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We evaluated whether maternal intake of conjugated linoleic acid (CLA) and

docosahexaenoic acid (DHA) in the phospholipid (PL) form (CLA-DHA PL) affects

maternal and fetal brain and liver fatty acids (FAs) profile and the biosynthesis of

FA-derived bioactive lipid mediators N-acylethanolamines (NAEs) involved in several

neurophysiological functions. We fed rat dams during the first 2/3 of their pregnancy a

CLA-DHA PL diet containing PL-bound 0.5% CLA and 0.2% DHA. FA and NAE profiles

were analyzed in maternal and fetal liver and brain by Liquid Chromatography diode

array detector (LC-DAD) and MS/MS in line. We found that CLA and DHA crossed the

placenta and were readily incorporated into the fetal liver and brain. CLA metabolites

were also found abundantly in fetal tissues. Changes in the FA profile induced by the

CLA-DHA PL diet influenced the biosynthesis of NAE derived from arachidonic acid (ARA;

N-arachidonoylethanolamine, AEA) and from DHA (N-docosahexaenoylethanolamine,

DHEA). The latter has been previously shown to promote synaptogenesis and

neuritogenesis. The reduced tissue n6/n3 ratio was associated to a significant decrease

of AEA levels in the fetal and maternal liver and an increase of DHEA in the fetal

and maternal liver and in the fetal brain. Maternal dietary CLA-DHA PL by promptly

modifying fetal brain FA metabolism, and thereby, increasing DHEA, might represent an

effective nutritional strategy to promote neurite growth and synaptogenesis and protect

the offspring from neurological and psychiatric disorders with neuroinflammatory and

neurodegenerative basis during the critical prenatal period.

Keywords: conjugated linoleic acid (CLA), docosahexaenoic acid (DHA), N-acylethanolamines (NAEs), fetal brain,

maternal nutrition

INTRODUCTION

The fat composition in the fetus is of major importance, as the intrauterine requirement of n6 and
n3 polyunsaturated fatty acids (PUFAs) in the human fetus development during the last trimester
and the early weeks of life is 400 and 50 mg/kg/day, respectively (1). In fact, cerebral tissue, where
lipids make up to 50% of the dry weight, has around half the total lipid content composed of
long-chain PUFA (LC-PUFA), of which arachidonic acid (ARA, 20:4n6) and docosahexaenoic acid
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(DHA, 22:6n3) are metabolically the most important for the
development of the central nervous system (CNS) the body
growth and the synthesis of bioactive molecules (2).

The placenta and the fetus, owing to the low activities of the
delta 5- and delta 6-desaturase enzymes, cannot synthesize LC-
PUFA from the essential fatty acids (FAs) (3); consequently, the
considerable requirements of these LC-PUFA in the fetus must be
provided by their placental transfer through lipoprotein receptors
(4–6) and lipase activities (7–9), which facilitate the release of
FAs and their subsequent transport to the fetal liver. A placental
selectivity and high affinity for the transport of individual FA
to the fetus has been reported (10–12), explaining why the
concentrations of some LC-PUFA, as ARA and DHA, are greater
in the fetal than maternal circulation (10, 13–15). Haggarty et al.
(16) found a selective preferential placental transport of DHA
with order of preference DHA > ARA > alpha linolenic acid
(ALA, 18:3n3) > linoleic acid (LA, 18:2n6) (16, 17).

Several studies showed that maternal intake of LC-PUFAn3,
in particular, the DHA, during pregnancy plays a crucial role
in the CNS development leading to positive effects on visual,
mental, and psychomotor development (18–23). It was shown
that incorrect nutritional management of the mother during fetal
brain development might lower the threshold for neurological
disorders later in life (24, 25).

Different approaches have been suggested to optimize the
maternal intake of some FAs to increase their availability to
the fetus, creating a balance among FAs important to prevent
undesirable consequences to the newborns (26).

An unusual FA, the conjugated linoleic acid (CLA), which
has several nutritional properties at the peripheral level (27–31),
has been demonstrated to cross the hematoencephalic barrier
(BBB) in both experimental animals (32) and humans (33)
with a promising positive impact on neurological disorders
(34), such as adrenoleukodystrophy (33, 35). CLA is a
positional and geometric isomer of LA which is present
in meat and dairy products of ruminants and synthesized
endogenously in non-ruminants and humans (36–38). We
have previously demonstrated that CLA is incorporated and
metabolized into brain tissue (32). The most of the studies that
investigated CLA described its capacity to improve protection
against neuroinflammation (39, 40), induce a re-balance of
the dopaminergic neuronal function (41), and enhance the
synaptogenesis and neuritogenesis (41–43). This reinforces
the idea that CLA can be a very good alimentary support in the
prevention of psychiatric disorders with neuroinflammatory and
neurodegenerative basis (34, 41). In fact, chronic dietary CLA
intake can reduce prostaglandin E2 in the peripheral tissues and
CNS (40). In addition, it has been shown that CLA protects
mouse cortical neurons from glutamate excitotoxicity (39).

