the inhibition of TNF-α leads
to decreased urinary albumin excretion, and in a clinical
trial where DN patients were treated with pentoxifylline,
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FIGURE 1 | Interaction of immune cells, kidney intrinsic cells and epigenetic modifications. DNA methylation, histone modifications, and non-coding RNA
modifications activate inflammatory pathways by interactions of immune cells and kidney intrinsic cells. OS, oxidative stress; ROS, reactive oxygen species; HG, high
glucose; Ang II, angiotensin II; AGE-RAGE, advanced glycation end-products-receptor for advanced glycation end products; IL, interleukin; TNF, tumor necrosis
factor; MCP-1, monocyte chemoattractant protein 1; NF-κB, nuclear factor-κB; JAK-STAT, Janus kinase/signal transducer and activator of transcription; NRF2,
Nuclear Factor-2 Erythroid Related Factor; NLRP, NOD-like receptor pyrin domain-containing protein.

a methylxanthine derivative with anti-inflammatory function,
the reduction in urinary TNF-α concentration was directly
correlated with the change in albuminuria, suggesting the role
of TNF-α in the pathogenesis of DN (Moriwaki et al., 2007;
Navarro-González et al., 2015).

Nuclear factor-κB (NF-κB) is the basic transcription factor
that plays a pivotal role in inflammation in DN patients. Activated
by upstream signals such as AGEs, angiotensin II, and oxidative
stress (OS), NF-κB dissociates from its inhibitor IκB proteins
and is transferred into the nucleus to regulate the expression
of inflammatory gene including cytokines, chemokines, and
adhesion molecules such as IL-6, TNF-α, and MCP-1 (Wada
and Makino, 2016; Mikuda et al., 2018). One of the upstream
signal pathways stimulated by AGEs is called the p38 mitogen-
activated protein kinase (MAPK) pathway (Wu et al., 2002).
The p38 MAPK pathway induces the activation of NF-κB in
the infiltrating macrophages of DN (Adhikary et al., 2004).
In turn, in renal parenchymal cells, elevated IL-1 and TNF-
α have been shown to promote the phosphorylation of p38
MAPK, demonstrating their inflammatory roles in DN (Adhikary
et al., 2004). Similarly, PI3K/AKT/mTOR is a widely studied
signaling pathway that mediates the phenotype and injury
of podocytes in DN. Stimulated by AGEs, PI3K/AKT can
also promote NF-κB and aggravate inflammation (Ahmad
et al., 2013; Hong et al., 2017). Recently, C-reactive protein
(CRP) has been found to trigger a novel NF-κB-involved
signaling pathway in the progression of DN, more narrowly,
in human CRP transfected-db/db mice and cultured renal
tubular epithelial cells, CRP is proved to promote inflammation

via the evoking and dimerization of dipeptidyl peptidase-4
(DPP4) through DPP4/CD32b/NF-kB signaling circuit. The
blockage of the circult by the DPP4 inhibitor, linagliptin,
attenuates DN, suggesting the potential therapeutic effect for DN
(Tang et al., 2021).

TGF-β/SMAD signaling pathway plays a criticial role in
diabetic kidney injuries (Chen et al., 2011, 2014a; Liu et al.,
2011; Lan, 2012; Zhong et al., 2013; Li et al., 2014; Zhang et al.,
2019b; Xu et al., 2020a; Yang et al., 2020). In the diabetic kidney,
high glucose and AGEs enhance the phosphorylation of SMAD3
and decrease the phosphorylation SMAD7. SMAD3 deficiency
prevents renal inflammation and fibrosis in SMAD3-db/db mice
via regulations of lncRNA Erbb4-IR.transcription and miR-29b
(Xu et al., 2020a). SMAD3 deficiency protects against diabetes-
associated beta cell dysfunction and loss in DN mice (Sheng
et al., 2021). SMAD3 also promotes autophagy dysregulation and
kidney injury (Yang et al., 2020). SMAD7 inhibits IκBα, an NF-κB
inhibitor, suppressing the activation of NF-κB pathway (Chung
et al., 2009). The deletion of SMAD7 significantly aggravates
renal inflammation as evidenced by the upregulation of IL-1β,
TNF-α, and MCP-1 in diabetic mice by crosstalk with NF-κB
pathway, and the addition of SMAD7 attenuates the kidney
injuries (Chen et al., 2011). Thus, TGF-β/SMAD and NF-κB
crosstalk pathway may act as a novel prevention and therapeutic
targets for diabetic nephropathy.

