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Abstract

Following domestication, sheep (Ovis aries) have become essential farmed animals across the world through adaptation
to a diverse range of environments and varied production systems. Climate-mediated selective pressure has shaped
phenotypic variation and has left genetic “footprints” in the genome of breeds raised in different agroecological zones.
Unlike numerous studies that have searched for evidence of selection using only population genetics data, here, we
conducted an integrated coanalysis of environmental data with single nucleotide polymorphism (SNP) variation. By
examining 49,034 SNPs from 32 old, autochthonous sheep breeds that are adapted to a spectrum of different regional
climates, we identified 230 SNPs with evidence for selection that is likely due to climate-mediated pressure. Among them,
189 (82%) showed significant correlation (P� 0.05) between allele frequency and climatic variables in a larger set of
native populations from a worldwide range of geographic areas and climates. Gene ontology analysis of genes
colocated with significant SNPs identified 17 candidates related to GTPase regulator and peptide receptor activities in
the biological processes of energy metabolism and endocrine and autoimmune regulation. We also observed high linkage
disequilibrium and significant extended haplotype homozygosity for the core haplotype TBC1D12-CH1 of TBC1D12. The
global frequency distribution of the core haplotype and allele OAR22_18929579-A showed an apparent geo-
graphic pattern and significant (P� 0.05) correlations with climatic variation. Our results imply that adaptations to
local climates have shaped the spatial distribution of some variants that are candidates to underpin adaptive variation in
sheep.

Key words: adaptation, climate-mediated selection, genome-wide scans, GTPase regulator, peptide receptor, TBC1D12,
sheep.

Introduction
Environmental heterogeneity and differences in climatic fac-
tors (e.g., temperature and precipitation) influence the spatial
distribution of phenotypic and genetic variation across
populations of a variety of organisms including loblolly
pine, Arabidopsis, Drosophila, goat, and human (Hancock
et al. 2008; Pariset et al. 2009; Eckert et al. 2010;
Gonz�alez et al. 2010; Hancock, Brachi, et al. 2011; Hancock,
Witonsky, et al. 2011). The detection of climate-mediated
selective signatures is thus one of the central research
themes in evolutionary biology, with the potential to shed
light on the genetic basis of local adaptation and speciation in
response to changing climates (MacCallum and Hill 2006;
Joost et al. 2007). The identification of adaptive variation

also holds the promise of providing insight into functionally
important variants (see the reviews in Bamshad and Wooding
2003; Nielsen et al. 2007).

To date, the identification of environment-driven selection
has been largely restricted to species with finished genome
sequences or model species, such as Drosophila and humans
(see the review in Oleksyk et al. 2010). These successful studies
have revealed examples of climatic adaptation in traits includ-
ing pigmentation (Hancock, Witonsky, et al. 2011), body size
(Gardner et al. 2011), and thermal response (Karell et al.
2011). Few published studies have been conducted in live-
stock, despite the fact that many farmyard animal species
have a global range and exhibit phenotypic diversity and ad-
aptation to disparate environments. One recent exception is
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a study of domesticated yaks (Bos grunniens; Qiu et al. 2012);
however, yaks have a restricted range compared with other
livestock species. Thus, the recent availability of genome-wide
single nucleotide polymorphism (SNP) sets in livestock would
allow the identification of environment-associated selection.

Livestock have a population history characterized by do-
mestication and subsequent human-mediated selection for
favorable production traits. The comparison of genomic pat-
terns of SNP variability, often between divergent breeds, has
successfully identified many genomic regions and genes that
have undergone selection sweeps (Gu et al. 2009; Qanbari
et al. 2010; Stella et al. 2010; Amaral et al. 2011). Most studies
have employed analyses of allele frequency differences, with
measures such as FST-based outliers or long-range haplotype
(LRH) tests. Importantly, these analyses have proceeded with-
out the integration of genomic and environmental data (Kijas
et al. 2012; Ai et al. 2013; Ramey et al. 2013). As a result, it is
still impossible to link the signatures of selection to specific
spatially varying selective pressures (e.g., a specific environ-
mental variable). In recent years, several approaches have
been developed in landscape genomics to detect adaptation
to different climate pressures by examining correlations or the
association between SNP alleles and climate variables (e.g.,
BayEnv in Coop et al. 2010; latent factor mixed model
(LFMM) in Frichot et al. 2013; see also the review in Joost
et al. 2013). These approaches have strengths and weaknesses
due to different implicit assumptions in the models. By ap-
plying these approaches, several studies have succeeded in
searching for evidence of genetic adaptation to different cli-
matic pressures by scanning the genome for environmental
correlations in a variety of organisms (Coop et al. 2010;
Hancock et al. 2010; Meier et al. 2011; Shimada et al. 2011).

Ruminants such as sheep can be directly affected by cli-
mate effects on thermoregulation, pasture quality, and bio-
mass (Nielsen et al. 2013). Although there is extensive
evidence for phenotypic variation due to genetic adaptation
and/or nongenetic acclimatization to different climates in
sheep (Nielsen et al. 2012, 2013), the extent to which this
variation is the result of genetic adaptation at the whole
genome-wide level is still unclear. In the face of globally chang-
ing climates that may favor more woody vegetation (browse)
at the expense of grasses (Gordon and Prins 2008), these
questions are highly relevant for sheep genetics and breeding
(e.g., marker-assisted selection and breeding) to identify
breeds of sheep or produce better derived breeds that are
more robustly suited to future climates, that is, have increased
feed efficiency on novel vegetation communities (Gordon
and Prins 2008; Franks and Hoffmann 2012; Nielsen et al.
2012, 2013).

To the best of our knowledge, this is the first high density
SNP genome scan for climate-induced selection in livestock
that combines molecular and environmental data. The aim of
this study is to characterize the genetic legacy that centuries
of climate-induced adaptations have imparted to the sheep
genome by identifying genome-wide signatures of selection.
From a data set of genome-wide (~50 K) SNPs in 74 sheep
populations/breeds that were sampled and genotyped within
the sheep HapMap project (http://www.sheephapmap.org/

hapmap.php, last accessed June 3, 2014), we selected geno-
types of 32 old, autochthonous sheep breeds (see fig. 1). We
performed a variety of selection tests using approaches based
on different assumptions (e.g., genetic differentiation of SNPs,
haplotype structure, and genetic–environmental correla-
tions) and different data sets (genomic data alone and the
combination of genomic and environmental data). We iden-
tified a set of candidate SNPs, genes, and core haplotypes
under climate-driven adaptation that were enriched in two
clusters of gene ontology (GO) terms related to the biological
processes of energy metabolism and endocrine and autoim-
mune regulation. These results will advance our understand-
ing of the genetic architecture of climate-driven adaptive
evolution and are of significance for their potential applica-
tions in functional genomics and selective breeding (Joost
et al. 2007), as well as in the creation of conservation man-
agement programs (Luikart et al. 2003) to cope with rapid
global climate change in sheep and other livestock.

Results

Relationships between Breeds Based on Climate
Variables and Genomic Data

Principal component analysis (PCA) on the basis of climatic
variables (fig. 2A and B) and the analysis of genetic relation-
ships between breeds was performed to identify a set of dis-
tantly related breeds adapted to extreme environments. In
this subset, signatures for climatic adaptation are expected to
be stronger and easier to detect while spurious signals due to
common origins between breeds will be reduced.

PCA clustered 32 native sheep breeds according to the
environment they are adapted to inhabit (see fig. 3). The
first two principal components (PC1 and PC2) explain
more than 69% of the total variance (PC1 accounts for
50.78% and PC2 for 18.31%). PC1 divides breeds as a result
of the contributions of multiple environmental climate vari-
ables. This component represents a synthetic parameter that
principally summarizes the information of three climatic var-
iables (supplementary table S1, Supplementary Material
online): The number of days with 40.1 mm of rain per
month (RDO; 18.49%), the percent maximum possible sun-
shine (SUN; 17.89%), and the mean diurnal temperature
range in �C (DTR; 15.91%). These are critical factors for veg-
etation growth and terrestrial primary production (Nemani
et al. 2003). PC2 and PC3 do not reveal a clear geographic
divergence associated with environmental variables (see
fig. 3A). The plot revealed that eight breeds have positive
extreme PC1 values: Four breeds from the United Kingdom
(Border Leicetster, Boreray, Scottish Blackface, and Soay
Sheep), two from Switzerland (Swiss Mirror Sheep, Valais
Blacknose Sheep), one from Norway (Spael-colored Sheep),
and one from Finland (Finnsheep). These extreme PC1 values
likely arise due to high values of precipitation and days of
rainfall (PR and RDO). Six breeds have PC1 values at the
negative extreme mainly because of the high values of tem-
perature, sunshine, and distribution of precipitation (TMP,
DTR, SUN, and PRCV): One each from Iran (Afshar), Turkey
(Karakas), Cyprus (Cyprus Fat-Tail), India (Indian Garole),
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South Africa (Ronderib Afrikaner), and Kenya (Red Maasai)
(fig. 3B).

