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Nephrotic syndrome is an heterogeneous disease characterized by increased permeability of the glomerular filtration barrier for
macromolecules. Podocytes, the visceral epithelial cells of glomerulus, play critical role in ultrafiltration of plasma and are involved
in a wide number of inherited and acquired glomerular diseases. The identification of mutations in nephrin and other podocyte
genes as causes of genetic forms of nephrotic syndrome has revealed new important aspects of the pathogenesis of proteinuric
kidney diseases and expanded our knowledge of the glomerular biology. Moreover, a novel concept of a highly dynamic slit
diaphragm proteins is emerging. The most significant discoveries in our understanding of the structure and function of the
glomerular filtration barrier are reviewed in this paper.

1. Introduction

The ultrafiltration of plasma during primary urine forma-
tion is one of the central function of the human kidney.
Normal filtration function of the glomerulus depends on the
structural and functional integrity of the filtration barrier,
that is the primary target of several inherited and acquired
glomerular disorders, characterized by nephrotic syndrome
(>3.5 g protein/day) and rapid progression to end-stage renal
disease (ESRD).

The glomerular filtration barrier, responsible for the size
and charge-selective properties of renal filter, is composed
of three separate layers: the fenestrated endothelium, the
glomerular basement membrane (GBM), and the podocyte
foot processes layer. Recent studies have emphasized the role
of podocytes as a key cell type involved in the mechanisms
responsible for proteinuria and glomerular damage [1–3].
Podocytes are injured in many forms of human and exper-
imental glomerular diseases, including congenital nephrotic

syndromes, minimal change disease (MCD), focal segmental
glomerulosclerosis (FSGS), membranous glomerulopathy,
diabetes mellitus, and lupus nephritis [1, 3, 4]. In fact, the
majority of glomerular diseases are characterized by alter-
ations in the molecular composition of the slit diaphragm
(SD) and a reorganization of foot process structure with
fusion and effacement. The major causes leading to foot
process effacement and proteinuria are (i) abnormalities
in the GBM or podocytes-GBM interactions; (ii) impaired
formation of the slit diaphragm area; (iii) alterations of the
actin cytoskeleton and associated proteins [1, 5–7].

A better understanding of the molecular properties of
GBM, podocytes and the slit diaphragm is critical to develop
novel therapeutic strategies for patients with glomerular
disease and to prevent end-stage renal insufficiency.

Mutations in different podocyte proteins can target
the function of the podocyte through distinct pathologic
mechanism by affecting the structure of the slit diaphragm,
by directly or indirectly perturbing the intricate podocyte
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cytoskeleton, by breaking cell-matrix interactions, or by
blocking important signaling pathways. All these mecha-
nisms result in a common final disease pathway characterized
by podocyte foot processes effacement, proteinuria, and
ultimately disruption of the glomerular filter (Figure 1).

The most significant discoveries in our understanding of
the structure and function of the glomerular filtration barrier
and related diseases are summarized in this paper.

2. Podocyte Structure and Development

Glomerular podocytes are highly differentiated cells with
a complex cytoarchitecture. They have a voluminous cell
body, long primary processes and regularly spaced, interdigi-
tated foot processes that completely enwrap the glomerular
capillaries (Figure 1). The interdigitated foot processes of
neighboring podocytes cover the GBM and form a narrow
filtration slit connected by an electron dense structure, called
the slit diaphragm (SD), a zipper-like structure with a 40 nm
diameter, according to the model proposed by Karnovsky
and Ainsworth [8]. Podocytes are polarized epithelial cells
with a luminal or apical and a basal cell membrane domain.
A well-developed cytoskeleton accounts for the unique shape
of the cells and the maintenance of the processes. The apical
membrane of foot processes is equipped with a negatively
charged surface coat, primarily made up of podocalyxin. This
protein is critical for formation and preservation of cellular
architecture: its absence causes immature glomeruli with
flattened podocytes. The first marker of podocyte develop-
ment in vertebrates is the restriction of WT1 expression to a
subset of cells within the renal vesicle [9, 10]. Several other
transcription factors are expressed in the early podocytes,
including podocyte-expressed 1 [11], forkhead box C2
(Foxc2) [12], kreisler (Mafb) [13], the forkhead domain
transcription factor Mf2 [14], and the Lim domain protein
Lmx1b [15].

WT1 is probably the best studied of the transcription
factors expressed in podocytes. WT1 encodes a protein with
four zinc fingers that can bind to both DNA and RNA
[16, 17]. In the fetal kidney, WT1 is expressed in metanephric
mesenchyme, renal vesicles, and developing podocytes. In
adult life, the WT1 expression is restricted to podocytes.
In maturing glomeruli, WT1 expression increases while the
PAX2 expression is downregulated. The homeobox PAX2
gene encodes for a transcription factor expressed early during
development and essential for conversion of metanephric
blastema to renal vescicole. Downregulation of PAX2 appears
as a prerequisite to allow podocyte differentiation which is
governed by WT1. Both WT1 and PAX2 knockout mice lack
kidneys, suggesting the critical role of these transcription fac-
tors in metanephric development. Mutations in PAX2 gene
are associated with renal coloboma syndrome and isolated
renal hypoplasia. The WT1 expression is altered in both
congenital and acquired human diseases. In particular, the
WT1 expression is lost in podocytes of collapsed glomeruli.
Dominant mutations in WT1 are associated with the Denys-
Drash and Frasier syndromes, characterized by glomeru-
lopathy, mesangial sclerosis, male pseudohermaphroditism,

and nephroblastoma. In these patients, the WT1 abnormal
expression is associated with increased expression of PAX2
[18, 19].

POD1 (also known as epicardin and capsulin) encodes a
basic helix-loop-helix transcription factor that is expressed
early in mouse kidney development, and subsequently in
the primitive podocytes of S-shaped bodies [20, 21]. Kreisler
(MAFB) encodes a basic domain leucine zipper (bZip) trans-
cription factor of the MAF subfamily and is expressed in
mouse podocytes of capillary loop-stage glomeruli [22]. It
also has an important role in hindbrain segmentation. Pod1
and kreisler mutations in mice result in similar phenotypes:
glomerular development is arrested at the single capillary
loop stage [20, 22], and the podocytes remain as columnar-
shaped cells that have lost their lateral cell-cell attachments
but remain fully adhered to the GBM without any foot pro-
cesses. Thus, Pod1 and kreisler are required just prior to
the time when podocytes would normally begin migrating
around the capillary loops and assembling foot processes.
Pod1 is expressed in kreisler mutant podocytes, indicating
that kreisler is likely to act either downstream or in a separate
pathway from Pod1 [22].