Activation of OS signaling pathways contributes to renal
inflammation in DN. Nuclear factor-2 erythroid related
factor (NRF2) is a protein that has the ability to alleviate
inflammation and act as an antioxidant mediator in the process
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FIGURE 2 | The inflammatory pathways involved in the DN process. High glucose or stimulating factors cause the activation of multiple pathways, including
P38/MAPK, PI3K/AKT, TLR4/NLRP3 and the novel CRP/DPP4/CD32b, which all further activate NF-κB pathway, and transcriptionally promote the expression of
multiple inflammatory cytokines to enhance inflammation. SMAD7 can inhibit NF-κB activity. NRF2 has anti-inflammatory and antioxidant functions in DN. In addition,
JAK/STAT pathway induces IL-6 to promote the inflammatory response in DN. DN, diabetic nephropathy; IL, interleukin; TNF, tumor necrosis factor; NF-κB, Nuclear
factor-κB; MCP-1, monocyte chemoattractant protein-1; STAT, Signal transducer and activator of transcription; NRF2, Nuclear factor-2 erythroid related factor;
NLRP3, NOD-like receptor protein 3; ROS, reactive oxygen species; DPP4, dipeptidyl peptidase-4; MAPK, mitogen-activated protein kinase; JAK2, Janus kinase;
TLR4, Toll-like receptors 4; CRP, C-reactive protein; AGE, advanced glycation end product; RAGE, Receptor for advanced glycosylation end products; Ang II,
angiotensin II; TGF, Transforming growth factor.

of OS. NRF2 reduces the infiltration of macrophages and
proinflammatory cytokines by ameliorating oxidative overload.
Clinical studies have demonstrated that the NRF2 activator, such
as bardoxolone methyl, improves kidney function in diabetic
patients (Pergola et al., 2011).

The nucleotide-binding oligomerization domain (NOD)
family and NOD-like receptor pyrin domain-containing protein
(NLRP) family are involved in DN. NOD2 promotes the
endothelial-to-mesenchymal transition in DN (Shang et al.,
2017). NLRP3 promotes the generation of IL-1β and IL-18
by activating the NLRP3-Caspase-1-IL-1β pathway in diabetic
kidneys (Chi et al., 2020; Wang et al., 2020). NLRP3 has
interactions with Toll-like receptors, ROS and NF-κB pathway
to promote inflammation in DN (Shahzad et al., 2015;
Wang et al., 2020).

The Janus kinase/signal transducer and activator of
transcription (JAK-STAT) pathway is involved in processing
extracellular signals (cytokines and chemokines) to the cell
nucleus, resulting in gene expression (O’shea et al., 2013). The
clinical findings show that JAK2 is increased in the podocytes of
patients with early DN (Berthier et al., 2009). Podocyte-specific

JAK2 overexpression in diabetic mice aggravates glomerulopathy
while the inhibition of JAK1/2 attenuates the phenotypic changes
of diabetic kidney (Zhang et al., 2017).

DN AND EPIGENETIC MODIFICATIONS
INVOLVED IN INFLAMMATION

DNA Methylation Involved in
Inflammation of DN
DNA methylation promotes inflammatory activation of immune
cells in diabetic kidney disease and demethylating agents prevent
the progressive kidney disease (Larkin et al., 2018; Chen
et al., 2019b). DNA methylation is a process in which the
methyl group of S-adenosylmethionine is transferred to the
cytosine of DNA under the catalysis of DNA methyltransferases
(DNMTs), resulting in down-regulation of the gene expression
(Yagi et al., 2012). DNMTs mainly include DNMT1, DNMT3a,
and DNMT3b. DNMT1 has been found to contribute to the
maintenance of methylation and the other DNMTs are related
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to de novo methylation (Hsieh, 1999). DNA methylation occurs
specifically at the 5’ site of the CpG dinucleotide cytosine
residue, hindering the binding of transcription factors and
promoters, subsequently inhibiting transcription (Yagi et al.,
2012). The genome-wide DNA methylation analysis shows that
DNA methylation is associated the kidney injuries and kidney
inflammation in DN patients (VanderJagt et al., 2015; Park et al.,
2019). In vivo study also indicates high-glucose induced high
levels of methylation in kidney cells. It is found that there are
173 differentially methylated regions (DMRs) in high glucose
(HG)-treated mesangial cells compared to the low-glucose
(LG) treatment (Li et al., 2020d). Suppression of methylation
by bioactive constituent extracted from plants, e.g., moringa
isothiocyanate (MIC-1), potentially down-regulates expression
of TGF-β1, and changes the Nrf2, Col4a2, Tceal3, Ret, and Agt
expressions (Li et al., 2020d; Cheng et al., 2019).