Genetic Relationship between Breeds

A neighbor-net graph of DR was constructed to explore the
genomic relationship between breeds (fig. 4). The breeds
grouped into two main clusters. One main cluster (cluster
I) included breeds from South Asia, the Middle East, Africa
and South America, whereas the other cluster (cluster II) was
composed of breeds from Europe, New Zealand and the
United States. This grouping is consistent with previous find-
ings concerning the phylogeography of the examined breeds
(Kijas et al. 2009, 2012). All the breeds in cluster I showed
negative PC1 values in the PCA plot based on environmental
variables. Conversely, not all the breeds in cluster II showed
positive PC1 values (see figs. 3 and 4). Further, all the breeds
with positive PC1 values were classified into cluster II, but all
the breeds with negative PC1 values did not belong to cluster
I (see figs. 3 and 4). Among the 15 breeds located at the
extremes of PC1 in the PCA plot, 11 were selected for further
analyses. Four breeds were excluded due to their shared an-
cestry with other breeds (e.g., Moghani is closely related to
Afshari; Swiss Mirror Sheep is closely related to Engadine Red
Sheep) or high levels of inbreeding (Soay, FIS = 0.33; Boreray,
FIS = 0.28; see supplementary table S3, Supplementary
Material online, in Kijas et al. 2012). Therefore, by combining

the results of the interpopulation genetic relationship analysis
and the PCAs, 11 sheep breeds (Afshari [AFS, Iran], Ronder
Afrikaner [RDA, South Africa], Indian Garole [GAR, India],
Karakas [KRS, Turkey], Red Maasai [RMA, Kenya], Cyprus
Fat-Tail [CFT, Cyprus], Border Leicester [BRL, United
Kingdom], Spael-white [NSP, Norway], Finnsheep [FIN,
Finland], Engadine Red Sheep [ERS, Switzerland], and
Scottish Blackface Sheep [SBF, United Kingdom]) were
chosen for genome-wide selection tests.

Detection of Selective Sweeps

In the first analysis for selection, we searched for values of FST

that were either higher or lower than expected after control-
ling for the expected genetic heterozygosity (HE). This ap-
proach was applied to the 11 breeds in the two clusters
presented in figure 5A. The summary statistical method
based on simulated and observed pairwise FST values identi-
fied a total of 2,353 SNPs beyond the 95th percentile of the
empirical distribution (see Materials and Methods) as outliers
across the genome (fig. 5A and supplementary table S2,
Supplementary Material online). As this figure is approxi-
mately the expected number of false positives, only regions
carrying five consecutive significant (window-averaged P
values� 0.05) SNPs, an event that is highly unlikely to
occur by chance (P<10�8), were considered for further anal-
yses. Using this strategy, we identified 29 sweep regions that

FIG. 1. Geographic origins of the world’s sheep breeds. Sampling locations of the 74 breeds/populations (for details of the breeds/populations, see
supplementary table S1, Supplementary Material online, in Kijas et al. [2012] or at http://www.sheephapmap.org/hapmap.php, last accessed June 3,
2014) are indicated by red dots. Only the 32 old, autochthonous breeds selected in the analyses are represented by the codes. Codes in green (NSP, FIN,
SBF, BRL, ERS) and in blue (CFT, KRS, AFS, GAR, RMA, RDA) represent the 2 groups of 11 breeds selected for the selection tests. Breed names as
represented by the codes are detailed in supplementary table S8, Supplementary Material online.
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showed significant genetic differentiation between the two
population groups. We further identified two regions at
the more stringent cutoff level of window-averaged P values
�0.01 (OAR1:119.38–119.80 Mb, OAR4:48.50–48.80 Mb;
table 1). The 29 regions were distributed across chromosomes
OAR1, OAR2, and OAR3. Most regions (27/29; average values
of r2<0. 5; table 1) showed generally low levels of linkage
disequilibrium (LD) between SNPs within a given region. A
fragment on OAR2 was the largest, extending over 0.35 Mb
(table 1). A total of 91 genes were located in or close to these
regions by aligning the “target region” to Ovine (Texel) ver-
sion 3.1 Genome Assembly (see Materials and Methods).

Of the 29 candidate sweep regions (table 1), three over-
lapped with those previously identified in the analysis that
excluded the consideration of environmental parameters
(~10%; OAR2: 51.72–51.95 Mb, OAR6:36.61–36.87 Mb, and
OAR10:30.49–30.70 Mb; see table 1 in Kijas et al. 2012).

These regions spanned six genes (MELK, GNE, SPP1, IBSP,
MEPE, and HMGB1), which were not biologically and func-
tionally relevant candidate genes for selection in either this
study or the earlier study. The majority of strong signals was
specific to the subset analyzed here and did not overlap with
those found in earlier worldwide analyses, suggesting that true
selection pressures are more localized rather than distributed
across populations. The difference could also be due to the
relative effects of natural and artificial selections on the sheep
genome, which were targeted by this and the earlier study,
respectively.

To search for selection observed across multiple breeds,
pairwise FST outlier tests were implemented between breeds
belonging to each of the two groups. SNP outliers were dis-
tributed across the entire genome, but none was detected to
be under divergent selection (P� 0.05) across all the 30
(5� 6) pairwise tests (data not shown). The number of

FIG. 2. Climatic variable used in the analysis. (A) Maps show the geographic patterns of the yearly mean values of the eight climate variables: Diurnal
temperature range (DTR), number of days with ground frost (FRS), coefficient of variation of monthly precipitation (PRCV), precipitation in mm/month
(PR), number of days with 40.1 mm of rain per month (RDO), relative humidity (REH), percent maximum possible sunshine (SUN), and mean
temperature (TMP); (B) a heatmap shows the absolute values of Spearman’s rank correlation coefficients for the altitude and annual mean values of the
eight climatic variables.
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pairwise populations that displayed significant divergence
with P values� 0.05 was plotted across the genome (supple-
mentary fig. S1, Supplementary Material online). These data
revealed peaks and troughs where selection was shared across
breeds and absent or unique to only a small number of
breeds, respectively. In total, 101 SNPs (supplementary fig.
S1, Supplementary Material online) were detected with diver-
gent selection (P� 0.05) shared by half (15/30) of the com-
parisons. The observation that signals were not detected
across all the comparisons is expected. Adaptation is due to
the interaction of a number of complex traits, and many

genes are likely involved in the control of each trait. This
indicates that a high level of genetic heterogeneity is expected
and that breeds may have adapted to a similar environment
using different “genomic strategies.”