Surprisingly, despite the significant number of studies that
investigated the positive biological effects of CLA in the brain,
there is only a limited amount of data on the importance of
CLA supplementation during the gestational period to improve
the cerebral functions in offspring. Recently, Queiroz et al. (44)
investigated the impact of different CLA concentrations (1 and
3%) mixed into the maternal diet during gestation and lactation
in an experimental model. The authors analyzed the reflex

responses and cognitive functions of the offspring from the 1st
to the 21st day after birth, and the FA profiles in the breast milk
and in the offspring’s brain were also quantified. The milk with
3% dietary CLA presented an increase in PUFA and a decrease
in monounsaturated fatty acid (MUFA), and the amount of CLA
was greater in the two CLA groups than the control group, while
maternal and both offspring’s brains presented only moderated
CLA levels. The maternal CLA diet induced anticipated reflex
maturation and improved learning and memory in the offspring.
However, Queiroz did not analyze the CLA incorporation in
fetal tissues, which we suppose is crucial to obtain beneficial
effects in the offspring (44). Reynolds et al. observed that
supplementation during pregnancy and lactation of CLA c9, t11
reverted reproductive and metabolic dysfunction of the offspring
induced by a maternal high fat diet (45).

This study aimed to investigate the bioavailability and
incorporation of CLA in the liver and brain of the fetus of
Sprague Dawley rat dams fed, during the gestational period,
with a diet supplemented with CLA (0.5% of the diet) and
DHA (0.2% of the diet) in the form of phospholipid (PL). We
supposed that CLA and DHA esterified to PL (CLA-DHA PL)
could further increase their bioavailability into PL of the brain.
Accordingly, we previously showed that the dietary intake of FA
in the PL form, where DHA, was around 0.2% of the diet, is
more effective in increasing its concentrations in the brain than
the triglyceride form (46, 47). On the other hand, the percentage
of dietary CLA (0.5%) was chosen as the lowest amount able
to exert its biological activities, as demonstrated in different
experimental models (31). Overall, these dietary concentrations
may correspond to dietary intake in humans of 3g/d for CLA (48)
and 800mg/d of DHA (47), both levels that may easily be reached
by dietary supplementation.

Both FAs have been shown to exert their biological activities
by influencing FA metabolism and consequent changes of a
series of bioactive lipid mediators, namely, endocannabinoid-
related molecules (47, 49, 50). Therefore, besides the analysis
of liver and brain FA profiles, we also analyzed in fetal and
maternal liver and brain the influence of dietary CLA-DHA
PL formulation on the biosynthesis of bioactive metabolites,
such as the endocannabinoid N-arachidonoylethanolamine or
anandamide (AEA) and the congeners N-acylethanolamines
(NAEs). Different studies have demonstrated that CLA influences
the synthesis of these molecules and is an avid ligand of
Peroxisome proliferator-activated receptor (PPAR) alpha whose
activation is important for the pathophysiologic response to
neuroinflammatory events (34, 50, 51).

MATERIALS AND METHODS

Experimental Diets
The diets were manufactured at Charles River Laboratories
Italia Srl. The control diet (CRTL) was based on the AIN-93G
formulation containing 7% of total fat as soybean oil, which
provides 14% of the total energy (%en), whereas the experimental
diet contains 6% soybean oil + 1% mixture CLA-DHA (CLA
0.5% and DHA 0.2% of the diet; CLA-DHA PL). These two diets
were equilibrated in % of FA, with the only variation represented
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TABLE 1 | Composition of control (CTRL) and experimental [conjugated linoleic

acid-docosahexaenoic acid in phospholipids (CLA-DHA PL)] diets administered to

rat dams from day zero to 16 of the gestational period.

% of the diets CRTL CLA-DHA PL

ALA, 18:3n3 0.2 0.2

EPA, 20:5n3 0.0 0.1

DHA, 22:6n3 0.0 0.2

LA, 18:2n6 1.6 1.3

OA, 18:1n9 2.1 1.9

CLA, CD18:2 0.0 0.5

PA, 16:0 0.4 0.6

SA, 18:0 0.1 0.2

PUFAn3 0.2 0.4

PUFAn6 1.6 1.3

PUFAn6/n3 7.6 3.1

The Table reports the main fatty acids (FAs) present in the diets, which are expressed in
% of the diet.

by CLA and DHA levels provided as an ester of PLs, precisely
phosphatidylcholine (PC). This experimental formulation was
provided by INNOLIPID AS, Ålesund, Norway.