Foxc2 was identified during a screen for genes with en-
riched expression in mouse glomeruli [12]. It belongs to the
forkhead domain family of putative transcription factors and
is expressed in podocytes. In Foxc2 mutant mouse kidneys,
mesangial cells cluster at the base of the glomerular stalk,
podocyte foot processes, and endothelial fenestrations are
absent, and dilated capillaries are observed, similar to the
other phenotypes discussed above [12].

LMX1B, a Lim homeobox gene, is another important
transcription factor, regulating the expression of multiple
genes which are critical for podocyte differentiation and fun-
ction. Homozygous Lmx-1b knockout mice have reduced
numbers of podocyte foot processes, absence of typical slit
diaphragms, and glomerular basement membrane abnor-
malities, but they express near-normal levels of nephrin,
synaptopodin, ZO-1, and GBM laminins. Mutations of the
human Lmx-1b gene are responsible for the nail-patella
syndrome, an autosomal dominant disease with skeletal ab-
normalities, frequently associated with glomerulopathy [24].

3. Podocyte-GBM Interactions

Proteinuria, the most common clinical manifestation of glo-
merular diseases, is invariably associated with podocyte foot
process effacement, flattening, and retraction. To maintain
the complex foot process architecture, the adhesion of the
podocytes to the GBM is controlled by the expression of
several adhesion proteins. The foot processes are fixed to the
GBM via α3β1-integrin and dystroglycan (DG) complex. The
α3β1-integrin binds to fibronectin, collagen IV, and laminin
of GBM, and it is essential for maturation of podocytes,
as shown by the loss of foot processes development in α3-
deficient mice. The dystroglycan complex is connected to
podocyte actin cytoskeleton (Figure 1) through urotrophin,
and its expression is reduced in MCD but not in membra-
nous nephritis and FSGS [25–27].
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Figure 1: (a) Low-power view of glomerular filtration barrier in situ. The glomerular filter consists of three components: porous
endothelium, glomerular basement membrane, and podocyte foot processes with the interposed slit membrane. Figure is transmission
electron microscopy from a rat. Magnification: B, x∼48,000. (b) Schematic drawing of the molecular equipment of the podocyte foot
processes, similar to the area marked in Figure 1(a). See text for further explanations, (modified from [23]).

Podocyte detachment leaves the denuded GBM, and
this may play an important role in the FSGS pathogenesis:
podocytes have not proliferative capacity and cannot repop-
ulate denuded areas, and a scar is formed by parietal ephi-
telial cells [7].

The glomerular basement membrane (GBM), responsi-
ble for the charge-selective property of glomerular filtration
barrier, is organized as a highly cross-linked network of spe-
cific extracellular matrix proteins, such as type IV collagen,
fibronectin, laminin, nidogen, and heparansulfate proteogly-
cans (HSPGs). The flexibility and dynamism of the GBM
requires a constant turnover. In the adult glomerulus, the
podocytes continue to add and assemble GBM components
and secrete matrix modifying enzymes [43].

Genetic modifications of structural GBM proteins, such
as type IV collagen, cause Alport syndrome (AS), a hereditary

nephropathy associated with deafness [30]. Thickening,
basket-wave splitting, and rarefaction of the GMB have been
reported in other hereditary nephritis with Döhle-like inclu-
sions in polymorphonuclear cells and/or thrombocytopenia
with giant platelets. This condition is known as Alport-
like syndrome or Fechtner syndrome (FTNS), when Döhle-
like bodies are associated with macrothrombocytopenia
(MTCP) and Epstein syndrome (EPTS) when no leukocyte
inclusions are present. Recently, it has been shown that
mutations in MYH9, the gene encoding for nonmuscle
myosin heavy chain IIA (NMMHC-IIA), are responsible
for Fechtner syndrome, Epstein syndrome, and other two
MTCPs (Sebastian syndrome and May-Hegglin anomaly)
without renal, ocular, or hearing defects (Table 1).

In the glomerulus, MYH9 mRNA and its protein are
highly expressed by podocytes and colocalized with actin and
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lä

et
al

.;
M

ol
ec

C
el

l,
19

98
[3

3]
.

St
er

oi
d-

re
si

st
an

t
N

S
(S

R
N

S)
1q

25
–q

31
N

P
H

S2
8

1.
8

kb
Po

do
ci

n
—

B
ou

te
et

al
.;

N
at

ur
e

G
en

et
,

20
00

[3
4]

.

Fo
ca

ls
eg

m
en

ta
l

gl
om

er
u

lo
sc

le
ro

si
s

(F
SG

S)
6p

12
C

D
2A

P
18

4.
6

kb
C

D
2-

as
so

ci
at

ed
pr

ot
ei

n

C
D

2A
P
−/
−

kn
oc

ko
u

t
m

ic
e:

co
m

pr
om

is
ed

im
m

u
n

e
fu

n
ct

io
n

an
d

de
at

h
of

m
as

si
ve

pr
ot

ei
n

u
ri

a
sh

or
tl

y
af

te
r

bi
rt

h
.

K
im

et
al

.;
Sc

ie
nc

e,
20

03
[3

5]
.

Fo
ca

ls
eg

m
en

ta
l

gl
om

er
u

lo
sc

le
ro

si
s

(F
SG

S)
19

q1
3

A
C

T
N

4
21

2.
9

kb
α

-a
ct

n
in

in
-4

A
C

T
N

4 −
/−

m
ic

e:
pr

og
re

ss
iv

e
pr

ot
ei

n
u

ri
a,

gl
om

er
u

la
r

di
se

as
e,

de
at

h
by

se
ve

ra
lm

on
th

s
of

ag
e.

K
ap

la
n

et
al

.;
N

at
ur

e
G

en
et

,2
00

0
[3

6]
.

Fo
ca

ls
eg

m
en

ta
l

gl
om

er
u

lo
sc

le
ro

si
s

(F
SG

S)
11

q2
1-

q2
2

T
R

P
C

6
13

4.
5

kb
Tr

an
si

en
t

re
ce

pt
or

po
te

n
ti

al
ch

an
n

el
6

—

W
in

n
et

al
.;

Sc
ie

nc
e

20
05

[3
7]

.
R

ei
se

r
et

al
.;

N
at

G
en

et
20

05
[3

8]
.

U
n

kn
ow

n
1q

21
–q

25
K

IR
R

E
L

o
N

E
P

H
1

14
9

kb
N

ep
h

ri
n

-l
ik

e
1

(N
E

P
H

1)
N

E
P

H
1 −

/−
kn

oc
ko

u
t

m
ic

e:
n

ep
h

ro
ti

c
sy

n
dr

om
e,

pe
ri

n
at

al
le

th
al

it
y,

an
d

eff
ac

em
en

t
of

po
do

cy
te

fo
ot

pr
oc

es
se

s.

D
on

ov
ie

le
t

al
.;

M
ol

ec
C

el
lB

io
l,

20
01

[3
9]

.

U
n

kn
ow

n
19

q1
3.