Signatures of Genomic Adaptation to Local
Environments

We processed 15,445,710 univariate models (147,102 geno-
types� 105 environmental parameters). Due to the limita-
tion of the software in which the P values provided by

FIG. 3. PCA of environmental variables and 32 old, autochthonous sheep breeds. (A) Heat strips for each of the first three PCs are shown for the 32
sheep breeds assigned to the two genetic clusters (I and II; see fig. 4); the two letters before the breed codes indicate the country of origin: CH,
Switzerland; CY, Cyprus; DE, Germany; ES, Spain; FI, Finland; IE, Ireland; ID, Indonesia; IN, India; IR, Iran; IT, Italy; KE, Kenya; NO, Norway; NZ, New
Zealand; TR, Turkey; TT, Trinidad and Tobago; UK, United Kingdom; US, United States; and ZA, South Africa; (B) the score plots of PC1 versus PC2 for
the 32 old, autochthonous sheep breeds and the environmental variables of their geographic origins. The breeds in contrasting environments selected
for the selection tests are indicated in blue and green, respectively. The nine environmental variables are mean diurnal temperature range in �C, DTR;
number of days with ground frost, FRS; precipitation in mm/month, PR; the coefficient of variation of monthly precipitation in percent, PRCV; relative
humidity in percentage, REH; percent of maximum possible sunshine, SUN; mean temperature in �C, TMP; and number of days with 40.1 mm rain per
month, RDO; and altitude. The small colored circles represent the altitude or the yearly mean and monthly parameters of one of the eight climate
variables across all the 32 breeds.
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MatSAM are limited to 1E-20, we did not set a standard
confidence level before correcting for multiple comparisons.
Instead, we sorted out the models according to Wald statistics
and selected the first approximately 1,000 showing the high-
est values (~0.06% of the total models processed). The Wald
statistic of the selected models ranged between 14.1 and 21.7
(supplementary table S3, Supplementary Material online). Of
the nine environmental factors, PR (34.19%, 330/965), SUN
(26.73%, 258/965), and RDO (24.97%, 241/965) are the

predominant variables involved in the best models (supple-
mentary table S3, Supplementary Material online). In partic-
ular, of a total of 32 selective SNPs located near or within the
17 strong candidate genes (see next section), 16 (50%, 16/32)
SNPs are associated with SUN (supplementary table S3,
Supplementary Material online). The LFMM approach iden-
tified a total of 3,756 SNPs showing j z j scores greater than 5
(two-sided test; fig. 5B and supplementary table S4,
Supplementary Material online). The cutoff j z j score 45

FIG. 4. Genetic relationship between the 32 old, autochthonous sheep breeds based on Reynolds’ genetic distance. A metric of Reynolds’ genetic
distance was used to construct a neighbor-net graph relating the breeds. The 11 sheep breeds selected for selection tests from the two genetic clusters (I
and II) are indicated in green and blue, respectively. The codes in the parentheses indicate their geographic origins of development: CH, Switzerland; CY,
Cyprus; DE, Germany; ES, Spain; FI, Finland; IE, Ireland; ID, Indonesia; IN, India; IR, Iran; IT, Italy; KE, Kenya; NO, Norway; NZ, New Zealand; TR, Turkey; TT,
Trinidad and Tobago; UK, United Kingdom; US, United States; and ZA, South Africa; the breed names, as represented by the codes, are detailed in
supplementary table S8, Supplementary Material online.
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indicated significant SNP effects at the level of P� 10�7 after
applying a standard Bonferroni correction for �= 0.01 and
L = 105 (�, type I error; L, number of loci). Among these, 382
SNPs were also detected by MatSAM (fig. 6A and supplemen-
tary table S4, Supplementary Material online).

GO Enrichments and Core Haplotypes

We identified 230 overlapping SNPs (fig. 6A) among the se-
lection tests using approaches based on different models and
assumptions (FST outlier, MatSAM, and LFMM). Compared
with the overlap expected by chance, there was a significant
excess of overlapping selective signals that were shared be-
tween pairs of approaches or among all three approaches
(observed SNPs n = 230, SNPs expected by chance n = 4;
P<0.001; fig. 6A). We also detected a significant (observed
SNPs n =79, SNPs expected by chance n = 13.3; P<0.001; fig.
6B) enrichment of overlapping signals between the SNPs with
j z j 45 and the SNPs in the 29 candidate sweep regions
(table 1). The 230 overlapping SNPs were located across the
entire genome with a large number of SNPs located on OAR1,
OAR2, OAR3, and OAR4 (supplementary table S5,
Supplementary Material online). We found a total of 175
candidate genes (supplementary table S5, Supplementary
Material online). Two genes (MAPK14 and ANTXR2;
Hancock et al. 2008; Fumagalli et al. 2011) were previously
detected to be associated with regional variations in climate
and pathogens in humans (supplementary table S6,
Supplementary Material online). In addition, only six genes
were associated with growth and production (POL and
LRRC2; Zhang et al. 2013), reproduction (FSHR and PRL;
Rannikki et al. 1995; Chu et al. 2007, 2009, 2012), coat color

(EDNRB; Metallinos et al. 1998; Wilkinson et al. 2013), and fat
deposits (ACSS2; Bichi et al. 2013), as identified by earlier
genetic studies in sheep (supplementary tables S5 and S7,
Supplementary Material online) and other livestock.

We compared the distribution of gene sizes in the candi-
date gene set against the background set, and the
Kolmogorov–Smirnov test of significance indicated that the
distribution of gene size for the candidate gene set is indeed
significantly larger (P<0.01; see supplementary fig. S2,
Supplementary Material online). After further filtering out
28 SNPs that showed strong LD (r240.5) with one or
more nearby loci in the same genomic regions (or genes),
we obtained 202 SNPs and 175 relevant candidate genes
(see supplementary table S3, Supplementary Material
online). GO enrichment among the 175 environmentally as-
sociated candidate genes was evaluated for evidence of func-
tional enrichment in specific categories of biological
processes, molecular functions, and KEGG pathways. Of a
total of 39 GO categories, we revealed 13 GO terms enriched
with 17 genes using a threshold of P<0.05 (tables 2 and 3).
These GO terms grouped into two clusters; one was mainly
related to GTPase activity (cluster A, enrichment
score = 2.18), and the other was mainly related to peptide
and chemokine receptor activity (cluster B, enrichment
score = 1.95), which are mainly involved in the biological pro-
cesses of energy metabolism and endocrine and autoimmune
regulation (e.g., insulin, gonadotropin-releasing hormone, and
formyl peptide receptors). Among the 17 genes implicated in
climate-driven selection, nine were directly related to energy
sources and transfers. These genes encode signaling molecules
involved in GTPase activator and regulator activities, regula-
tion of Ras protein signal transduction, such as ARHGEF18,

FIG. 5. FST-based outlier and LFMM selection tests. (A) Genome-wide distribution of [�log10(1� P)] values for genetic differentiation (FST) between the
two groups of 11 breeds (P value is the probability of simulated FST< sample FST; Antao et al. 2008; supplementary table S2, Supplementary Material
online; see also Materials and Methods) by the LOSITAN program (Antao et al. 2008); the red line indicates the outlier SNPs beyond the upper 95th
percentile, which were assumed to be under selection; the ceiling of maximum values at 6 is due to a limitation of the calculation of P values, and only
six digits after the decimal point can be calculated; (B) genome-wide distribution of significance values [�log10(P)] for the correlation between the
frequencies of SNPs and the environmental variables in the LFMM test; the red line indicates the significance level of P< 10�7; (C) regional distribution
of FST for the SNPs within and around the strong candidate gene TCB1D12; and (D) regional distribution of j z j scores for the SNPs within and around
the strong candidate gene TCB1D12; SNP OAR22_18929579 is in yellow, and the two other SNPs (OAR22_18924267 and OAR22_19020858) in the core
haplotype are in red.
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Table 1. Regions under Climate-Associated Selection in the Sheep Genome.

Region Chr. Position (Mb)
(version 3.1)

Position (Mb)
(version 1.0)