Table 1 reports the FA composition of both diets, expressed in
% of the diet.

Animals and Sample Collection
Experiments were approved by the Animal Ethics Committees
of the University of Cagliari and were carried out in accordance
with the European Directive on the protection of animals used
for scientific purposes (2010/63/EU).

Sprague Dawley rats were housed in groups in standard
conditions of temperature (21± 1◦C) and humidity (60%) under
a 12 h light/dark cycle (lights on at 7:00 a.m.) with food and water
available ad libitum. Eight female rats were mated at the age
of 3 months with an initial weight of 230–250 g. The first day
after the copulation, which was confirmed through the presence
of the vaginal plug, was defined as gestational day zero. Dams
were randomly assigned to two experimental groups: the first
group received a control (CRTL) diet, whereas the second group
received a diet enriched with CLA and DHA in the form of PL
(CLA-DHA PL) ad libitum from day zero to 16 of the gestational
period. We did not observe any significant difference in the
food intake and body weight between the two groups (data
not shown).

Before sacrifice, the dams were fasted for 12 h and were
subsequently euthanized. Liver, plasma, and different cerebral
areas, such as the hypothalamus and hippocampus, were then
collected and stored at −80◦C for lipid analyses. Four fetuses
were also collected from each mother, and their livers and brains
in toto were pooled for lipid analyses.

Lipid Analyses
FAs Analysis

Total lipids were extracted from fetal and maternal liver and
brain samples according to the method of Folch et al. (52).

Total lipid quantification was performed by the method of
Chiang et al. (53). Aliquots of the lipid fraction were mildly
saponified using a procedure in order to obtain unsaturated FAs
for High Performance Liquid Chromatography (HPLC) analysis
(54). The reagents were HPLC grade and purchased from Sigma
Chemicals Co. (St. Louis, MO, USA). The separation of FAs was
carried out using an Agilent 1100 HPLC System (Agilent, Palo
Alto, CA, USA) equipped with a diode array detector (DAD).
A C18 Inertsil 5 ODS-2 Chrompack Column (Chrompack
International BV, Middleburg, The Netherlands) with 5µm
particle size and 150 × 4.6mm was used with a mobile phase of
CH3CN/H2O/CH3COOH (70/30/0.12, v/v/v) at a flow rate of 1.5
ml/min (55). Saturated FAs (SFAs) were measured as fatty acid
methyl esters (FAMEs) by a gas chromatograph (Agilent, Model
6890, Palo Alto) equipped with a flame ionization detector (FID);
a 100m HP-88 fused capillary column (Agilent, Palo Alto) was
used. Data were acquired by the Agilent ChemStation software
system (49).

NAEs Analysis

Aliquots of the lipid fraction were used for the quantification
of NAE compounds. Deuterated NAE and congeners were
added as internal standards to the samples before extraction for
quantification by isotope dilution. Internal deuterated standards
[2H]8AEA, [2H]2OEA, [2H]4PEA, [2H]3SEA were purchased
from Cayman Chemicals (MI, USA). NAE quantification was
carried out by an Agilent 1100 HPLC system (Agilent, Palo Alto)
equipped with a mass spectrometry (MS) Agilent Technologies
QQQ triple quadrupole 6420 with electrospray ionization (ESI)
source, using positive mode (ESI+). A C18 Zorbax Eclipse Plus
Column (Agilent, Palo Alto) with 5µm particle size and 50 ×

4.6mm was used with a mobile phase of CH3OH/H2O/CHOOH
(80/20/0.1, v/v/v) at a flow rate of 0.5 ml/min (49).

Data were acquired by the MassHunter Workstation
acquisition software (version B.08.02), analyzed with
MassHunter software for qualitative (version B.08.00 SP1)
and quantitative analyses (version B.09.00). NAE compounds
were expressed as pmol/g tissues.

Statistical Analysis
Quantitative data are presented as mean ± SEM. Statistical
differences between experimental and control groups were
evaluated by Student’s t-test and statistical significances were
indicated as follows: ∗∗∗∗p ≤ 0.0001; ∗∗∗p ≤ 0.001; ∗∗p ≤ 0.01; ∗p
≤ 0.05. Correlation studies between circulating levels of maternal
CLA and its CD18:3 and CD16:2 metabolites with the respective
levels in fetal liver were done using the Spearman correlation
coefficient with a 95% CI. Data were analyzed using GraphPad
Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA).