1
N

LG
1/

N
E

P
H

3
15

2.
5/

3.
5

kb
Fi

lt
ri

n
—

Ih
al

m
o

et
al

.;
B

io
ch

em
B

io
ph

ys
R

es
C

om
m

un
,

20
03

[4
0]

.
Se

lli
n

et
al

.;
FA

SE
B

J,
20

03
[4

1]
.

C
le

ar
ce

ll
re

n
al

ca
rc

in
om

a
4q

34
-q

35
FA

T
24

14
.7

kb
FA

T
tu

m
or

su
pp

re
ss

or
h

om
ol

og
1

(D
ro

so
ph

ila
)

FA
T
−/
−

kn
oc

ko
u

t
m

ic
e:

p
er

in
at

al
le

th
al

it
y.

[4
2]



International Journal of Nephrology 5

α-actinin, suggesting that NMMHC-IIA could be an impor-
tant component of the podocyte actin-myosin contractile
apparatus and play a central role in maintaining capillary
wall integrity [44–48].

4. The Slit Diaphragm Complex

Our knowledge of the molecular and structural composition
of podocyte slit diaphragms have been improved in the past
few years. The discovery of several novel slit diaphragm
proteins, including nephrin, podocin, Zonula Occludens
1 (ZO-1), CD2-associated protein (CD2AP), P-cadherin,
catenins, FAT1, Neph1-3, densin, and TRPC6 [33–38, 40, 41,
49, 50], has helped to characterize the region of the SD as
a critical locus of podocyte function (Figure 1). Moreover,
mutations in the genes encoding for slit diaphragm proteins
have been linked to a variety of inherited and sporadic
glomerular diseases (Table 1).

The first protein located at the SD domain is nephrin,
codified by NPHS1 (19q13.1), the gene responsible of con-
genital nephrotic syndrome of the Finnish type (CNF), a
rare autosomal recessive disease with a highest incidence in
Finland [51–53]. Nephrin is a large transmembrane protein
of 1241 amino acids, belonging to the immunoglobulin (Ig)
superfamily, with eight extracellular Ig-like motifs, a fibro-
nectin type III-like, a transmembrane, and an intracellular
domain [54, 55].

Nephrin is a critical structural component of the slit dia-
phragm complex: both CNF patients with severe NPHS1
mutations and knockout mice fail in foot process and
slit diaphragm development and exhibit severe proteinuria
already in utero [56].

Recently, Donoviel et al. identified NEPH1, a novel ne-
phrin-like protein, that localizes to the slit diaphragm and
causes congenital nephrotic syndrome in knockout mice.
NEPH1 belongs to a family of three closely related proteins
(NEPH1, NEPH2, NEPH3) with a common domain archit-
ecture [39].

Ihalmo et al., independently, identified NEPH3 gene,
which they called NLG1 (nephrin-like gene 1). NLG1 or
NEPH3 was localized to chromosome 19q13.1, immediately
adjacent to the NPHS1 gene, and encodes a type I transmem-
brane protein, termed filtrin, which contains an extracellular
region with five tandem immunoglobulin-like domains, a
transmembrane region, and a cytoplasmic domain with a
proline-rich region.

Another important protein of the slit diaphragm com-
plex is podocin, an integral protein, homologous to the
band-7 stomatin family [34]. Podocin is codified by NPHS2
(1q25–1q31), the gene responsible for autosomal recessive
steroid-resistant nephrotic syndrome [34, 57, 58]. Due to
its structural similarity to stomatin, podocin is predicted to
have a hairpin-like membrane topology, with both NH2- and
COOH-terminal intracellular domains. Podocin expression
is restricted to podocytes. Podocin localizes to the podocyte
foot process membrane and accumulates in an oligomeric
form in lipid rafts of the slit diaphragm. Podocin associates
with CD2AP and nephrin via its COOH-terminal domain

(Figure 1). These findings suggest that podocin may have a
crucial role in the assembly of the SD complex, and, similar to
the role of stomatin in erythrocytes, it may act as a scaffolding
protein [23, 59, 60].

A complex of nephrin, podocin, and CD2AP seems
to be indispensable to maintain the structural integrity of
the SD. CD2AP, initially described as a protein involved
in T-cell activation, contains a coiled coil domain and
three Src homology 3 (SH3) domains, which serve as
attachment sites for other proteins. In CD2AP, knockout
mice immune function was compromised and they died
of massive proteinuria shortly after birth, suggesting an
important role in glomerular function. Knockout mice pre-
sented flattened podocytes, mesangial cell hyperplasia, and
extracellular matrix deposition. Mice with CD2AP haploin-
sufficiency developed glomerular changes at 9 months of
age and had increased susceptibility to glomerular injury by
nephrotoxic antibodies or immune complexes. Interestingly,
some glomerular lesions of these mice exhibited a phenotype
similar to human FSGS [61]. Kim et al. screened a population
of 30 African Americans with idiopathic FSGS and 15
African Americans with HIV-associated FSGS for changes in
CD2AP. Six distinct DNA variants, absent in control subjects,
were detected in 10 of 45 patients. One nucleotide variant,
altering the exon 7 splice acceptor site, was predicted to alter
the expression of CD2AP. These findings and others im-
plicate CD2AP as a determinant of human susceptibility to
glomerular disease [35, 62–64].

Nephrin, podocin, and CD2AP are pivotal for slit dia-
phragm structural organisation, suggesting that these pro-
teins could participate in a common cell-signaling pathway.

Huber et al. have demonstrated that both nephrin and
CD2AP interact in vivo with the p85 regulatory subunit
of phosphoinositide 3-OH kinase (PI3K). PI3K is the
first protein demonstrated to interact with the cytoplasmic
surface of SD protein complex in vivo. Nephrin and CD2AP
recruit PI3K to the plasma membrane and, together with
podocin, stimulate PI3K-dependent activation of the serine-
threonine kinase, AKT. They demonstrate that nephrin-
induced AKT mediates phosphorylation of several target
proteins in podocytes. Although the importance of this
signalling is not fully understood, it is interesting that one
target of nephrin-CD2AP-induced phosphorylation is Bad, a
proapoptotic protein of the Bcl-2 family; its phosphorylation
and inactivation protect podocytes against apoptosis, sug-
gesting that the nephrin-CD2AP-mediated AKT activity can
regulate complex biological programs. These findings reveal
a novel role for the slit diaphragm proteins and demonstrate
that nephrin, CD2AP, and podocin proteins, in addition
to their structural functions, initiate PI3K/AKT-dependent
signal transduction in glomerular [65, 66].