r2 Peak SNP (FST) Top SNPs No. of Genes Candidate
Genesa

1* 1 69.00–69.19 73.58–73.78 0.68 OAR1_73583793 (0.54) 6 2 EVI5

2* 1 105.35–105.70 113.14–113.48 0.20 s47856 (0.43) 9 8

3** 1 119.38–119.80 129.37–129.96 0.41 s70345 (0.58) 5 1

4*b 2 51.72–51.95 55.31–55.54 0.15 OAR2_55416697 (0.51) 5 2

5* 2 164.90–165.03 174.54–174.66 0.32 OAR2_174558603 (0.61) 5 1

6* 2 184.00–184.30 195.09–195.39 0.39 OAR2_195251529 (0.42) 6 1

7* 2 232.47–232.59 245.55–245.68 0.42 s13779 (0.44) 5 4 NMUR1

8* 2 234.33–234.61 247.47–247.76 0.28 s09024 (0.38) 7 11

9* 3 11.66–11.89 12.24–12.47 0.32 OAR3_12358231 (0.66) 5 2

10* 3 44.11–44.30 47.15–47.35 0.35 OAR3_47149563 (0.46) 5 2

11* 3 106.05–106.36 112.82–113.18 0.28 OAR3_112822823 (0.48) 6 4

12* 3 144.25–144.55 154.11–154.43 0.33 OAR3_154209677 (0.32) 5 3

13* 3 186.59–186.74 200.81–200.98 0.28 OAR3_200805613 (0.54) 5 1

14** 4 48.50–48.80 51.32–51.63 0.37 OAR4_51489408 (0.73) 7 6

15*b 6 36.63–36.87 40.83–41.04 0.10 OAR6_40955920 (0.33) 5 3

16* 6 115.21–115.56 116.66–117.05 0.25 s65350 (0.44) 7 4

17* 7 6.55–6.87 6.45–6.74 0.15 OAR7_6587255 (0.60) 6 3

18* 7 55.98–56.18 61.90–62.17 0.40 OAR7_61967937 (0.65) 5 2

19* 10 28.71–29.00 28.73–29.04 0.24 OAR10_28772065 (0.47) 6 5

20*b 10 30.49–30.70 30.54–30.75 0.20 OAR10_30746533 (0.70) 6 1

21* 13 27.24–27.43 30.18–30.37 0.61 s41783 (0.45) 5 2

22* 13 53.41–53.63 58.10–58.35 0.48 s61722 (0.59) 6 10

23* 14 35.21–35.50 36.64–36.94 0.21 s18388 (0.56) 6 4

24* 16 3.36–3.52 3.43–3.63 0.24 s25980 (0.45) 5

25* 17 4.78–5.17 5.30–5.78 0.14 OAR17_5388531 (0.39) 6 2

26* 21 17.85–18.08 20.16–20.40 0.29 OAR21_20371526 (0.39) 8 1

27* 21 45.17–45.37 50.17–50.38 0.25 s48673 (0.43) 5 2

28* 23 26.31–26.64 27.44–27.77 0.22 s11742 (0.37) 5 2

29* 24 33.80–33.96 36.90–37.06 0.24 s43015 (0.64) 5 2

NOTE.—r2 is the average LD value for all the pairwise SNPs within the regions.
aOverlap of the 17 strong candidate genes enriched in the GO terms.
bOverlapping regions with those previously identified in Kijas et al. (2012).

Average P value of five consecutive SNPs *less than 0.05 and **less than 0.01.

FIG. 6. The overlapping SNPs under different selection tests. (A) Numbers in the intersection regions are the observed overlapping SNPs between two
methods or among all three methods; (B) numbers in the intersection region are overlapping SNPs between the 29 candidate sweep regions (the
window-averaged P values� 0.05 in the FST-outlier test) and LFMM analysis ( j z j score 45 in LFMM). Numbers in parentheses show the overlapping
SNPs expected by chance if signals were independent across populations. The total number of SNPs is reported in the upper left corner.
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PLCE1, TBC1D12 and FBXO8, and enzyme activators, such as
ARAP1, EVI5, CHN1, ALOX5AP and THY1 (tables 2 and 3). The
other eight genes encode signaling molecules and cell surface
proteins implicated in peptide and chemokine receptor ac-
tivities, such as XCR1, CCR9, CXCR6, EDNRB and NMUR1, and
cytokine–cytokine receptor interaction pathways, such as the
peptide and chemokine receptors PRL, IL12RB1, and ACVR2A,
which participate in endocrine and autoimmune regulatory
processes (tables 2 and 3).

On the basis of LRH test, the strongest signal among
those detected in the 17 strong candidate genes implicated
in response to the local climatic variation (tables 2 and 3)
resides within a 92-kb region that lies entirely within the
gene TBC1D12. Only in this gene core haplotypes show
significantly (P<0.01; table 4) high extended haplotype ho-
mozygosity (EHH)/relative EHH (REHH) values. In TBC1D12,
three SNPs define four core haplotypes (denoted TBC1D12-
CH1 to CH4; table 4). The OAR22_18929579-A allele is car-
ried only on the core haplotype TBC1D12-CH1 (table 4),
which is common (61%) in populations under low temper-
ature and high precipitation climate (with positive PC1
values in fig. 3B). TBC1D12-CH1 demonstrates clear long-
range, high LD, as shown in the haplotype bifurcation dia-
grams (fig. 7A) and has correspondingly high EHH values at
long distances (EHH� 0.8 at the 1-Mb distance tested;
fig. 7B). We further compared the REHH values of core
haplotypes and found that TBC1D12-CH1 is a clear outlier
(fig. 7C) with a statistically significant (P<0.01; table 4)
higher REHH value than those of the other haplotypes of
comparable frequencies.

Testing Candidate SNPs and Genes under Divergent
Selection

We did not observe large allele frequency variation in 2,000
randomly selected SNPs among the 32 old, autochthonous

populations (supplementary fig. S3A, Supplementary Material
online), which have a worldwide range of geographic origin
and climate adaptation. In contrast, allele frequencies of the
230 overlapping candidate SNPs showed a large range of var-
iation among these populations (supplementary fig. S3A,
Supplementary Material online). We also observed significant
differences in the distribution of Spearman’s rank correla-
tion coefficients between the 230 candidate SNPs and the
2,000 randomly selected loci (supplementary fig. S3B,
Supplementary Material online): The distribution appears
to be normal for the 2,000 random SNPs, whereas the
values are mostly at the positive and negative extremes for
the 230 candidate SNPs. A large majority (82%, 189/230; data
not shown) of the 230 candidate SNPs showed significant
(P<0.05) correlations between their frequencies and the
PC1 values. In particular, the frequencies of the OAR22_
18929579-A allele and core haplotype TBC1D12-CH1 (table
4) in TBC1D12 showed significant (�= 0.636, P<0.001;
�= 0.756, P<0.001) correlation with the variation of the
PC1 value in the populations (n = 32). We further examined
the global distribution of the allele OAR22_18929579-A
(fig. 8A) and of the haplotype TBC1D12-CH1 (fig. 8B) and
found that both are at high frequency in cold and humid
regions, as northern Europe and United Kingdom, and at low
frequency in high temperature and dry regions, as the Near
East, South Asia, and Africa. Our results further confirmed
that the allele OAR22_18929579-A and the core haplotype
TBC1D12-CH1 in the strong candidate gene TBC1D12 appear
to be under strong selection in response to environmental
stress.

Discussion
By combining the patterns in SNP variation with environmen-
tal variables, we present the results of a genome scan that was
used to detect the signatures of natural selection in response
to climatic variation. In the genomic regions significantly

Table 2. Overrepresented GO Terms among the 175 Candidate Genes Identified to Be under Environmentally Associated Selection in Sheep.

Cluster
(enrichment score)

Term Description Genes P value

Cluster A (2.18) GO:0030695 Molecular function GTPase regulator activity ARAP1, EVI5, ARHGEF18, PLCE1, CHN1,
THY1, TBC1D12, FBXO8

1.9E-03

GO:0060589 Molecular function Nucleoside-triphosphatase
regulator activity

ARAP1, EVI5, ARHGEF18, PLCE1, CHN1,
THY1, TBC1D12, FBXO8

2.3E-03

GO:0008047 Molecular function Enzyme activator activity ARAP1, EVI5, CHN1, ALOX5AP, THY1,
TBC1D12,

4.9E-03

GO:0005096 Molecular function GTPase activator activity ARAP1, EVI5, CHN1, THY1, TBC1D12 7.7E-03
GO:0005083 Molecular function Small GTPase regulator

activity
ARAP1, EVI5, ARHGEF18, THY1, TBC1D12,

FBXO8
8.0E-02

GO:0043087 Biological process Regulation of GTPase activity ARAP1, EVI5, THY1, TBC1D12 1.7E-02
GO:0046578 Biological process Regulation of Ras protein

signal transduction
ARAP1, EVI5, ARHGEF18, TBC1D12, FBXO8 2.3E-02

Cluster B (1.95) GO:0001653 Molecular function Peptide receptor activity XCR1, CCR9, CXCR6, EDNRB, NMUR1 5.0E-03
GO:0008528 Molecular function Peptide receptor activity,

G-protein coupled
XCR1, CCR9, CXCR6, EDNRB, NMUR1 5.0E-03

GO:0042277 Molecular function Peptide binding XCR1, CCR9, CXCR6, EDNRB, NMUR1 1.0E-02
GO:0004950 Molecular function Chemokine receptor activity XCR1, CCR9, CXCR6 1.6E-02
GO:0019956 Molecular function Chemokine binding XCR1, CCR9, CXCR6 1.9E-02
bta04060 KEGG pathway Cytokine–cytokine receptor

interaction
XCR1, CCR9, CXCR6, PRL, IL12RB1, ACVR2A 2.8E-02
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Table 3. The 17 Strong Candidate Genes and Associated SNPs within or Neighboring the Genes under Environmental Adaptive Selection Based
on Three Different Approaches.