RESULTS

Accumulation of CLA, Its Metabolites, and
DHA in Liver and Brain Tissue of Rat Dams
and Their Fetuses
Figure 1 represents the different incorporation of CLA in the
liver and brain of dams and their fetuses after 16 days of dietary
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FIGURE 1 | Incorporation of conjugated linoleic acid (CLA), expressed in

mol%/total FA, in liver and brain of rat dams fed with control (CRTL) and

experimental (CLA-DHA PL) diets from day 0 to 16 of the gestational period,

and their fetuses (n = 4/group). Statistical significance is depicted as follows:

****p ≤ 0.0001.

intake with CRTL and CLA-DHA PL diets. The values are
indicated as mol% of CLA with respect to total FA. The data
showed a significantly higher CLA incorporation in the liver of
rats supplemented with the CLA/DHA-PL diet with respect to
the CRTL group; particularly, CLA incorporation was similar
in rat dams and their fetus. Unexpectedly, fetal brain displayed
increased levels of CLA in CLA-DHA PL, significantly higher
than CTRL groups, while in the maternal brain, we did not
detect any significant CLA incorporation, confirming that FA
incorporation in the adult rat brain is very difficult (56, 57).
In rat dams, we limited our analysis to two brain areas, the
hypothalamus and hippocampus. Both regions displayed similar
variations between the treatments in all the analyses performed;
therefore, we here report only data on the hypothalamus. In the
fetuses, we report data on the whole brain, as it was not feasible
to isolate different brain areas.

Two conjugated diene (CD) metabolites of CLA were
detected, the CD 16:2 and CD 18:3, produced from peroxisomal
beta-oxidation and from CLA desaturation by delta-6 desaturase
activity, respectively. The CLA-DHA PL diet increased the
CD16:2 levels in the liver and brain of fetuses (Figure 2A) and in
mothers only in the liver. CD18:3 was increased in maternal liver
with respect to control group and in the fetal liver was detected
only after CLA-DHA PL diet. In fetal and maternal brains
CD18:3 was not detected, as visualized in Figure 2B. As expected,
similarly to what showed for CLA, these metabolites were not
detected in the hypothalamus and hippocampus of dams.

Figure 3 displays the different incorporation of DHA in the
liver and brain of dams and their fetuses. As for CLA, there was
a significant increase of DHA incorporation in fetal liver and
brain of the rats supplemented with the CLA-DHA PL diet when
compared to the CRTL groups. Brain DHA levels did not change
significantly in dams, while we detected a significant increase in
the liver.

Table 2 reports the FA profile, expressed in mol%/total FA,
in liver and brain of rat dams fed with CRTL or CLA-DHA PL
diets and their fetuses. Dietary CLA-DHA PL determined an
increment of PUFAn3 and a simultaneous reduction of PUFAn6
compared to the CRTL diet. Specifically, in the liver, the increase
of PUFAn3 was evidenced by 3.5-, 2.5-, and 1.5-fold higher
levels of EPA (20:5n3), docosapentaenoic acid (DPA, 22:5n3), and
DHA, respectively. Concerning the main PUFAn6, there was a
significant reduction (−17%) of ARA in a fetus, while no change
was observed in the mother. However, a significant increase,
in both maternal and fetal liver, of the direct ARA precursor
ETA (20:3n6) and a significant reduction of ARA metabolites,
as docosatetraenoic acid (DTA, 22:4n6) and DPA (22:5n6), were
detected.

We observed similar but smaller changes in the PUFA classes
in the brain when compared to the liver. As for CLA, we detected
a significant increase of EPA in fetuses, while in the PUFAn6
family, there was a significant increment of LA and ETA, but a
decrement of DPAn6 metabolite.

Table 2 reports the proportion of the three main FA
families, SFA, MUFA, and PUFA (parted in n3 and n6), in
the liver and brain of the dams and their fetuses. The total
SFA fraction did not change significantly in the liver and
brain between dams and their fetuses and between CRTL
and CLA-DHA PL fed groups. Focusing on the liver, the
CRTL fetuses group displayed higher MUFA and lower total
PUFA levels (+40% and −15%, respectively) compared to the
dam groups. In the brain, these differences were even more
pronounced, as in the fetal group the MUFAs were 9-fold
more increased with respect to the dams group, while the total
fetal PUFAs were reduced by about 38% when compared to
their mothers.