In addition to these characterized podocyte proteins,
the slit diaphragm area contains several other components,
including P-cadherin, Zonula Occludens 1 (ZO-1), FAT,
and densin. P-cadherin is associated with signalling proteins
α-, β-, γ-catenins. It colocalizes with the zona occludens
associated protein (ZO-1), a member of the membrane
associated guanylate kinase (MAGUK) family. FAT is a
large cadherin homologue, localized to the slit diaphragm
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domain. FAT knockout mice exhibit perinatal lethality. The
relation between P-cadherin, FAT, and nephrin is not known
[67]. Densin is a new podocyte protein that belongs to the
LAP protein family, characterized by leucin-rich repeats and
PDZ domains. LAP proteins are involved in maintenance
of cell shape and the apical-basal polarity, thus densin
may be necessary for maintenance of podocyte polarity
[50]. Finally, two recent studies by Winn et al. [37] and
Reiser et al. [38] have identified six families with autosomal
dominant hereditary FSGS caused by six different mutations
in the gene encoding TRPC6, a nonselective cation channel.
These mutations lead to a kidney disease with late onset
and a variable rate of progression to FSGS. TRPC6 is a
member of the transient receptor potential (TRP) family
of nonselective cation channels [68, 69]. TRP channels
have been implicated in different biological functions such
as cell growth, ion homeostasis, mechanosensation, and
phospholipase C-dependent calcium influx. Calcium, as a
second messenger, affects many of these cellular functions.
Will et al. have reported, in all affected members of a New
Zeland family with autosomal dominant FSGS, a TRPC6
missense mutation, p.P112Q, within the first ankyrin repeats
of the protein. TRPC6P112Q mutation increased peak calcium
concentrations after stimulation with diacylglycerol and
also potentiated angiotensin-II-mediated calcium signaling
in HEK293 cells. The authors have speculated that the
enhanced calcium signaling conferred by the TRPC6P112Q

mutation might disrupt glomerular cells function or cause
apoptosis and amplify injurious signals triggered by ligands
such as angiotensin II, that promote kidney injury and
proteinuria [37]. These findings are also consistent with
the results reported by Reiser et al.: two out of five
mutant proteins exhibited larger current amplitudes that
wild-type TRPC6 channels. Using immunofluorescence and
immunoelectron microscopy, Raiser et al. found that TRPC6
protein is enriched in podocytes and localized in podocyte
foot processes near the slit diaphragms; moreover, TRPC6
interacts with nephrin and podocin but not with CD2AP [38,
69]. Moreover, we have recently demonstrated that TRPC6
mutations can also be detected in children with early onset
and sporadic SRNS and described for the first time a de novo
TRPC6 mutation in a severe form of pediatric collapsing
glomerulosclerosis [70].

Thus, TRPC6 might belong, together with nephrin
and podocin, to a signaling platform located at the slit
diaphragm domain, suggesting a possible involvement of
TRPC6 channels in regulating the dynamics of foot processes
and slit diaphragm (Figure 1).

5. The Slit Diaphragm Genes and
Congenital Nephrotic Syndromes:
Genotype/Phenotype Correlation

The discovery of mutations in the genes coding for slit
diaphragm proteins in patients with inherited nephrotic syn-
drome (NS) has been a breakthrough in both molecular and
clinical research of glomerular diseases [71–78]. Moreover,
mutations in the slit diaphragm genes have been reported

in sporadic cases [79, 80]. There is growing evidence that
the presence of slit diaphragm gene defects has a great
importance in clinical practice of nephrotic patients; in fact,
the identification of mutations in nephrotic patients might
allow the avoidance of unnecessary treatments, might permit
the prediction of absence of recurrence after transplantation,
and might allow for the provision of prenatal diagnosis to
families at risk [81].

The best characterized inherited nephrotic syndromes
are congenital nephrotic syndrome of the Finnish type
(CNF) and Steroid Resistant Nephrotic Syndrome (SRNS),
due to mutations in NPHS1 and NPHS2 genes, respectively.
However, recently genes related to steroid-sensitive nephritic
syndrome (SSNS) were also identified; finally, podocyte
dysfunction is also seen as a component of several inherited
multiorgan syndromes.

5.1. Congenital Nephrotic Syndrome of the Finnish Type
(CNF). CNF is an autosomal recessive disorder frequent
in Finland (1 : 10,000), but it has also been described in
various ethnic groups throughout the world [82]. The disease
develops in utero, and a severe nephrotic syndrome, resistant
to steroids or immunosuppressive drugs, is present from
birth. Infants are premature with low birth weight and
large placenta. Renal biopsy specimens show mild mesangial
hypercellularity and extensive effacement of foot processes.
Microcystic dilations of proximal tubules are common but
not specific. Nutritional status and statural growth are poor,
and children are highly susceptible to bacterial infections and
thromboembolic complications. In patients with CNF who
progress to ESRD between 3 and 8 years of age, the only
long-term and life-saving treatment is renal transplantation
[51, 52].

The CNF gene (NPHS1), encoding for nephrin, has been
mapped to chromosome 19q13.1 by Kestilä et al. using the
positional cloning approach [33]. In Finnish patients, two
main NPHS1 gene defects, Fin-major (c.121delCT) and Fin-
minor (p.R1109X), were found in over 94% of the CNF
cases, suggesting the existence of two founder effects [53].
Recurrence of proteinuria after transplantation, as a result of
the development of antinephrin antibodies, occurs in 20%
of the patients with Fin-major/Fin-major genotype, which
leads to the absence of nephrin in native kidney [83]. Outside
Finland, CNF constitutes the commonest type of congenital
nephrotic syndrome, but the exact incidence is unknown.
Several non-Finnish cases emulate the classically severe
clinical phenotype seen in Finland, and a variety of NPHS1
mutations distinct from Fin-major and Fin-minor have been
detected [49, 74–76]. However, an unexplored area remains
the milder disease phenotypes, with occasional remission of
proteinuria [77]. It seems that NPHS1 mutations causing a
total absence of nephrin expression and a complete flattening
of foot processes are responsible for a severe, therapy-
resistant form of nephrotic syndrome; while patients with
NPHS1 mutations causing only partially defective nephrin
may still have slit diaphragms and respond to therapy [73].

To date, about 173 different mutations have been
reported both in Finnish and non-Finnish patients. These
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mutations include small deletions, insertions, nonsense,
missense, splice site, and promoter variations, and they
are distributed throughout the gene, emphasizing a func-
tional requirement for both extracellular and intracellular
domains. A surprisingly large number of NPHS1 mutations
are missense resulting in single amino acid substitutions,
all located at the extracellular domain, particularly within
immunoglobulin domains “hot spot” [84].

Nephrin is a signaling molecule, which stimulates mito-
gen-activated protein kinases. Nephrin-induced signaling is
greatly enhanced by podocin, which binds to the cyto-
plasmic domain of nephrin. Mutational analysis suggests
that abnormal or inefficient signaling through the nephrin-
podocin complex contributes to podocyte dysfunction and
proteinuria [65].