Aberrant cytosine methylation of the upstream regulators
of the mammalian target of rapamycin (mTOR) promotes
inflammation by the upregulation of DNMT1 in DN (Chen et al.,
2019b). Notably, DNA methylation is dynamic and can be altered
by environmental factors. Studies have found that hyperglycemia
in T2DM patients triggers a self-regulatory mechanism leading
to the reduction of 5mC levels in the peripheral blood, which
indicates that the DNA might undergo demethylation via the
upregulation of ten-eleven-translocation 2 (TET2), a DNA
demethylation enzyme (Yuan et al., 2019).

Histone Modifications Involved in
Inflammation of DN
The nucleosome is the basic unit of chromatin consisting of
DNA and wrapped histone proteins. The post-translational
modifications (PTMs) on chromatin histone include acetylation,
ubiquitination, phosphorylation, and methylation. Recently,
the genome-wide analysis of chromatin binding proteins and
histone modifications has been conducted through chromatin
immunoprecipitation followed by high-throughput sequencing
(ChIP-seq) or by microarrays. The modifications are mainly
mediated by three types of enzymes: writer, eraser, and reader.
Writers/erasers carry on the modifications by adding/removing
methyl or acetyl groups at amino acid residues in histone, such
as histone acetyltransferase, histone methyltransferase (HMT),
histone deacetylase (HDAC) and histone demethylase (HDM)
(Bhatt et al.). Readers are the effectors that can identify and
interpret post-translational modifications. Histone acetylation
promotes gene transcription, while histone methylation
promotes or inhibits gene transcription (Kouzarides, 2007).
Specifically, the methylation of histone mostly happens on
the residues of lysine and arginine. There are three types of
methylation in lysine, namely monomethylation, dimethylation
and trimethylation, and all three types of methylation of H3 at
lysine 4 (H3K4me1, H3K4me2 and H3K4me3, respectively) exert
an active effect (Kato and Natarajan, 2019). Similarly, H3K36me2
and H3K36me3 are enriched at transcriptional activation
genome regions (Kato and Natarajan, 2019). Conversely, the
methylation of H3K9me3, H3K27me3 and H4K20me3 are
associated with gene repression (Kato and Natarajan, 2019).

These modifications usually happen at promoters, insulators,
enhancers, and other cis-regulatory regions, and finally lead to
aberrant gene expression (Barski et al., 2007; Heintzman et al.,
2009; Pradeepa et al., 2016).