Specifically, as reported in Table 2, the CLA-DHA PL diet
significantly decreases hepatic oleic acid (OA, 18:1n9) in the fetus
and myristic acid (14:1n7) in the rat dams.

In the liver of the CLA-DHA PL group, the 19-desaturation
index obtained by the ratio between OA and stearic acid
(SA) was significantly decreased by −15% (p ≤ 0.001) in
fetuses and −32% (p ≤ 0.05) in dams, confirming that CLA
may regulate 19-desaturase enzymatic activity. In addition,
CLA-DHA PL supplementation significantly decreased the
desaturation index (calculated by the ratio ARA/LA) in fetal
liver and brain around −24% (p ≤ 0.001), while there
was no change in the dams. Another critical parameter is
represented by the anti-inflammation index (AI), obtained from
(EPA+DHA+ETA)/ARA ratio, which in the CLA-DHA PL rat
dams group was significantly incremented of+67% (p ≤ 0.0001)
and+9% (p≤ 0.01) in liver and brain, respectively and evenmore
in the liver (+91%, p ≤ 0.001) and brain (+62%, p ≤ 0.001) of
their fetuses.

Hepatic and Cerebral Levels of Different
NAEs in Dams and Their Fetuses
Table 3 reports the variations of levels of different NAEs in the
liver and brain of the dams and their fetuses induced by maternal
intake with CLA-DHA PL diet.
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FIGURE 2 | Incorporation of CD16:2 (A) and CD18:3 (B), expressed in mol%/total FA, in liver and brain of rat dams fed with control (CRTL) and experimental

(CLA-DHA PL) diets from day 0 to 16 of the gestational period, and their fetuses (n = 4/group). Statistical significance is depicted as follows: ****p ≤ 0.0001 and *p ≤

0.05.

FIGURE 3 | Incorporation of DHA, expressed in mol%/total FA, in liver and

brain of rat dams fed with control (CRTL) and experimental (CLA-DHA PL) diets

from day 0 to 16 of the gestational period, and their fetuses (n = 4/group).

Statistical significance is depicted as follows: ****p ≤ 0.0001 and ***p ≤ 0.001.

In particular, in fetal and maternal liver, CLA-DHA PL
diet significantly decreased concentrations of AEA, the ARA-
derived NAE, when compared to the control group (Figure 4A),
while there was no change in the brain. On the contrary, in
both fetal and maternal liver and fetal brain of CLA-DHA PL
groups, there was a significant increase of the DHA-derived
NAE (Figure 4B).

DISCUSSION

Brain development is critically dependent on FA availability
during fetal life (58). Thereby maternal nutritional status should
be adequate to ensure a proper fetal FA supply via transplacental
transport (59, 60). One of the emerging properties of DHA on
neurodevelopment may be linked to its metabolite DHEA, which
has been shown to promote synaptogenesis and neuritogenesis
(61). Therefore, it appears essential to correctly balance the
amounts and relative proportions of PUFAn3 and n6 in the
mother’s diet during the perinatal period to modulate the lipidic

status efficiently and subsequently the metabolic pathways in
various tissues of the progeny (62, 63).

In this study, we utilized dietary PL-bound CLA and DHA in
rat dams during the first 2/3 of their pregnancy at a concentration
that can be translated, in humans, to 3g/d CLA and 800mg of
DHA attainable by dietary supplements (48).

Our data showed that CLA and DHA in PL form crossed
the placenta and were readily incorporated into the maternal
and fetal liver and brain of fetuses, but not into dams’
brain, accordingly to previous studies where short-term dietary
supplementation with CLA or DHA was hardly incorporated
into adult rat brain (56, 58). Furthermore, we surprisingly
observed that CLA metabolites, the CD16:2 and CD18:3, were
also incorporated into these fetal tissues. Interestingly, we
observed a significant positive correlation between circulating
levels of maternal CLA and its CD18:3 metabolite with the
respective levels in fetal liver (R = 0.72; p ≤ 0.03 and 0.83
p ≤ 0.01, respectively), while we did not find any significant
correlation with CD16:2 metabolite, which is produced by
CLA peroxisomal beta-oxidation. These data indicate that
CLA is probably desaturated to CD18:3 in the maternal but
not in fetal liver and crosses the placenta successively, while
the peroxisomal beta-oxidation might occur in the fetus and
the CLA-DHA PL diet might over-activate this process. We
observed that CLA and DHA intake, by reducing PUFAn6 and
increasing PUFAn3, led to a significant reduction of PUFAn6/n3
ratio in fetal liver (−44%) and brain (−34%) and in the
dams’ liver (−42%). The reduction in FA belonging to the
n6 family observed in the CLA-DHA PL groups could be
due not only to dietary DHA but CLA may also contribute
either by competing with LA for the desaturase and elongase
enzymes, as shown in different studies (64) or by enhancing
DHA biosynthesis (29).