5.2. Steroid Resistant Nephrotic Syndrome (SRNS). Steroid-
resistant NS is characterized by an autosomal recessive
transmission, onset of proteinuria between 3 months and
5 years, resistance to steroid treatment, rapid progression
to ESRD, absence of recurrence after renal transplantation,
and absence of extrarenal disorders. Minimal changes on
early biopsy specimens and FSGS at later stages are observed
[58]. The causative gene, NPHS2, encoding for podocin, was
mapped to 1q25–q31 by positional cloning approach [34].

NPHS2 mutations were first described in children with
familial steroid-resistant idiopathic nephrotic syndrome.
More than 116 pathogenic mutations have been found to
segregate with the disease [85–87]. These mutations alter the
expression of the gene or the structure of the protein. Two
mutations, the R138Q and the R138X, were recurrent: the
first one was observed in patients originating from Germany
or The Netherlands, and the second one in families with
Israeli-Arab descent. The R138Q podocin is retained in the
endoplasmic reticulum and loses its ability to recruit nephrin
in lipid rafts [88].

Podocin mutations have also been reported in patients
with congenital or infantile nephrotic syndrome. Schultheiss
et al. [89] found NPHS2 gene mutations in 11/27 (41%)
patients with congenital nephrotic syndrome and NPHS1
gene mutations in 15/27 (55%) patients. Caridi et al. [90]
reported an infantile steroid-resistant nephrotic syndrome
associated with FSGS in three children with a homozygous
haplotype in which two mutations are present in cis (P20L
and R168H). Tsukaguchi et al. analyzed NPHS2 gene in 30
FSGS families with adolescent or adult onset. In six of these
families, the affected subjects were compound heterozygous
for R229Q amino acid substitution, which has an allele
frequency of 3.6% in control population. Using in vitro
translated podocin and purified nephrin, it was found that
nephrin bound poorly to R229Q podocin; these data suggest
that the R229Q mutation alone is, probably, insufficient to
cause FSGS but it might enhance susceptibly to renal injury
in association with a second NPHS2 mutation or variants in
other genes, such as nephrin. However, the clinical relevance
of the R229Q variant is unknown [91]. Pereira et al. [92]
found that R229Q polymorphism was associated with a
2.77-fold increased risk of presenting microalbuminuria. It

remains to be demonstrated whether this polymorphism is a
risk factor for developing end-stage renal disease.

NPHS2 mutations have also been reported in 10 to 33%
of sporadic steroid-resistant NS, which represents a frequent
cause of ESRD in children [57, 79]. Ruf et al. [86] studied 152
patients with sporadic FSGS and found that 32 (21%) had
homozygous or compound heterozygous mutations. Weber
et al. [87] found a lower mutation rate of 6.4% in 172 patients
with sporadic steroid-resistant nephrotic syndrome.

Podocin mutations are restricted to steroid-resistant
patients. In a recent study, no podocin mutations were found
in 124 children with steroid-responsive nephrotic syndrome,
confirming the results of Frishberg et al. and Caridi et al. [57,
78, 86]. The identification of podocin mutations in sporadic
cases of steroid-resistant nephrotic syndrome is important
for therapeutic decisions and genetic counseling. None
patients with sporadic steroid-resistant NS and podocin
mutations had complete remission following cyclosporine
or cyclophosphamide treatment; only few patients presented
a partial remission after cyclosporine therapy, but long-
term benefit of this treatment is not documented, and
cyclosporine may be nephrotoxic in patients with persistent
proteinuria. Thus, steroid-resistant patients should be tested
for podocin mutations before giving immunosuppressive
therapy. Rapid screening of these patients for NPHS2
mutation is possible because of the small size of the gene.
However, it should be remembered that not all familial cases
of steroid-resistant nephrotic syndrome are linked to NPHS2
gene, indicating that other genes remain to be identified. This
is important to understand therapy results and for a possible
multicenter therapeutic trials.

Finally, Koziell et al. [77] detected NPHS2 mutations in
two patients with typical CNF in whom NPHS1 mutations
were not found and mutations in both NPHS1 and NPHS2
genes were found in four cases with congenital FSGS (di-
genic inheritance). These data, confirmed successively by
other studies [87, 89], indicate an epistatic gene interaction,
resulting in a rare example of multiple allelic hits, and
provide the first evidence for a functional interrelationship
between nephrin and podocin. These findings demonstrate
the genetic heterogeneity of congenital nephrotic syndrome
and the absence of genotype/phenotype correlations. Con-
genital nephrotic syndrome may also be due to WT1 mu-
tations and diffuse mesangial sclerosis. Currently, three genes
are associated with congenital nephrotic syndrome: NPHS1,
NPHS2, and WT1 [79, 93].

5.3. Steroid-Sensitive Nephrotic Syndrome (SSNS). Whereas
gene identification has furthered the understanding of
pathomechanisms in steroid-resistant nephrotic syndrome
(SRNS), not even a gene locus is known for SSNS. Total
genome linkage analysis was performed in a consanguineous
SSNS kindred, 11 patients, to identify a gene locus for
SSNS. Homozygosity mapping identified a locus for SSNS on
chromosome 2p12–p13.2 [94].

This locus is not responsible for the disease in all SSNS
families, demonstrating that, like SRSN, this phenotype
is also genetically heterogeneous. In fact, other authors
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reported an extended SSNS Bedouin family with a high
rate of consanguinity. The clinical presentation and steroid
response of its 11 affected individuals were similar to those of
sporadic SSNS, but it was not linked to any of the presently
known chromosomal loci nor predicted to be caused by mu-
tation in any one of a list of genes associated with nephrotic
syndrome [95].

5.4. Diffuse Mesangial Sclerosis. Children with diffuse mesan-
gial sclerosis appear normal at birth, with a normal birth
weight and without placental enlargement. The nephrotic
syndrome may be present at birth or even suspected in
utero by the finding of an elevated plasma alpha-fetoprotein
level in the mother or the discovery of large hyperechogenic
kidneys [96]. Abnormalities in the PLCE1 gene, which
encodes phospholipase C epsilon, appear to cause isolated
diffuse mesangial sclerosis. In one study of 12 children from
6 families with the disease, homozygous truncating gene
mutations in PLCE1 were found in eight children [97].
Phospholipase C epsilon is a member of the phospholipase
family of enzymes that catalyzes the hydrolysis of polyphos-
phoinositides resulting in generation of second messengers
(e.g., inositol-1,4,5-triphosphate), which are involved in cell
growth and differentiation. A pathogenetic role for PLCE1
in glomerular development was supported by findings of
disruption of the glomerular filtration barrier and edema in a
PLCE1 knockout zebrafish model. How a PLCE1 gene defect
results in changes in the glomerular nephrotic syndrome is
unknown. One possible explanation is that phospholipase
C epsilon interacts with GTPase-activating protein, which is
known to interact with the slit diaphragm protein, nephrin.
Perturbations of this normal interaction would have a
downstream effect including the subsequent interaction of
GTPase-activating protein with nephrin.