Histone PTMs are involved in the pathogenesis of DN (Kato
and Natarajan, 2019). HG and other danger signals increase the
expression of pro-inflammatory genes by histone PTMs (Kato
and Natarajan, 2019). TXNIP, pro-inflammatory gene, has been
demonstrated to play an important role in the development of
DN (Chen et al., 2008). In hyperglycemia-induced DN mice, HG-
induced Txnip expression is associated with the enrichment of
activated histone marks H3K9ac, H3K4me3, H3K4me1, and the
repressive histone mark H3K27me3 at the promoter region of the
gene, which has also been proved in human mesanginal cells (De
Marinis et al., 2016). Furthermore, histone methylation take part
in the process of inflammation via the secretion of inflammatory
cytokines in diabetes. Specifically, H3K4 methylation could be
mediated by HMT SET7 (Cheng et al., 2005). It is reported
that transient HG causes the recruitment of HMT SET7 and
increases H3K4 methylation at the NF-κB -P65 promoter,
which promotes the expression of P65, MCP-1 and VCAM-
1 in endothelial cells (El-Osta et al., 2008). Meanwhile, in
endoplasmic reticulum (ER) stress induced kidney model of
db/db mice, the increased expression of Mcp-1 is associated
with the enrichment of H3K4me1 at Mcp-1 promoters, and
could be significantly attenuated by the methyltransferase SET7/9
gene silencing (Chen et al., 2014c). The other study indicates
that SET7/9 modifies chromatin histone lysine at promoters of
MCP-1and TNF-α which promotes the inflammation in THP-
1 monocytes (Li et al., 2008). In contrast, UTX (ubiquitously
transcribed tetratricopeptide repeat, X chromosome) is a histone
demethylase that can remove di- and tri-methyl groups from
H3K27 (Choi et al., 2015). Studies have reported that the
expression of UTX is upregulated in podocytes, tubular and
mesangial cells of DN patients in vitro and in vivo (Majumder
et al., 2018). Moreover, the knockout of UTX or the treatment
of UTX inhibitor, GSK-J4, can reduce palmitic acid-induced
increase of inflammation and DNA damage (Chen et al., 2019c).
Furthermore, one study demonstrated that the inhibition of UTX
could inhibit hypertrophy, a key event in glomerular dysfunction
(Jia et al., 2019). In parallel, TGF-β down-regulates Enhancer
of Zeste homolog 2 (EZH2), a H3K27me3 methyltransferase,
by inducing miR-101b, which targets the 3’-untranslated region
(3’-UTR) of EZH2. Meanwhile, TGF-β up-regulates UTX,
a key role for H3K27me3 demethylases in renal mesangial
cells. TGF-β-induced the inhibition of H3K27me3 augments
pathological genes via dysregulation of associated histone-
modifying enzymes and miR-101b in DN (Jia et al., 2019).
Another H3K27me3 demethylase JMJD3 regulates inflammatory
genes in macrophages (De Santa et al., 2007). To conclude, these
studies suggest that the inhibition of H3K27me3 augments the
expression of inflammation genes and the progression of DN.

Similarly, acetylation and deacetylation of histones via histone
acetyltransferases (HATs) and histone deacetylase (HDACs)
contribute to the pathogenesis of DN. Hyperglycemia promotes
chromatin histone acetylation at inflammatory genes promoter
regions and enhances inflammatory gene expressions in vivo
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(Miao et al., 2004). Levels of H3K9ac, H3K9ac/S10p, H3K18ac,
H3K23ac and H3K56ac are increased in the kidneys of db/db
mice (Huang et al., 2015). Furthermore, the expression of Sirt6
(a histone deacetylase) is reduced in podocytes of STZ-induced
mice which results high levels of H3K9ac at promoters of
Notch1 and Notch4, and exacerbates the inflammation in kidney
(Liu et al., 2017). The silencing of HDAC9 attenuates renal
injuries as demonstrated by the decrease in glomerulosclerosis,
inflammatory cytokines, and alteration of podocyte apoptosis
(Liu et al., 2016). The elevated HDAC4 in diabetic kidney
exacerbates inflammation via suppressing STAT1 signaling and
the silencing of HDAC4 is associated with the decreases of
cytokines (TNF-α, TGF-β, IL-8, MCP-1) (Wang et al., 2014). The
roles of DNA methylation and histone modification in the DN
process are briefly shown in Figure 3.

Non-coding RNAs Involved in
Inflammation of DN
Non-coding RNAs (ncRNAs) commonly include transfer
RNA, ribosomal RNA, long ncRNA (lncRNA), small ncRNA
(e.g., microRNA, piRNAs, snoRNA, snRNA, exRNA) and
circular RNA (circRNA) (Storz, 2002; Yang, 2015). Roles
of microRNA (miRNA), lncRNA and circRNA in DN have
been recently studied (Loganathan et al., 2020; Zhou et al.,
2021). MiRNA is the best characterized non-coding RNA for
transcriptional gene regulation by targeting the 3′-UTR of a

specific mRNA. Typically, miRNAs exert their inhibitory actions
on the gene via RNA silencing and translational repression
(Wilczynska and Bushell, 2015).