Chr. Gene Position (bp) Gene Size (kb) SNP FST
a

jzj Scoreb Max Waldc

1 EVI5 68957918–69191464 233.50 OAR1_73673800d 0.55** 5.35 15.81

2 FBXO8 105386295–105423924 37.63 OAR2_113355547 0.37* 9.74 17.59

2 CHN1 134023000–134022999 70.92 OAR2_142314137 0.29** 5.42 14.37
OAR2_143195752 0.46** 5.48 15.62

2 ACVR2A 160457581–160549550 91.97 OAR2_170004218 0.35** 6.99 15.06

2 NMUR1 232366028–232483197 117.20 s74305 0.51** 11.20 16.41
OAR2_245260141 0.32* 8.71 17.33
OAR2_245638268 0.39* 8.35 14.93
OAR2_245680195 0.42* 10.37 14.57

5 IL12RB1 4854306–4869950 15.64 s33778d 0.35** 5.40 15.87

5 ARHGEF18 13935201–14021434 86.23 s48780d 0.38** 8.02 14.88

10 ALOX5AP 30365435–30388526 23.09 s18834 0.84** 8.79 17.66
s68983 0.67** 8.61 18.85
s12004 0.54** 7.06 14.67
OAR10_30746533 0.70** 7.24 17.37

10 EDNRB 53508345–53534498 26.15 OAR10_53694894 0.23* 6.83 19.21
OAR10_54710595 0.33** 5.46 17.06

15 THY1 29450455–29452173 1.72 s13895 0.36* 6.74 16.08
s02747 0.38* 6.38 15.70

15 ARAP1 50442784–50529042 86.26 OAR15_55184101d 0.63** 7.54 15.70

19 XCR1 53235736–53236748 1.01 s18532 0.61** 8.60 18.16
OAR19_56419475 0.27* 5.25 16.21

19 CXCR6 53290059–53291081 1.02 s18532 0.61** 8.60 18.16
OAR19_56419475 0.27* 5.25 16.21

19 CCR9 53333188–53340782 7.60 s18532 0.61** 8.60 18.16
OAR19_56419475 0.27* 5.25 16.21

20 PRL 34258080–34266415 8.34 OAR20_37437726 0.57** 9.54 19.18
s39515 0.62** 9.90 19.15

22 PLCE1 15009437–15337740 328.30 OAR22_18841208_Xd 0.46** 8.24 14.55
OAR22_18876523 0.53** 7.75 16.38
OAR22_18929579 0.47** 5.90 15.00
OAR22_19052408 0.44** 5.89 16.91

22 TBC1D12 15398171–15490853 92.68 OAR22_18841208_X 0.46** 8.24 14.55
OAR22_18876523 0.53** 7.75 16.38
OAR22_18929579d 0.47** 5.90 15.00
OAR22_19052408 0.44** 5.89 16.91

aBased on the FST-based selection test between the 2 groups of 11 populations (see Materials and Methods).
bBased on the LFMM test (Frichot et al. 2013).
cBased on the spatial analysis method (Joost et al. 2007).
dSNPs within genes.

Significant at the level of *P< 0.05 and **P< 0.01.

Table 4. Core Haplotypes of Gene TBC1D12 in the 2 Groups of 11 Old, Autochthonous Breeds.

Core
Haplotype

Core SNP Alleles (distance to the peak SNP) Core Haplotype Frequencies EHHb REHHb REHHb

P Value
OAR22_18924267 OAR22_18929579 OAR22_19020858 Total Group 1a Group 2a

(�5 kb) (0 kb) (87 kb)

CH1 A A A 0.28 0.03 0.61 0.02/0.02 1.95/1.09 0.02*/0.14

CH2 A G A 0.20 0.20 0.17 0.01/0.02 0.50/1.14 0.31/0.12

CH3 C G A 0.08 0.07 0.11 0.01/0.01 0.43/0.62 0.33/0.27

CH4 C G G 0.38 0.62 0.10 0.01/0.01 0.72/0.68 0.23/0.25

aThe selected 2 groups of 11 old, autochthonous breeds are detailed in Materials and Methods. Group 1 includes the six breeds of Indian Garole, Red Maasai, Ronderib Afrikaner,
Cyprus Fat-Tail, Karakas and Afshari, and group 2 includes the five breeds of Scottish Blackface, Border Leicester, Spael-white, Engadine Red Sheep and Finnsheep.
bEHH, REHH, and the P value of REHH are shown for the upstream and downstream sides from each core in group 2 (see fig. 7).

*Significant at the level of P< 0.05.
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associated with climate-driven genetic adaptation, we found
17 strong candidate genes (see table 3). These results, together
with knowledge regarding the molecular function of the can-
didate genes, provide new information on the genetic mech-
anisms likely underlying environmental adaptation in
domestic animals.

Impact of Climate on Energy Metabolism and
Endocrine and Autoimmune Regulation

Our results suggest that the process of autochthonous sheep
breeds adaptation to extreme climates is principally mediated
by complex, integrated energy metabolic responses, as ob-
served in rodents (Rezende et al. 2004). Climate is known
to have an important impact on animal physiology and fit-
ness, particularly those of ruminants (Hofmann 1989;
Bradshaw and Holzapfel 2010). Factors such as the tempera-
ture, solar radiation, UV radiation, precipitation and humidity
all have direct effects, whereas factors such as the digestibility,
quality and quantity of forage, which are themselves directly
influenced by climate variables such as sunlight, precipitation
and temperature, all have indirect strong effects on sheep
(McManus et al. 2011). These three climatic variables can
affect sheep directly, through effects on thermoregulation
(Parker and Robbins 1985), but the stronger effect is expected
to operate indirectly, through the metabolic regulation of
plant quality and biomass (e.g., Mysterud et al. 2001;
Mysterud and Austrheim 2008; Nielsen et al. 2013). For exam-
ple, when facing thermal stress (i.e., a deviation from the
relatively narrow range of body temperature that is optimal

for the coordination of molecular and cellular processes),
animals minimize adverse effects by adjusting feed intake
(variety and amount) and therefore energy metabolic pro-
cesses (Hahn 1999; Mader 2003; Hancock, Brachi, et al. 2011;
McManus et al. 2011). Consequently, long-term thermal
stress can result in energy metabolic adaptation, as well as
heat and cold tolerance, in particular breeds. Meanwhile, var-
iation in animal morphology, including body size (large vs.
small) and shape (fat-tailed vs. thin-/short-tailed), also follows
basic thermoregulatory principles to dissipate or conserve
body energy in different climates. In addition, several breeds
(e.g., Norwegian White Sheep) grow particularly large in cold
regions that are dry/warm in early spring and warm/wet in
late summer, where conditions favor continued grass growth
(Nielsen et al. 2013); however, several breeds grow small in the
tropics and subtropics, where the tropical grasses (C4) have a
lower nutritional value and higher fiber content (McManus
et al. 2011). Thus, climates have a great impact on energy
metabolic adaptations across native sheep breeds.