6. Syndromic Disease

6.1. WT1 Mutations. The WT1 gene encodes a transcrip-
tional factor of the zinc finger protein family that is involved
in kidney and gonadal development. WT1 has been localized
to chromosome 11q13; it consists of ten exons and generates
four different isoforms resulting from alternative splicing
[98]. After birth, WT1 protein expression is restricted to
renal podocytes where it probably contributes to maintain an
adult differentiation. Germline heterozygous WT1 mutations
have been extensively reported in the literature as the cause
of Denys-Drash (DDS) and Frasier (FS) syndromes that are
characterized by nephrotic syndrome, genitalia anomalies,
and pseudohermaphroditism. Renal findings in DDS are
predominantly characterized by diffuse mesangial sclerosis
of early onset and rapid evolution to end-stage renal failure,
while FS usually presents slow progressive focal segmental
sclerosis (FSGS). WT1 mutations associated with nephrotic
syndrome are restricted to exons 8 and 9, that represent a
sort of hot-spot that may be easily investigated. The three
major studies [99–101] overall confirm an incidence of WT1
mutation in patients under 18 years around 6-7%. A most
remarkable finding is that, in young females, this incidence is

higher (10–12%) and probably becoming the most frequent
inherited cause of nephrotic syndrome under 18 years in this
sex cohort. Moreover, we have demonstrated that WT1 splice
mutations are not rare in females under 18 years with SRNS,
frequently in absence of phenotype change typical of Frasier
syndrome. In adults and children with SDNS, screening
analysis is of no clinical value. WT1 hot spot mutation
analysis should be routinely done in children with SRNS; if
the molecular screening anticipates any further therapeutic
approach, it may modify the long term therapeutic strategy
[101].

6.2. LMX1B Gene. LMX1B gene mutations are associated
with autosomal dominant nail-patella syndrome, a condi-
tion displaying dysplastic nails, hypoplastic patellae, and
glomerulopathy with proteinuria and hematuria [102]. Its
phenotype is highly variable, and the main pathologic find-
ing is an altered GBM. LMX1B gene is a transcription factor
that plays an important role in glomerular development,
regulating the transcription of multiple genes integral for
proper glomerular basement membrane formation and/or
glomerular podocyte differentiation and function [103].
LMX1B binds to the putative enhancer sequence of COL4A4,
the gene for alpha-4 chain of collagen type IV [103].

6.3. LAMB2 Gene. LAMB2 gene mutations are associated
with Pierson syndrome, an autosomal recessive syndrome
characterized by congenital nephrotic syndrome with his-
tologic lesions of diffuse mesangial sclerosis and ocular
malformations (microcoria, abnormal lens with cataracts,
and retinal abnormalities) [104]. LAMB2 gene encodes
the laminin beta 2, a protein abundantly expressed in
the glomerular basement membrane where it plays a role
in anchoring and in the development of podocyte foot
processes [105]. LAMB2 mutations have also been found in
patients with congenital nephrotic syndrome and either no
or less severe ocular abnormalities.

6.4. CD151 Deficiency. Recent work in humans has shown
that the tetraspanin CD151 is essential for the function of the
kidney, as mutations in CD151 have been identified in three
patients presenting with hereditary nephrotic syndrome
leading to end-stage renal failure, pretibial bullous skin
lesions, sensorineural deafness, and thalassemia. CD151 is
part of the tetraspanin family of proteins that are ubiqui-
tously expressed, membrane-embedded proteins that share
a similar structure, and form dynamic complexes with each
other and with integrins. Mice deficient in CD151 develop
proteinuria, FSGS, and kidney failure [106].

6.5. SMARCALI Gene. Immunoosseous dysplasia is a rare
autosomic recessive disorder that presents with spondyloepi-
physeal dysplasia, renal dysfunction, and T-cell immun-
odeficiency [107]. This syndrome is caused by mutations
in SMARCALI gene that encodes for a widely expressed
protein involved in the chromatin remodelling. The renal
involvement is characterized by proteinuria, FSGS, and renal
failure.
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6.6. Beta4 Integrin Mutation. The occurrence of congenital
nephrotic-range proteinuria secondary to focal segmental
glomerulosclerosis has been reported in an infant with
epidermolysis bullosa and pyloric atresia (EB-PA) [108].

EB-PA is an autosomal recessively inherited disease man-
ifesting in the neonatal period with blistering of the skin and
mucous membranes, as well as congenital gastrointestinal
abnormalities including esophageal, gastric, or duodenal
atresia. Both lethal and nonlethal forms have been described.
The condition is caused by mutations in the a6 and b4
integrin genes, which are expressed in the hemidesmosomes
of stratified epithelia. Most cases of EB-PA are associated
with mutations in the b4 gene, ITGB4, located on the long
arm of chromosome 17 [109]. Mutations in the a6 gene,
ITGA6, located on the long arm of chromosome 2, are less
frequent [110].

In the case reported by Kambham et al., a novel mutation
in exon 31 of the b4 integrin gene, ITGB4, was identified.
Authors proposed that the b4 integrin gene mutation led
to expression of a dysfunctional protein important in the
maintenance of normal glomerular permselectivity and
podocyte integrity. The development of nephrotic-range
proteinuria, without full nephrotic syndrome, is consistent
with the role of b4 as a minor podocyte integrin. The failure
to detect proteinuria more frequently in EB may relate to
early mortality and the unique effect of this novel b4 integrin
mutation on podocyte function.

6.7. Renal Disease and Mitochondrial Genetics. Mitochon-
drial diseases can give rise to various syndromes or asso-
ciation, namely, neurologic and neuromuscular diseases,
cardiac, renal, hepatic, hematological and endocrinic, or
dermatological presentations. Renal dysfunction associated
with mitochondriopathies is generally a rare event. The most
frequent renal symptom is proximal tubular dysfunction
with a more or less complete de Toni-Debre-Fanconi Syn-
drome [111]. A few patients have been reported with tubu-
lar acidosis, Bartter Syndrome, chronic tubulointerstitial
nephritis, or nephrotic syndrome. Any mode of inheritance
can be observed: sporadic, autosomal dominant or recessive,
or maternal inheritance [111].