Further evidence of possible competition between CLA and
LA in fetal liver and brain is suggested by a significant
decrease of the desaturation index, calculated by ARA/LA ratio.
Moreover, the DPAn6 reduction might derive from competition
in peroxisomes for beta-oxidation between CLA and 24:5n6, the
direct precursor of DPAn6, as CLAwas promptly and abundantly
beta-oxidized. As expected, the lack of incorporation of DHA,
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TABLE 2 | Effect of conjugated linoleic acid-docosahexaenoic acid in phospholipids (CLA-DHA PL) supplementation on fatty acid (FA) profile, expressed in mol%/total FA,

in liver and brain of rat dams fed with control (CRTL) and experimental (CLA-DHA PL) diets from day zero to 16 of the gestational period, and their fetuses.

Fatty acids (FA) Fetal liver Maternal liver

CRTL SEM CLA-DHA PL SEM P-value CRTL SEM CLA-DHA PL SEM P-value

ALA, 18:3n3 0.24 0.02 0.20 0.02 0.13 0.54 0.01 0.44 0.03 0.02

SDA, 18:4n3 0.10 0.01 0.11 0.04 0.83 0.13 0.01 0.06 0.01 0.01

EPA, 20:5n3 0.21 0.02 0.73 0.07 0.001 0.25 0.01 0.84 0.05 0.0002

DPA, 22:5n3 0.13 0.01 0.37 0.03 0.001 0.54 0.02 0.64 0.04 0.05

DHA, 22:6n3 5.86 0.12 9.08 0.40 0.001 8.72 0.26 13.16 0.43 0.0001

LA, 18:2n6 10.46 0.13 11.47 0.38 0.05 18.79 0.46 17.31 0.47 0.05

GLA, 18:3n6 0.62 0.01 0.49 0.01 0.0001 0.90 0.04 0.46 0.03 0.00003

ETA, 20:3n6 1.61 0.02 2.27 0.12 0.01 0.34 0.04 0.69 0.07 0.01

ARA, 20:4n6 14.46 0.23 11.93 0.25 0.0001 16.06 0.79 15.04 0.60 0.34

DTA, 22:4n6 1.92 0.04 1.17 0.05 0.0001 0.46 0.02 0.25 0.01 0.0002

DPA, 22:5n6 2.22 0.05 0.81 0.04 0.0001 0.99 0.09 0.18 0.01 0.001

14:1n7 0.41 0.00 0.45 0.08 0.59 0.37 0.02 0.23 0.04 0.01

POA, 16:1n7 3.90 0.17 3.70 0.14 0.39 1.57 0.25 1.16 0.11 0.19

OA, 18:1n9 19.97 0.13 18.76 0.14 0.0005 15.15 0.96 11.44 0.65 0.01

MA, 14:0 1.46 0.02 1.56 0.02 0.01 0.37 0.04 0.32 0.02 0.30

PA, 16:0 24.18 0.32 23.78 0.22 0.35 20.37 0.69 20.19 0.55 0.85

SA, 18:0 9.14 0.17 10.12 0.20 0.01 14.19 0.75 15.77 0.68 0.16

PUFAn3 6.55 0.16 10.50 0.47 0.001 9.61 0.58 15.15 0.41 0.0001

PUFAn6 32.50 0.06 28.74 0.41 0.001 37.14 0.70 34.14 0.40 0.01

MUFA 24.28 0.23 22.92 0.18 0.003 17.09 1.20 12.84 0.71 0.02

SFA 35.60 0.38 36.50 0.27 0.10 35.97 0.43 37.02 0.31 0.09

PUFAn6/n3 4.97 0.12 2.76 0.15 0.00001 3.91 0.18 2.26 0.07 0.0003