MiRNAs play significant roles in regulating inflammation
in DN (Zhou et al., 2021). Recent studies involving models
of DN podocytes have found that downregulation of the
miR-17∼92 cluster ameliorates inflammation and podocyte
injury by targeting ABCA1 (ATP-binding cassette transporter
A1) (Fan et al., 2020). Similarly, the inhibition of miR-
21-5p in a macrophage-derived extracellular vesicle model
could also exert podocyte protective effect by the restraint
of inflammasome activation (Ding et al., 2020). Moreover,
miRNAs are also found to regulate inflammation in renal
tubular epithelial cells. The overexpression of miR-199a-3p
improves the injury in high glucose induced HK-2 cell damage
model, following with decreased IL-1, IL-6 and TNF-α level,
which is also consistent with the clinical finding that miR-
199a-3p is negatively correlated with the progression of DN
(Zhang et al., 2020b). The protective effects of miR-199a-
3p is via suppressing miR-199a-3p mediated IKKβ/NF-κB
pathway (Zhang et al., 2020b). In vitro experiments, the
overexpression of miR-26a-5p significantly inhibits the bovine
serum albumin (BSA)-induced IL-6 and TNF-α expression
in HK2 cells while the inhibition of miR-26a-5p promotes
the expression of inflammatory cytokines (Li et al., 2020c).
MiR-26a-5p is also found to activate NF-κB pathway by
targeting on CHAC1 and TLR4 genes (Zhong et al., 2018;

FIGURE 3 | The roles of DNA methylation and histone modification in the DN process. High glucose or stimulating factors cause DNA methylation and histone
modification. DNA methylation is mainly regulated by DNMTs. MIC-1 and TIIA inhibits DNA methylation and reduces inflammation in DN. In the processes of histone
modification, SET7/9 regulates H3K4 methylation, UTX regulates H3K27 demethylation, HAT promotes histone acetylation, and HDAC4/9 promotes histone
deacetylation. The above processes regulate inflammatory genes, in turn affects the inflammatory response in DN. DN, diabetic nephropathy; DNMTs, DNA
methyltransferases; UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome; HAT, histone acetyltransferases; HDAC, histone deacetylase; NF-κB,
Nuclear factor-κB; MCP-1, monocyte chemoattractant protein-1; STAT1, Signal transducer and activator of transcription 1.
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TABLE 1 | The target genes and potential mechanisms of miRNAs associated with inflammation in DN.

miR Targeted
Genes/Pathway

Inflammation
Pathway/Related
mediator

Sample Model Effect on
Inflammation

References

miR-15b-5p Sema3A IL-1β, TNF-α, and IL-6. Cells Mouse podocytes Alleviate Fu et al., 2019b

miR-21 Timp3 Podocyte apoptosis Rats STZ-induced DN rats Promote Chen et al., 2018

Cells HG-treated podocytes

miR-21 N/D NF-κB Mice Db/db mice Promote Zhong et al., 2013

miR-29 KEAP1 SIRT1/NF-κB/microR-
29/Keap1

Rats STZ-induced DN rats Alleviat Zhou et al., 2015

Cells HG-induced injury in HK-2 cells

miR-29b Sp1 TNF-α, MCP-1/NF-κB Mice Db/db mice Alleviate Chen et al., 2014b

miR-31 N/D The recruitment of
leukocytes to vascular walls

Serum DN patients Alleviate Rovira-Llopis et al.,
2018

miR-126 Vegf PI3K/AKT/mTOR IL-1β,
IL-6, IL-18 and TNF-α

Rats STZ-induced DN rats Alleviate Lou et al., 2020

Cells NRK52E

miR-133 N/D MAPK/ERK Rats Cells STZ-induced DN rats
HG-induced injury in HK-2 cells

Promote Shao et al., 2019

miR-140-5p N/D TLR4, NF-κB Tissue Kidney tissues from DN
patients

Alleviate Lou et al., 2020

Cells HG-induced injury in HK-2 cells

miR-217 N/D SIRT1/VEGF/HIF-1α Serum DN patients Promote Shao et al., 2017

miR-217 N/D N/A Cells Rat glomerular mesangial cells Promote Shao et al., 2016

miR-218 N/D NF-κB Rats Rat streptozotocin-induced
model of DN

Alleviate Li et al., 2020b

miR-218 DACH1 TNF-α and IL-1β Cells HG-induced injury in HK-2 cells Peomote Zhang et al., 2020c