We also demonstrate evidence for the selection of candi-
date genes involved in endocrine regulation, which is consis-
tent with the impact of the day length (e.g., photoperiod: the
duration of light in a light/dark cycle), refractory period (an-
imals do not respond to day length), and seasonal timing on
animal physiology and evolutionary fitness (Bradshaw and
Holzapfel 2010). The sunlight (or daytime) length, which is
necessary for organisms to program seasonal changes in their
lifecycles, changes as climate changes. For example, climates in
the north have shorter growing seasons, and winter comes
earlier in the year than in the south. Typically, the sunlight

FIG. 7. Haplotype bifurcation diagrams, EHH and REHH of the gene TBC1D12. They are indicated in group 2, including five breeds of Scottish Blackface,
Border Leicester, Spael-white, Engadine Red Sheep, and Finnsheep (see Materials and Methods). (A) Bifurcation diagrams (see Materials and Methods)
for the four core haplotypes (CH1–CH4), respectively; (B) EHH values at varying distances from the core region on each of the four core haplotypes at
TBC1D12; (C) distribution of REHHs versus core haplotype frequency. The REHHs were compared with the distribution of all of the other possible core
haplotypes, as represented by gray dots; the 95th, 75th, and 50th percentiles are shown. The four core haplotypes at TBC1D12 are marked in red, and
TBC1D12-CH1 is beyond the 95th percentile.
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length influences physiological activities by mediating specific
endocrine hormones that ultimately determine, for example,
the timing of reproduction in mammals. In sheep, most
breeds are seasonal breeders. Similar to seasonal reproduction
in other mammals, the priming of the neuroendocrine axis of
sheep begins with the input of sunlight and terminates with
the secretion of a gonadotropin. Sunlight thus plays an im-
portant role in initiating a cascade of physiological events and
serves as an anticipatory cue for the timing of reproduction
events in sheep (Gomez-Brunet et al. 2008; Chemineau et al.
2010). As recent rapid climatic changes have occurred, one of

the major biotic responses in sheep has been the altered
timing of seasonal events such as reproduction (see the
review in Rosa and Bryant 2003), and the response has im-
posed selection on the interpretation of sunlight and its hor-
monal integration (Bradshaw and Holzapfel 2010).

Moreover, our findings indicate that climate can also affect
autoimmune regulation in animals indirectly, through its ef-
fects on the environments that sheep inhabit. Among these
the shaping of pathogens and patterns has evolutionary con-
sequences (Chessa et al. 2009; Kenyon et al. 2009), including
both the emergence of new disease syndrome and the change

FIG. 8. Worldwide frequency distribution of the SNP allele and core haplotype. (A) The allele OAR22_18929579-A and (B) the core haplotype TBC1D12-
CH1. The frequency is indicated in dark gray.
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in the prevalence of existing vectors (Summers 2009;
Tabachnick 2010; McManus et al. 2011). For example, field
studies on P. odocoilei have shown a phylogenetically distinct
protostrongylid of Dall’s sheep in a subarctic alpine habitat,
and the results indicated that the possible effects of climate
change include parasite range expansion and amplification in
endemic regions (Kutz et al. 2005; Jenkins et al. 2006).

Putative Candidate Genes for Environmental Genetic
Adaptation

Analysis using the EHH/REHH and correlation analyses pro-
vided independent evidence supporting the proposed signa-
ture of environmental genetic adaptation in TBC1D12. The
TBC1D12 gene is a GTPase activator for Rab family protein(s)
and plays a key role in increasing the GTPase activity
(Ishibashi et al. 2009). GTPases are enzymes that catalyze
the hydrolysis of GTP, which serves as an energy source or
activator of substrates in metabolic reactions within the cell.
Thus, the signatures of local genetic adaptation in TBC1D12
are most likely caused by direct environment stressors that
mainly stem from temperature and sunlight.

More specifically, the frequencies of the allele
OAR22_18929579-A and the core haplotype TBC1D12-CH1
have an apparent pattern of global distribution (fig. 8). This
observation is consistent with the conclusion that variants
that are deleterious in hot equatorial climates become advan-
tageous (rather than simply neutral) in colder climates
(Hancock et al. 2008). Therefore, the selected SNP
OAR22_18929579 and haplotype (TBC1D12-CH1) in gene
TBC1D12 identified by our scan can be considered a most
probable “selection candidate” for complex adaptive traits.
The results suggest that during the process of breed develop-
ment, sheep with varying performances in energy metabolism
were strongly selected due to their capability to adapt to the
local environment.

Apart from the TBC1D12 gene, several SNPs were also
found in other candidate genes with enriched functions
(table 2). None of the 17 major candidate genes has shown
strong evidence of environmental genetic adaptation in
previous human studies (supplementary table S6,
Supplementary Material online). One of the main reasons is
most likely the diverse sets of selective pressures acting on
humans and sheep. In humans, environmental pressure
is primarily driven by factors such as pathogens
(Fumagalli et al. 2011), disease (Sabeti et al. 2007), diet
(Hancock et al. 2010), altitude (Huerta-S�anchez et al. 2013),
and climate (Frichot et al. 2013). As such, previous studies
have identified a number of candidate genes related to skin
pigmentation, metabolism, and immune function. However,
among a remarkably diverse range of environments, climatic
factors such as temperature, precipitation and sunlight
(Nielsen et al. 2012, 2013) have imposed major environmental
stress on sheep indirectly through forage, and thus, the selec-
tion of genetic variants in genes associated with development
and energy metabolism is likely to have occurred. Although
metabolism seems to apply to both humans and sheep, in-
direct climatic effects through the diet should be much larger

on sheep than on human due to 1) forage is the main diet
source for sheep; and 2) ruminant has a particular plant di-
gestion and metabolism system. Of the association models
identified by the MatSAM analysis (supplementary table S3,
Supplementary Material online), the variable SUN—which is
the percentage of sunlight available—is one of the variables
predominantly involved in the best models, together with
precipitation variables (e.g., OAR1_88143�SUN-March,
s73618�SUN-May, s53592�SUN-June, s71447�SUN-May,
s74273�SUN-July, s04088�PR-October, OAR1_8932175�
PR-October, and OAR1_16697706�PR-October; supplemen-
tary table S2, Supplementary Material online). These climatic
parameters are closely associated with the energy metabolism
of sheep through direct and indirect effects (e.g., through the
feed resources for sheep; Nemani et al. 2003; Hancock et al.
2010).

Methodological Considerations and Caveats

Discovery of the same set of candidate SNPs, genes, and ge-
nomic regions under selection using alternative approaches
can provide sound evidence for selective signatures (Oleksyk
et al. 2010). The strategy used in this study of combining
complementary statistical approaches has the power to iden-
tify alleles that experience small shifts in frequency by selec-
tion through decreasing the number of false-positive
associations (Frichot et al. 2013); thus, this strategy allows
us to detect novel loci in which SNPs show subtle but con-
sistent patterns across populations. Despite the occurrence of
false positives, we believe that they would be minimal in the
significant overlapping SNPs and in the genomic regions con-
taining five consecutive significant SNPs identified by the
approaches. Our results differ from the results of previous
analyses that were based merely on broad-scale population
differentiation (Kijas et al. 2012).

Earlier simulations showed that the LFMM approach is
robust to population structure and demographic history to
some extent in distinguishing signals of environmental corre-
lation due to selection from correlations due to population
structure (Frichot et al. 2013). Although we selected only
some of the breeds in the selection tests, the confounding
effect between interpopulation genetic relationships and en-
vironmental gradients still exists due to the isolation-by-dis-
tance (IBD) patterns of the genotyped breeds (fig. 4; see also
Kijas et al. 2012). Thus, by introducing population structure as
hidden variables, the LFMM approach can efficiently estimate
the background residual levels of population structure and
control for random effects due to population history and IBD
(Frichot et al. 2013). In addition, the MatSAM approach
makes the implicit assumption that each data point is equally
informative and the errors are not correlated (e.g. due to
population structure; Joost et al. 2008, 2013). Given the dif-
ferences among approaches, there still seem to be some in-
teresting signals in the tails of distributions identified by the
individual approaches (supplementary table S3;
Supplementary Material online). In particular, given that
the LFMM approach is the only one that accounts for pop-
ulation structure, more focus should be given to the selective
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SNPs/genes (supplementary table S4, Supplementary Material
online) identified using it in future studies.