OA/SA 2.19 0.04 1.86 0.04 0.001 1.09 0.13 0.74 0.07 0.05

ARA/LA 1.38 0.04 1.05 0.05 0.001 0.82 0.04 0.84 0.04 0.79

AI index 0.53 0.01 1.02 0.06 0.001 0.58 0.02 0.98 0.03 0.00001

Fetal brain Maternal brain

ALA, 18:3n3 0.19 0.01 0.18 0.01 0.40 0.03 0.00 0.03 0.01 0.45

SDA, 18:4n3 0.20 0.06 0.14 0.03 0.46 ND ND ND ND ND

EPA, 20:5n3 0.05 0.01 0.10 0.01 0.02 0.02 0.00 0.05 0.01 0.004

DPA, 22:5n3 0.09 0.02 0.16 0.02 0.07 0.06 0.02 0.07 0.01 0.67

DHA, 22:6n3 4.49 0.05 6.63 0.27 0.001 13.32 0.57 14.82 0.40 0.07

LA, 18:2n6 2.25 0.09 2.87 0.10 0.002 1.08 0.05 1.18 0.08 0.34

GLA, 18:3n6 0.11 0.01 0.10 0.01 0.52 0.02 0.00 0.02 0.00 0.85

ETA, 20:3n6 0.60 0.07 1.40 0.24 0.02 0.49 0.08 0.52 0.04 0.72

ARA, 20:4n6 12.73 0.22 12.45 0.44 0.60 9.39 0.28 9.56 0.17 0.60

DTA, 22:4n6 3.01 0.11 2.73 0.14 0.15 4.25 0.11 4.40 0.12 0.38

DPA, 22:5n6 4.18 0.04 2.73 0.13 0.0001 0.82 0.07 0.84 0.09 0.82

14:1n7 0.58 0.14 0.53 0.11 0.78 0.31 0.05 0.41 0.08 0.32

POA, 16:1n7 3.17 0.23 3.25 0.06 0.75 1.14 0.13 1.03 0.12 0.55

OA, 18:1n9 15.78 0.47 16.67 0.42 0.20 20.93 0.68 21.52 1.02 0.65

MA, 14:0 2.49 0.06 2.40 0.05 0.32 1.02 0.20 0.87 0.12 0.59

PA, 16:0 34.61 0.53 32.61 0.32 0.02 27.04 0.78 25.11 0.77 0.12

SA, 18:0 11.91 0.15 12.06 0.11 0.44 17.22 0.09 17.08 0.61 0.82

PUFAn3 5.02 0.07 7.16 0.25 0.001 13.40 0.57 15.41 0.38 0.02

PUFAn6 25.99 0.25 24.22 0.44 0.01 37.07 0.96 38.19 1.14 0.47

MUFA 19.53 0.16 20.35 0.47 0.16 1.51 0.08 1.51 0.14 1.00

SFA 48.75 0.05 47.49 0.32 0.02 47.98 1.42 45.35 1.21 0.20

PUFAn6/n3 5.18 0.11 3.40 0.15 0.00003 2.78 0.08 2.49 0.11 0.07

D9 desat index 1.32 0.04 1.38 0.04 0.35 1.21 0.03 1.28 0.11 0.63

ARA/LA 5.69 0.18 4.35 0.17 0.001 0.05 0.01 0.05 0.00 0.84

AI index 0.40 0.01 0.66 0.05 0.001 1.47 0.03 1.61 0.02 0.01

Statistical significances (p ≤ 0.05) (in bold) represent the differences of CLA-DHA PL vs. CRTL group (n = 4/group).
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TABLE 3 | Effect of conjugated linoleic acid-docosahexaenoic acid in phospholipids (CLA-DHA PL) supplementation on N-acylethanolamines (NAEs) profile, expressed in

pmol/g tissues, in the liver and brain of rat dams fed with control (CRTL) and experimental (CLA-DHA PL) diets from day zero to 16 of the gestational period, and their

fetuses.