miR-218 GPRC5A N/A Cells HG-induced injury in HK-2 cells Promote Su et al., 2020

miR-325-3p CCL19 N/A Cells HK-2 and human MC cells Promote Sun et al., 2020a

miR-328-3p Tlr4 TLR4, NF-κB Cells MP5 cells Alleviate Duan et al., 2020

miR-34b N/D IL-6R/JAK2 /STAT3 Cells HG-induced HK-2 cells Promote Lv et al., 2019

miR-451 Lmp7 NF-κB Mice Db/db mice Alleviate Sun et al., 2016

Cells HG-induced MCs

miR-485 NOX5 N/A Cells Human MCs Alleviate Wu et al., 2020

miR-544 Fasn NF-κB Mice Db/db mice Alleviate Sun et al., 2020b

miR-770-5p Timp3 IL-1β, TNF-α Cells HG-induced mouse podocytes Promote Wang and Li, 2020

miR-874 N/D TLR4 Rats STZ-induced DN rats Alleviate Yao et al., 2019

Cells HG-induced podocytes

N/D, not determined; N/A, not available; IL, interleukin; TNF, tumor necrosis factor; DN, diabetic nephropathy; STZ, streptozotocin; HG, High glucose; NF-κB, Nuclear
factor-κB; SIRT1, Silent information regulator 1; KEAP1, Kelch-like ECH-associated protein 1; HK-2, human kidney 2; Sp1, specificity protein 1; MCP-1, monocyte
chemoattractant protein-1; VEGF, vascular endothelial growth factor; HIF-1α, hypoxia-inducible factor-1α; NRK52E, rat kidney tubular epithelial cells; MCs, mesangial
cells; TLR4, Toll-like receptors 4; MAPK/ERK, mitogen-activated protein kinase/extracellular signal-regulated kinase; JAK2, Janus kinase 2; STAT3, Signal transducer and
activator of transcription 3.

Li et al., 2020c). MiR-155 and miR-146a have also been found to
be correlated with renal damage, possibly due to the increased
expression of TNF-α, TGF-β1, and NF-κB, and their roles in
inflammation-mediated glomerular endothelial damage (Huang
et al., 2014). Moreover, miRNAs regulate inflammation by
modulating macrophage polarization. As mentioned before,
macrophage M1 polarization act as an inflammation driver. In
miR-146a deficiency diabetic mice, the expression of M1 markers
is increased while the M2 response is diminished which is in
accordance with the upregulated pro-inflammatory cytokines,
suggesting the anti-inflammatory proporities of miR-146a (Bhatt
et al., 2016). M2 macrophages ameliorate podocyte injury is
related to miR-25-3p (Huang et al., 2020). It is found that

autophagy deficiency in diabetic mice increases macrophage
infiltration in proximal tubules (Ma et al., 2020), and the
induction of miR-214 enhances the autophagy impairment,
thus aggravating renal inflammation (Li et al., 2011). MiR-
214 in monocytes is upregulated by AGEs, which in turn
impairs the expression of the phosphatase and tensin homolog
(PTEN) and delays spontaneous apoptosis of monocytes (Li
et al., 2011). Additionally, miR-27a is downregulated by
an adipokine, omentin-1, which alleviates inflammation and
OS by directly targeting the 3′-UTR of Nrf2 (Song et al.,
2018). MiR-29b attenuates podocyte injury by targeting the
3′-UTR of HADC4 in DN (Gondaliya et al., 2020). MiR-
125b has been found to inhibit the chromatin histone H3K9
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TABLE 2 | The target genes and potential mechanisms of lncRNAs associated with inflammation in DN.

lncRNA Targeted Axis/ Inflammation
Pathway

Sample Model Effect on
Inflammation

References

XIST miR-485/PSMB8 Human DN patients Promote Wang, 2020

Cells Human MCs

RPPH1 Gal-3/Mek/Erk Mice Db/db mice Promote Zhang et al., 2019a

Cells HG-induced MCs

NEAT1 miR-34c/NLRP3- CASPASE-1-IL-1β Rats STZ-induced DN rats Alleviate Zhan et al., 2020