Three cases that presented with central and peripheral
nervous system involvement and with NS secondary to FSGS
in the first decade of life were associated to ubiquinone defi-
ciency [112]. More recently steroid-resistant NS or neonatal
renal failure has also been described in patients who bore
inherited COQ2 mutations [113]. Taken together, these data
allow identification of a new entity within the category of
mitochondrial cytopathies, characterized by inherited COQ2
mutations, proliferation of dysmorphic mitochondria, and
primary glomerular damage. This new entity may be defined
as “COQ2 nephropathy,” because the kidney seems to be
a primary target in some patients presenting with isolated
renal symptoms [113]. COQ2 mutations cause a renal
disease that is characterized by variable renal lesions and
widespread proliferation of dysmorphic mitochondria in
glomerular cells. The clinical picture can be heterogeneous,
and neuromuscular symptoms may complicate the course

of the disease. Early recognition of this new entity may
be crucial, because clinical symptoms can improve after
ubiquinone supplementation, and neurologic complications
may be prevented [114].

FSGS lesions have already been associated with muta-
tions in the mitochondrial genome (3243A3G in the
tRNALeu(UUR) gene), which may cause isolated glomerular
disease [114–116]. Podocyte damage secondary to inherited
mitochondrial dysfunction may cause visceral cell depletion,
accumulation of extracellular matrix, and ultimately sclerosis
of the glomerular tuft. In other cases, the same mitochondrial
disease seems to trigger epithelial cell proliferation (in
particular podocyte proliferation), associated with GBM
collapse. Whereas increased apoptosis of podocyte cells
may explain the mechanisms underlying FSGS formation in
mitochondrial cytopathies [117], it remains unclear why in
some cases the pathway taken by injured podocytes leads to
proliferative lesions [118].

Mitochondrial dysfunction and altered mitochondrial
gene expression have also been documented in patients with
NS secondary to nephrin mutations [119, 120] suggesting
that, regardless of the initial insult, mitochondria play an
important role in podocyte metabolism and may be actively
involved in the pathophysiology of various forms of NS.

6.8. Limp2 Gene. Lysosomal integral membrane protein
type 2 (LIMP-2), the product of the SCARB2 gene (MIM
602257), is a member of the CD36 superfamily of proteins
[121]. The absence of this protein in mice causes urinary and
neurological alterations, associated with impaired vesicular
trafficking and distribution of apically expressed proteins
[122]. A deficiency in LIMP-2 resulting from a nonsense
mutation in the SCARB2 gene has been recently described
in humans [123]. When in a homozygous state, the mutation
was associated with progressive myoclonic epilepsy without
intellectual impairment and a nephrotic syndrome with
strong accumulation of C1q in capillary loops of the kidney,
whereas healthy parents were heterozygous for the mutation.
The main clinical features are nephrotic syndrome, normo-
cytic normochromic anemia, and thrombocytopenia.

The histological analysis of the medullar zone in renal
material revealed extensive tubular alterations with isomet-
ric vacuolization in distal and collecting tubules and the
presence of granular material in cortical tubules without
inflammatory infiltration deposits [122].

Berkovic et al. [124] described LIMP-2 mutations in
three patients with action myoclonus-renal failure syndrome.
Action myoclonus-renal failure syndrome (AMRF [MIM
254900]) is a lethal inherited form of progressive myoclonus
epilepsy associated with renal failure. It typically presents
at 15–25 years with proteinuria evolving into renal failure
or with neurological symptoms (tremor, action myoclonus,
seizures, and later ataxia). The renal pathology is of focal
glomerulosclerosis, sometimes with features of glomeru-
lar collapse. The disorder was mapped to 4q13–21, and
microarray-expression analysis identified SCARB2/Limp2,
which encodes a lysosomal membrane protein, as the
likely candidate. Mutations in SCARB2/Limp2 were found
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in all three families used for mapping and subsequently
confirmed in two other unrelated AMRF families. The
mutations were associated with lack of SCARB2 protein. The
heterogeneous pathology in the kidney and brain suggests
that SCARB2/Limp2 has pleiotropic effects that may be
relevant to understanding the pathogenesis of other forms
of glomerulosclerosis or collapse and myoclonic epilepsies.
However, mutations in SCARB2 might account for unsolved
cases of progressive myoclonus epilepsy (PME) without
renal impairment, especially those resembling Unverricht-
Lundborg disease (ULD) [125]. Finally, contrary to earlier
proposals, LIMB 2 mutations share no features with Charcot-
Marie-Tooth disease both at the clinical and neurophysiolog-
ical levels [124, 125].

7. Podocyte Cytoskeleton and Familial FSGS

The major processes of podocytes have an abundant and
dynamic cytoskeleton composed mainly of actin-rich micro-
filaments, containing several actin-associated proteins, such
as myosin, synaptopodin, and α-actinin. Podocyte damage
and proteinuria can result from cytoskeletal alterations too,
rather than direct alterations in slit diaphragm proteins.

Kaplan et al. found linkage to chromosome 19q13, in
three families with clear evidence of autosomal dominant
inheritance of FSGS, with late onset. They analyzed the
NPHS1 gene, located in this interval, and found no muta-
tions associated with this disorder. By BLAST analysis, they
considered ACTN4, encoding α-actninin-4, as candidate
gene, and a mutational screening was performed in affected
individuals of families. α-actninin-4, an actin-filament cross-
linking protein (Figure 1), is highly expressed in glomerular
podocytes and involved in nonmuscle cytoskeletal function.
ACTN4 missense mutations were identified in affected mem-
bers of each family. Mutant α-actinin-4 protein binds F-actin
more strongly than wild-type α-actinin-4. These data suggest
that mutations in ACTN4 gene might cause an increased
affinity for actin filaments, and podocyte actin cytoskeleton
may be altered in this group of patients. Interestingly, α-
actinin-4 deficiency not only causes recessive glomerular
disease, but also increases cellular mortality [36]. Thus,
lesions which compromise cytoskeletal functions of podocyte
appear to result in a slowly progressive loss of podocyte, the
hallmark of FSGS.

Consistent with this hypothesis are also the results
reported by Winn et al. and Reiser et al. in two recent
works, in which a familial late onset form of FSGS, linked
to chromosome 11q and caused by mutations in the gene
encoding TRPC6, was described [37, 38]. A failure in the
receptor-mediated influx of Ca++ through mutated TRPC6
protein, a nonselective cation channel, might underlie the
new 11q-linked FSGS. Cytoplasmatic calcium concentrations
are tightly regulated to prevent cellular damage. The authors
speculate that mutated TRPC6 channels might disrupt glo-
merular homeostasis and/or cause podocyte apoptosis. The
onset of kidney disease linked to mutations in TRPC6 gene
occurs at a relatively advanced age. There are two possible
explanations of this finding: podocytes express several other

TRPC channel subtypes, so late onset of disease might be
caused by compensation for impaired TRPC6 function by
other channels; in addition, TRPC6 mutations might cause
only a minor damage in podocyte function and lead to
irreversible alterations in the presence of a second glomerular
insults [69, 126]. However, to better understand the exact
function of TRPC channels in podocytes and their role
in familial and acquired forms of FSGS, additional studies
should be performed.