N-acylethanolamines (NAE) Fetal liver Maternal liver

CRTL SEM CLA-DHA PL SEM P-value CRTL SEM CLA-DHA PL SEM P-value

POEA 90.35 2.78 69.94 6.59 0.03 15.04 0.98 7.39 1.14 0.001

AEA 57.76 0.79 41.39 2.52 0.002 49.05 7.95 19.91 3.35 0.02

DHEA 61.59 3.58 76.61 4.23 0.03 33.63 1.46 45.40 3.13 0.02

LEA 308.30 9.34 288.43 34.23 0.60 74.00 11.90 34.30 9.52 0.03

PEA 296.67 10.24 302.80 35.58 0.88 267.26 18.06 185.43 18.64 0.01

OEA 339.44 8.63 279.26 16.13 0.02 89.60 2.47 45.37 4.20 0.0001

DTEA 19.30 3.35 11.88 1.69 0.11 17.25 1.62 9.12 1.37 0.01

SEA 89.68 9.40 79.64 7.18 0.43 131.62 9.89 78.34 6.41 0.003

Fetal brain Maternal brain

POEA 113.69 3.52 109.72 8.32 0.68 8.55 0.79 8.38 0.59 0.87

AEA 27.67 2.46 26.88 2.13 0.82 12.92 0.56 12.93 0.35 0.99

DHEA 34.47 2.75 60.48 3.39 0.001 36.66 1.24 34.24 1.60 0.27

LEA 37.15 1.23 42.24 2.05 0.07 3.84 0.24 4.22 0.15 0.22

PEA 186.82 6.84 177.67 8.75 0.44 138.63 10.66 132.05 10.10 0.67

OEA 275.86 6.91 250.56 9.17 0.06 135.93 4.76 138.57 4.85 0.71

DTEA 27.25 1.90 23.44 3.83 0.41 7.74 0.89 8.50 1.10 0.60

SEA 57.45 2.30 66.27 10.01 0.44 25.04 1.54 28.37 2.17 0.25

Statistical significances (p ≤ 0.05) (in bold) of the differences of CLA-DHA PL vs. CRTL group (n = 4/group).

FIGURE 4 | Influence of conjugated linoleic acid-docosahexaenoic acid in phospholipids (CLA-DHA PL) diet on modification of N-arachidonoylethanolamine (AEA) (A)

and N-docosahexaenoylethanolamine (DHEA) (B) levels, expressed in pmol/g tissues, in the liver and brain of rat dams fed with control (CRTL) or experimental diets

(CLA-DHA PL) from day 0 to 16 of the gestational period, and their fetuses (n = 4/group). Statistical significance is depicted as follows: *p ≤ 0.05 and ***p ≤ 0.001.

CLA, and its metabolites into the maternal brain resulted in no
changes in FA families, in opposition to fetal brain.

In addition, we reported that the CLA-DHA PL intake might
be protective vs. inflammation by modulating the n6/n3 ratio,
leading to an increase of the AI in the liver and brain of dams
and their fetuses. Indeed, CLA has been shown to possess neuro-
anti-inflammatory properties by activating PPAR alpha (34). It
is possible to speculate about a fetal capacity to react during
an intra-uterine inflammation, predisposing the fetus to hypoxic
stress and thereby brain damage (65).

CLA-DHA PL intake also caused a significant decrease of
hepatic MUFA, in particular OA level in the fetus, probably
due to a downregulation of 19 desaturase (stearoyl-coenzyme
A-desaturase, SCD) activity, as confirmed by a reduction of

OA/SA ratio (66). In a previous study on obese Zucker rats fed
with CLA, we observed a reduced hepatic 19 desaturase index
strongly correlated to PUFAn3 (50); the expression of the SCD
gene was also downregulated by a lower PUFAn6/n3 ratio (67–
71). Physiologically, a downregulated SCD activity may prevent
triglyceride accumulation in the liver (70) particularly in the
fetus, where an enhanced de novo lipogenesis may favor steatosis.

N-acylethanolamines are bioactive lipid mediators, whose
biosynthesis is influenced by dietary FA composition, belonging
to the endocannabinoidome (eCBome), a system widely
distributed in various tissues and organs able to modulate
numerous physiological functions, neuroprotection, and
inflammation (28, 34, 46–50). Furthermore, the eCBome is
involved in the regulation of fetal neurogenesis and it has
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been demonstrated that an altered cannabinoid signaling can
exert long-lasting consequences in neuronal functions of the
adult brain by modifying neurodevelopment (72, 73). Our data
indicate that the CLA-DHA PL diet significantly decreased
AEA levels in fetal and maternal liver and increased DHEA
both in the fetal and maternal liver and the fetal brain. The
biosynthetic pathway for the production of AEA and DHEA
might be influenced by the reduced tissue ARA/DHA ratio as
previously demonstrated (47). Noteworthy, DHEA is a key active
metabolite of DHA, and it has been shown that its content in
the fetal hippocampus decreased following the reduction of
DHA through maternal dietary depletion of PUFAn3 (74); on
the contrary, DHEA levels can be increased by dietary inclusion
of DHA (49). It has been shown that DHEA promotes neurite
growth, synaptogenesis, and expression of glutamate receptor
subunits, thus enhancing glutamatergic synaptic activity, which
stimulates the development of hippocampal neurons (74). The
formulation used in our study, where CLA was simultaneously
esterified in PL with DHA, may be advantageous because
the association of CLA and DHA, readily incorporated in
the fetus CNS, might exert anti-inflammatory function via
PPAR alpha activation and enhanced neurogenesis. Therefore,
the administration of CLA and DHA could be considered
a dietary treatment during pregnancy able to protect the
offspring from neurological and psychiatric disorders with
neuroinflammatory and neurodegenerative basis during the
critical prenatal period.
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