Cells HBZY-1

MEG3 miR-181a/Egr-1/TLR4 pathway Rats DN rat models Promote Zha et al., 2019

KCNQ1OT1 miR-506-3p/NLRP3-CASPASE-1-IL-1β Cells HG-induced HK-2 cells Promote Li et al., 2017

MALAT1 miR-23c/NLRP3-CASPASE-1-IL-1β Rats Cells STZ-induced DN rats
HG-induced HK-2 cells

Promote Li et al., 2017

Gm4419 NF-κB/NLRP3 inflammasome Cells HG-induced MCs Promote Yi et al., 2017

NON-
HSAG053901

Egr-1/TGF-β Mice Cells STZ-induced mice Mesangial
cells

Promote Peng et al., 2019

HOTTIP miR-455-3p/WNT-2B Cells HG-inducedSV40-MES13
cells and HK-2 cells

Promote Zhu et al., 2019

GAS5 miR-452-5p/NLRP3-
CASPASE-1-IL-1β

Cells HK-2 cells Alleviate Xie et al., 2019

UCA1 miRNA-206 Rats DN rat models Alleviate Yu et al., 2019

Cells HK-2 cells

LRNA9884 Mcp-1/Smad3 Mice Db/db Promote Zhang et al., 2019b

Cells Mouse tubular epithelial cells

PSMB8, proteasome subunit beta type-8; DN, diabetic nephropathy; MCs, mesangial cells; HG, high glucose; STZ, streptozotocin; NLRP3, NOD-like receptor protein 3;
IL, interleukin; STZ, streptozotocin; HBZY-1, Rat glomerular mesangial cell line; TLR4, Toll-like receptors 4; Egr-1, Early growth response protein 1; HK-2, human kidney
tubular epithelial cell 2; WNT-2B, a protein of the Wnt signaling pathway.

methyltransferase to regulate inflammatory genes in diabetic
mice (Villeneuve et al., 2010). Hyperglycemia induces miR-101b,
which targets the EZH2, leading to mesangial dysfunction in DN
(Jia et al., 2019).

Moreover, accumulating evidence shows that a lot of miRNAs
are involved in the regulation of inflammation in DN as shown in
Table 1.

LncRNAs also contribute to the development and
progression of DN. LncRNA myocardial infarction associated
transcript (MIAT) promotes hyperglycemia-induced podocyte
inflammation by sponging miR-130a-3p and the regulation
of TLR4 (Zhang et al., 2020a). LncRNA 4930556M19Rik
has been found to protect against HG-induced podocyte
damage by downregulation miR-27a-3p (Fan and Zhang, 2020).
Macrophage-specific lncRNA_7949 mediates macrophage-
induced kidney inflammation by the controlling of MCP-1
transcription through TLR4/NF-κB pathway (Lv et al., 2015).
TGF-β/Smad3 transits the miRNA profile and promotes renal
diseases via regulating transcriptional levels of non-coding RNAs.
SMAD3-dependent lncRNAs have been recently uncovered in
kidney diseases (Tang et al., 2018a, 2020a). LncRNA Erbb4-IR
is responsible for TGF-β/Smad3-regulated renal fibrosis by
inhibiting SMAD7 (Feng et al., 2018). It has been reported
that lncRNA Erbb4-IR enhances diabetic kidney injury by
mediating miR-29b in db/db Mice. Deletion of SMAD3 could
down-regulate the lncRNA Erbb4-IR transcription, and therefore
protect against renal injury in db/db mice (Sun et al., 2018).

LRNA9884, a novel SMAD3-dependent lncRNA, is not
only involved into NF-κB-mediated inflammatory responses
by activation of macrophage migration inhibitory factor
(MIF) in AKI, but also enhances diabetic renal injury via
promoting MCP-1-dependent renal inflammation in db/db
mice (Zhang et al., 2019b, 2020d; Xu et al., 2020a). The
lncRNAs involved in the inflammation of DN are shown in
Table 2.