There are several caveats to our study. Because several
other environmental variables are partially correlated with
climatic factors (e.g., the strong correlation between temper-
ature and the number of days with ground frost; fig. 2B), the
signals of natural selection detected in this study are likely to
be the result of both the direct and the indirect influences of
climate on the sheep genome. It is difficult to distinguish the
causal selective pressures from the other pressures by corre-
lation because many environmental and ecological variables
covary (Coop et al. 2010). In addition, we note that the en-
vironmental variable for each breed might vary within the
habitat region; further, our SNP data represent only a fraction
of the coding portion of the sheep genome. Thus, fine-scale
environmental data throughout the habitat region for each
breed and higher density SNPs would be more informative. In
addition, the geographic structure that correlates with PC1
may have biased the detection of selective signals. By exam-
ining the distributions of allele frequencies (supplementary
fig. S3A, Supplementary Material online) and their Spearman’s
rho with PC1 (supplementary fig. S3B and C, Supplementary
Material online) for the 230 candidate SNPs and 2,000 ran-
domly selected SNPs, we found that the effect of geographic
structure should be very small in this case. Several recent
papers noted that signals of population differentiation (e.g.,
FST and climate correlations) did not necessarily contain sig-
nals of hard selective sweeps (see the reviews in Pritchard et al.
2010; Frichot et al. 2013; Duforet-Frebourg et al. 2014; Ferrer-
Admetlla et al. 2014). Thus, if the selection on standing var-
iation underlies adaptation, signals of hard sweeps are not
necessarily expected. Moreover, hard selective sweeps may be
infrequent in species with moderate to small population sizes
and may only play a more prominent role in species with large
population sizes (see the review in Joost et al. 2013). Overall,
we view this method as a powerful strategy to highlight in-
teresting loci and correlations that will be further explored in
future studies.

Conclusions
In conclusion, our study investigated the genetic architecture
of climate-mediated adaptations in farm animals using a
genome-wide scanning approach. We identified several can-
didate genomic regions and candidate genes underlying local
adaptation in sheep. The 17 strong candidate genes (see table
3), in particular, the target gene TBC1D12, which is involved in
controlling the activities of GTPase activators and regulators,
can now serve as starting points for investigating biological
processes and possible underlying mechanisms of environ-
mental genetic adaptation. Our results suggest that the
core haplotype TBC1D12-CH1 and allele OAR22_18929579-
A were most likely involved in the adaptation to local climates
during the development of native sheep breeds. These results
not only increase our understanding of the genetic landscape
of climate-induced adaptation across the sheep genome but
also have a more practical value in marker-assisted breeding
in sheep. Future studies are needed to further confirm (e.g.,
experimentally measure the phenotypic difference between

sheep with and without the mutations) and refine our results
by integrating additional genomic data (e.g., candidate gene
sequencing, mRNA and microRNA expression profiling, and
DNA methylation) with a more comprehensive array of en-
vironmental variables.

Materials and Methods

Sheep Breeds and Samples

An initial set of 32 old, autochthonous breeds (1,224 individ-
uals; supplementary table S8, Supplementary Material online)
were selected out of 74 domestic sheep breeds/populations
(2,819 individuals) that had been sampled and genotyped
within the Sheep HapMap project (for information on the
populations and their geographic origins, see fig. 1 and Kijas
et al. 2012). Within each breed, pairwise interindividual kin-
ship coefficients (F) were calculated using genome-wide
SNPs (~50 K SNPs) according to the methods detailed in Li
et al. (2011). To reduce the effect of sample size differences on
the following estimates (Kijas et al. 2012), the 20 individuals
showing the least pairwise relatedness were selected in the
analysis for the breeds with more than 20 samples, whereas all
the individuals were included in the analysis for the three
breeds (Boreray, Karakas, and Ronderib Afrikaner) with less
than 20 samples (supplementary table S8, Supplementary
Material online). Thus, a total of 632 individuals were selected,
and most of the pairwise kinship coefficients (5,441/5,935,
91.68%) between individuals were less than that between
half-sibs (F= 0.125). Sampling locations of the sheep breeds
were first obtained from the International Sheep Genomics
Consortium (ISGC) contributors who had collected the sam-
ples; if no information was received from the contributors, the
sampling location was assigned as the geographic coordinates
of the centroid of the breed’s traditional rearing area. The
number of samples and geographic origins of the breeds, as
well as the sampling locations (fig. 1) and coordinates, are
provided in supplementary table S8, Supplementary Material
online.

PCA Based on Climatic Variables

A total of 105 environmental parameters describing the sam-
pling locations were used in PCA to distinguish breeds on the
basis of their adaptation to different agroclimatic zones.
Environmental variables including climatic and altitude data
(supplementary table S8, Supplementary Material online)
were obtained for each breed based on the coordinates of
the sampling locations. The altitude was estimated with the
help of the digital elevation model SRTM30 (Shuttle Radar
Topography Mission; http://www2.jpl.nasa.gov/srtm/, last
accessed June 3, 2014) developed by the National
Aeronautics and Space Administration (NASA), which has
30 arc seconds of spatial resolution. Climatic data were com-
posed of latitude/longitude grids with a resolution of 10 min
(approximately 12 km at the latitude of Switzerland), contain-
ing yearly mean and monthly values of the eight variables over
global land areas (see also Joost et al. 2007; Pariset et al. 2009).
In this study, monthly parameters of the variables were also
considered in order to take account of seasonality of, for
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example, vegetation growth and lambing (Joost et al. 2007;
Pariset et al. 2009). Climatic data were available in the global
climate data set (http://www.cru.uea.ac.uk/data, last accessed
June 3, 2014) of the Climatic Research Unit, Norwich and
covered 40 years from 1961 to 2001 (New et al. 2002). The
following climate variables were included: Mean diurnal tem-
perature range in �C (DTR), number of days with ground frost
(FRS), precipitation in mm/month (PR), the coefficient of
variation of monthly precipitation in percent (PRCV), relative
humidity in percentage (REH), percent of maximum possible
sunshine (percent of day-length, SUN), mean temperature in
�C (TMP), and number of days with 40.1 mm rain per
month (RDO). High-resolution global distributions of the cli-
mate variables (yearly mean values) and their correlations are
shown in figure 2. The correlations among the 105 climatic
parameters (yearly mean and monthly values) are also shown
in supplementary table S9, Supplementary Material online.

Ovine SNP50K BeadChip Genotyping and Quality
Control

The ovine SNP50K BeadChip was developed by the ISGC
(http://www.sheephapmap.org, last accessed June 3, 2014;
see also in Kijas et al. 2009). Details on the SNP discovery,
design of the ovine array, and genotyping procedures can be
found at the following address: http://www.sheephapmap.
org/hapmap.php (last accessed June 3, 2014). SNP quality
control has been detailed elsewhere in Kijas et al. (2009,
2012) and Miller et al. (2011). The HapMap clean data set
has 49,034 SNPs (the CSIRO Data Access Portal: https://data.
csiro.au, last accessed May 9, 2014), which passed both the
manufacturing process and rigorous quality controls. In brief,
the quality control steps included the exclusion of markers
based on assay abnormalities annotated by Illumina,
Mendelian inconsistencies documented by the ISGC, discor-
dant genotypes between experiments, minor allele fre-
quency = 0, call rate<0.99, atypical X-clustering, evidence
for a nearby polymorphism, compression, intensity values
only, or evidence of a deletion. Genotypes in the PLINK
format (Purcell et al. 2007) are available from the ISGC web-
site. Furthermore, we excluded SNPs without chromosomal
or physical locations and those on X- and Y-chromosomes,
based on the information detailed in the Sheep Genome
Browser Oar v3.1 (http://www.livestockgenomics.csiro.au/
cgi-bin/gbrowse/oarv3.1/, last accessed June 20, 2014). Our
working data set contained 47,050 SNPs (supplementary
table S10, Supplementary Material online).

Analysis of Genetic Relationship among Populations

We evaluated the genetic relationships among the 32 sheep
breeds previously selected to exclude closely related breeds in
the analysis and to minimize the confounding signals of se-
lection due to population structure. The pairwise Reynolds’
genetic distances (DR; Reynolds et al. 1983) between popula-
tions were computed using the Arlequin v3.11 software pack-
age (Excoffier and Lischer 2010). Because the removal of SNPs
in high LD has been shown to at least partially counter the
effect of ascertainment bias on the estimates of genetic

relationships between populations (Herr�aez et al. 2009), the
pairwise matrix of Reynolds’ genetic distance was calculated
based on 22,861 SNPs identified by the application of the LD
pruning algorithm implemented in the PLINK indep-pairwise
(50 5 0.05). This procedure calculates the LD between SNPs in
windows containing 50 markers and removes one SNP from
each pair when the r2 LD index exceeds 0.05. Reynolds’ genetic
distances were then used to construct a neighbor-net net-
work of genetic relationships among breeds (Bryant and
Moulton 2004), employing the SplitsTree package v4.12
(Huson and Bryant 2006).