Recently, Brown et al. found heterozygous mutations in
the formin INF2 gene segregating with FSGS in 11 (12%)
of 93 families with age at diagnosis and ESKD varying from
11 to 72 years and 13 to 67 years, respectively [127]. This
finding has been successively confirmed by Boyer et al. in a
cohort of 54 families with a glomerular proteinuric disorder
of apparent AD inheritance and documented FSGS in at least
one affected member. Missense INF2 mutations were found
in nine families (28 patients), translating to a detection rate
of 16.7% [128].

INF2 is a member of the formin family of actin-
regulating proteins that accelerate actin polymerization
[129]. To date, 15 mammalian formin genes have been
identified, among which are the best studied diaphanous-
related formins (DRF): mDia1, mDia2, and mDia3. In the
C-terminal half, DRF proteins contain the forming homo-
logy domains FH1/FH2 and the diaphanous autoregulatory
domain (DAD) region, whereas the diaphanous inhibitory
domain (DID) is localized at the N-terminal half [4].
Interestingly, all of the 13 INF2 mutations associated to
FSGS lie within the DID region of the protein [127,
128], and six of them are localized in the corresponding
INF2 region of a mDia1 DID subdomain interacting with
IQ motif-containing GTPase-activating protein (IQGAP1)
[128]. IQGAP1 has been identified as a Dia1-binding protein
that is necessary for its subcellular location [130]; it is also
involved in actin cytoskeleton dynamics [131] and has been
shown to interact with the podocyte proteins nephrin [132]
and PLCE1 [133]. Although, the exact mechanism explaining
how mutations in the INF2 gene may lead to a proteinuric
phenotype remains unclear, and these first observations
reinforce the idea of podocytes as dynamic structures that are
extremely sensitive to alterations in the spatial or temporal
regulation of the actin cytoskeleton. Thus, INF2 seems to be
a major gene of AD FSGS. Screening for INF2 mutations, at
least in exons 2 to 4, encoding the DID domain, should be
strongly considered in patients with an AD familial history
of FSGS, even before ACTN4 and TRPC6.

8. The Other Side of the Moon:
Immunopathogenesis of Idiopathic
Nephritic Syndrome

Although recent genetic approaches have elucidated the dis-
ease pathogenesis through the discovery of several podocyte
genes mutated in distinct forms of hereditary nephrosis, the
molecular basis of minimal change nephritis syndrome and
FSGS with relapse remains still unclear. In this setting, the
immune system seems to play a critical role in the active
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phase of this disease through disturbances involving several
cell subsets, mainly T cells.

MCNS may be a systemic disorders of T-cell function
and cell-mediated immunity [134]. Nowadays, it is quite
clear that MCNS is the most common kidney disease asso-
ciated with primary immunological disorders and that the
sensitivity to steroid and immunosuppressive therapy is an
important argument in favour of the immune origin of the
MCNS [135]. Recent reports suggest a clonal expansion of
CD8+ T cells expressing the memory T-cell marker, CD45RO
[136]. and of CD4+ T cell expressing the CD25 antigen, the
IL-2 receptor chain in long-lasting, active disease. Moreover,
also the native immune system seems to be involved in
MCNS, probably through the signalling pathway of the NF-
κB [137]. It has been shown that peripheral mononuclear
cells, including T cells, exhibit high NF-κB binding activity
involving the p50/p65 complexes during relapses, which
returned to basal levels during remissions [138]. There is
a T-cell commitment towards a Th2 phenotype in MCNS
that might explain why these patients often display a defect
in delayed-type hypersensitivity response, suggesting an
abnormal Th1-dependent cellular immunity [135].

Moreover, a second set of signals mediated by co-
receptors is needed to promote T-cell proliferation, lym-
phokine secretion, and effector functions. In this setting, C-
mip is as new discovered gene of unknown function, which is
initially identified in T lymphocytes of patients with MCNS
[139]. c-mip interferes at different levels of cell signaling and
in particular is involved in the Th2 signaling pathway [140].

An hypothesis unifying T-cell disorders and podocyte
dysfunction has recently been proposed by Zhang and
coworkers [135]. The functional alterations allowing to
nephritic proteinuria could result from the downregulation
of transduction pathways playing a key role in slit diaphragm
function such as the nephrin-mediated pathway. It is possible
that the circulating factor is somehow linked to the NF-κB
pathway and that podocyte and immune cells might share
the same molecular defect [135].

9. Conclusions

Recent molecular studies have allowed a better understand-
ing of structure and function of glomerular filtration barrier.

Nephrin seems to be the main member of the slit
diaphragm, where it forms a zipper-like ultrafilter structure;
podocin and CD2AP, instead, have probably the function to
connect the cytoplasmic domain of nephrin to cytoskeleton
and lipid rafts of the SD. Moreover, the latter findings on
ACTN4, TRPC6, and INF2 proteins suggest an important
role of cytoskeletal dynamics in the normal maintenance of
podocyte function.

Nephrotic syndrome is a genetically heterogeneous con-
dition. In general, recessive mutations in NPHS1, NPHS2,
and PLCE1 are associated with more severe disease with
earlier onset proteinuria and ESRD presenting in infancy and
throughout childhood, although some milder cases have also
been noted. By contrast, dominant mutations in ACTN4,
TRPC6, and INF2 are associated with milder disease with

later onset proteinuria in the second decade and ESRD in the
third and fourth decades of life.

This new important discoveries may provide useful
guidance to the clinicians in deciding whether a course of
immunosuppressive drug treatment is appropriate. However,
additional molecular genetics and in vivo studies should
be improved to apply this new knowledge for the develop-
ment of comprehensive molecular diagnostic test and new
mechanism-based therapeutic tools.
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Receptor for Lysosomal Mannose-6-Phosphate-Independent
Targeting of β-Glucocerebrosidase,” Cell, vol. 131, no. 4, pp.
770–783, 2007.

[123] A. Balreira, P. Gaspar, D. Caiola et al., “A nonsense mutation
in the LIMP-2 gene associated with progressive myoclonic
epilepsy and nephrotic syndrome,” Human Molecular Genet-
ics, vol. 17, no. 14, pp. 2238–2243, 2008.

[124] S. F. Berkovic, L. M. Dibbens, A. Oshlack et al., “Array-
based gene discovery with three unrelated subjects shows
SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and
glomerulosclerosis,” American Journal of Human Genetics,
vol. 82, no. 3, pp. 673–684, 2008.

[125] L. M. Dibbens, R. Michelucci, A. Gambardella et al.,
“SCARB2 mutations in progressive myoclonus epilepsy
(PME) without renal failure,” Annals of Neurology, vol. 66,
no. 4, pp. 532–536, 2009.

[126] W. Kriz, “TRPC6—a new podocyte gene involved in focal
segmental glomerulosclerosis,” Trends in Molecular Medicine,
vol. 11, no. 12, pp. 527–530, 2005.
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