CircRNAs regulate gene expressions by acting as sponges
of miRNA (Kristensen et al., 2019), and play an important
role in renal diseases (Jin et al., 2020). As a sponge of miR-
135a, circRNA_010383 is markedly decreased in the kidney
of db/db mice and HG-induced kidney resident cells, and
overexpression of circRNA_010383 in kidney protects kidney
from proteinuria and fibrosis in DN (Peng et al., 2021).
CircLRP6, as a sponge of miR-205, activates TLR4/NF-κB
pathway and induces inflammation in high glucose treated
mesangial cells (Chen et al., 2019a). CircACTR2 induces
inflammation and pyroptosis in high glucose treated renal
tubular cells (Wen et al., 2020). Circ_0003928 attenuates
the high glucose-induced inflammation in HK-2 cells by
targeting miR-151-3p/Anxa2 (An et al., 2020). CircWBSCR17
aggravates inflammation and fibrosis in high glucose-induced
HK-2 cells via miR-185-5p/SOX6 axis (Li et al., 2020a).
Circ0000285 enhances inflammation via sponging miR-654-3p
in high glucose treated podocytes and diabetic mouse kidney
(Yao et al., 2020).
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DISCUSSION

The current evidence reveals epigenetics (methylation,
acetylation, and non-coding RNA modification) modulate
inflammation via intrinsic cells, immune cells, and numerous
inflammatory pathways in the development of DN. Persistent
inflammation in DN promotes the renal fibrosis, thus resulting
in CKD and even end-stage renal disease (Tang et al., 2020a).
Anti-inflammatory therapy has long been considered to have
enormous benefits for either the alleviation or the prevention
of DN (Barutta et al., 2015). In this review, we summarized
the evidence linking epigenetic modifications and inflammation
in DN. Thus, it may be an effective approach to target these
modifications for DN treatment. As for histone modification, the
inhibition of HATs/HDACs provides as a class of new agents or
therapeutic targets for the treatment of DN. Most of agents are
non-selective inhibitors hindering the clinical application (Wang
et al., 2014). Valproic acid is a specific HDAC1 inhibitor, which
attenuates proteinuria, fibrosis, and inflammatory effects and
even acute pancreatitis (Van Beneden et al., 2011; Jain et al., 2019).
However, effects of specific HDAC inhibitors for DN remain
largely unexplored.

LncRNAs have been considered the novel markers as well
as the potential therapeutic targets, and novel drug delivery
vehicles (e.g., exosome-ncRNAs). Metformin has been found
to protect against inflammation and ECM accumulation in
mesangial cells via the H19/miR-143-3p/TGF-β1 axis, suggesting
that the H19/miR-143-3p/TGF-β1 axis could be a potential
therapeutic target for the management of DN (Xu et al.,
2020b). The competing endogenous RNA (ceRNA) network
analysis on human miRNA indicates that RP11-363E7.4/TTN-
AS1/HOTAIRM1-hsa-miR-106b-5p-PTGER3 and LINC00960-
hsa-miR-1237-3p-MMP-2 interaction pairs are significant in
diabetic kidney (Yu et al., 2021). Drugs such as iloprost,
treprostinil, and captopril that target PTGER3 and MMP-2 might
benefit patients with DN (Yu et al., 2021).

Intriguingly, several studies show miRNA-192 is upregulated
in diabetic patients with microalbuminuria, but downregulated
in macroalbumnuria compared to normalbuminuria (Krupa
et al., 2010; Jia et al., 2016). However, another study
shows that miR-192 is increased in DN patients with over
proteinuria (ACT >300 mg/g) compared to microalbuminuria
(Chien et al., 2016). These studies indicate miRNA-mediated

epigenetic modifications may have various roles in different
stages of a disease.

Besides DNA methylation, histone modification and non-
coding RNA, RNA methylation plays an important role in
the mRNA post-translational modification. For example, N6-
methyladenosine (m6A) methylation is the most chemically
modified form of eukaryotic messenger RNA (mRNA) which
modifies the adenosine at the 3’-UTR and the stop codon
of a mRNA (Fu et al., 2014; Roundtree et al., 2017). Roles
of epigenetic modifications are not fully elucidated. Recently,
single nucleus ATCT-seq integrated with snRNA-seq has been
used to detect the cell-type-specific chromatin accessibility
which enable to deep understanding of cell heterogeneity in
kidney (Bansal et al., 2020; Muto et al., 2021). It may provide
a new approach to understand the epigentic modifications
in DN.

Collectively, further studies are warranted to reveal the precise
regulatory mechanisms in the different stages of DN as well as
potential therapeutic targets and diagnostic biomarkers for DN.
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