Screening for SNPs and Genomic Regions under
Selection

The first method we used to detect selection signatures was
the Bayesian test that was developed by Beaumont and
Balding (2004). This test was applied to a subset of 11
breeds (Scottish Blackface, Border Leicester, Spael-white,
Engadine Red Sheep, Finnsheep, Indian Garole, Red Maasai,
Ronderib Afrikaner, Cyprus Fat-Tail, Karakas, and Afshari) se-
lected from the 32 breeds as belonging to two well-separated
clusters defined by the PCA of environmental data and being
loosely related on the basis of Reynold’s genetic distance. The
Beaumont and Balding test, as implemented in the LOSITAN
program (Antao et al. 2008; available from http://popgen.eu/
soft/lositan/, last accessed April 29, 2014), was performed on
1) two groups of animals: One comprised individuals belong-
ing to the six breeds with negative extreme PCA1 coordinates
(group 1: Indian Garole, Red Maasai, Ronderib Afrikaner,
Cyprus Fat Tail, Karakas, and Afshari) and the second group
of individuals was from the five breeds with positive extreme
PC1 coordinates (group 2: Scottish Blackface, Border Leicester,
Spael-white, Engadine Red Sheep, and Finnsheep); and 2) the
30 (6� 5) possible pairwise combinations of breeds belonging
to the two opposite PCA clusters.

The program LOSITAN was used (http://popgen.eu/soft/
lositan/, last accessed April 29, 2014) to generate 100,000
simulated loci. It produced an expected neutral distribution
of FST values and a P value estimate (the probability of sim-
ulated FST< sample FST) for each SNP. Each simulation in-
cluded 100 individuals per population, 2 populations, 47,050
loci, an expected FST value of 0.070, and a confidence interval
(CI) = 0.95 under the infinite allele mutation model. This
method identifies SNPs under selection based on the distri-
butions of FST that were higher or lower than expected, con-
trolling for the expected genetic heterozygosity (HE). Two
options—“neutral mean FST” and “force mean FST”—were
adopted, as recommended in Antao et al. (2008). FST-outlier
SNPs were extracted based on the 95th percentiles (Li et al.
2014). To putatively identify specific genomic regions under
strong selective sweeps, we focused on “windows” of consec-
utive SNPs. We used a standard sliding window size of five
SNPs across each chromosome to calculate the average P
values. An average P value 40.95 for at least five consecutive
SNPs indicated a genomic region under divergent selection.
Finally, we integrated the results of all of the pairwise
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comparisons by plotting the genome against the number of
times they show P value 40.95 in the 30 contrasts.

Testing for Signatures of Local Adaptation

We used MatSAM v1.0, which was developed by Joost et al.
(2008), to detect the markers associated with environmental
variables. Rather than relying on population genetics theoret-
ical models, this spatial analysis approach uses spatial coinci-
dence (Goodchild 1996) to relate the genetic profile of study
sheep to the environmental parameters measured at the geo-
graphic coordinates of their sampling sites. The data used for
the analysis are in the form of a matrix, in which each row
corresponds to an individual and to the geographic coordi-
nates where it was sampled; the columns contain 1) binary
information (1 or 0) for the presence or absence of a given
SNP allele; and 2) values of environmental parameters at the
sampling location. The approach is performed at the individ-
ual genotype level, and multiple univariate logistic regression
analyses are calculated to determine the degree of association
between the frequencies of each allele and the values of the
environmental parameters. The significance of the associa-
tions is determined with a log-likelihood (G) test and a
Wald test (Joost et al. 2007). Bonferroni correction is applied
to correct for multiple comparisons (Joost et al. 2008). By
calculating the significance of the models generated by all
possible pairwise combinations (allele vs. environmental pa-
rameter), the markers implicated in the models that emerge
as statistically significant can be detected, and these loci are
likely to be under the selective sweeps of environmental
adaptations.

We further calculated the correlations between SNPs
and climate variables using new algorithms implemented
in the computer program LFMM (Frichot et al. 2013; avail-
able from http://membres-timc.imag.fr/Eric.Frichot/lfmm/
index.htm, last accessed January 1, 2014). The new algo-
rithms, which are based on population genomics, ecological
modeling and statistical learning techniques, have proven
to be efficient in screening genomes for signatures of local
adaptation by decreasing the number of false-positive as-
sociations due to, for example, population structure and
random effects (Frichot et al. 2013). Because the environ-
mental variables were mainly related to temperature, sun-
light and precipitation variables and PC1 explained most of
the total variance (50.78%), which greatly exceeded that
explained by PC2 (18.31%), we summarized the variables
by using the first axis of the PCA (see above) for all of the
environmental variables. We applied the LFMM algorithm
and calculated the j z j scores for all of the SNPs using 100
sweeps for burn-in and 1,000 additional sweeps. We used
K = 3 latent factors based on population structure analyses
using the program SmartPCA from the EIGENSOFT v5.0
package (http://www.hsph.harvard.edu/alkes-price/software/,
last accessed January 1, 2014) and the Bayesian cluster-
ing program STRUCTURE v2.3.4 (Pritchard et al. 2000;
for the results, see supplementary material and fig. S4,
Supplementary Material online).

Candidate SNP Annotation, GO, and EHH Analysis

We annotated the overlapping candidate SNPs detected by
the selection tests to identify candidate functional genes
under selection. We inferred the gene annotation of the
mapped interval from the Ovine (Texel) v3.1 Genome
Assembly (http://www.livestockgenomics.csiro.au/cgi-bin/
gbrowse/oarv3.1/, last accessed June 20, 2014). In this analysis,
we defined the “target region” as approximately 5,000 bp up-
stream and downstream of the significant SNPs (the genomic
position of significant SNP� 5,000 bp; see also Li et al. 2013).
Target genes were also searched for between two significant
SNPs �1 Mb and identified as candidate genes under
selection.

GO analyses were further performed using the function
annotation clustering tool from DAVID Bioinformatics
Resources 6.7 (available from http://david.abcc.ncifcrf.gov,
last accessed July 2, 2014; e.g., Huang et al. 2008, 2009).
When assessing evidence for enrichment from SNP-based
analyses using this approach, a bias for larger genes is likely
due to the increased probability of finding a signal by chance.
Of the 230 candidate SNPs identified above, we further re-
moved the SNPs that showed significant (r240.5) LDs with
one or multiple other loci and only considered a single signal
from the SNPs showing significant LDs between each other.
The DAVID enrichment analysis was then based on the SNPs
and candidate genes after the filtering. We intended to de-
termine which GO categories are statistically overrepresented
in a set of genes compared with that expected in random
positions (Fumagalli et al. 2011). We chose bovine (Bos
taurus) known genes as the background set of genes, because
a large portion of the candidate genes were mapped on a
bovine rather than ovine genome (see Results). All the GO
term accession numbers for each gene from the bovine
genome were downloaded from Ensembl (http://www.
ensembl.org, last accessed July 2, 2014, release 74); these
data included the entire annotation and were considered as
the reference set. Enriched terms were retrieved with a signif-
icantly higher than expected number of associated genes
using Fisher’s exact test. Any predominant functional
theme of interesting gene sets in the GO hierarchy was
shown if the P value was less than 0.05.

Candidate genes under recent strong selection should
demonstrate EHH (Sabeti et al. 2002; Huerta-S�anchez et al.
2013) because of the low number of recombinations occur-
ring in only a few generations (Sabeti et al. 2002). We further
performed LRH tests in the two groups of populations (i.e., 11
populations) to identify the core haplotypes using the SWEEP
software v1.1 (available from: http://www.broadinstitute.org/
mpg/sweep/, last accessed July 10, 2014). We examined the
EHH and REHH values in the 300 kb upstream and down-
stream of each core region within the 17 strong candidate
genes (see Results) involved in the GO terms (Qanbari et al.
2010; Li et al. 2013). A pair of SNPs with the upper 95% CI of
D0 = 0.7–0.98 was defined to be in strong LD (Gabriel et al.
2002; Qanbari et al. 2010). Core haplotypes were set to include
�3 SNPs. All of the haplotypes in the major candidate genes
were divided into 20 bins based on their frequencies. We
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compared the frequencies and REHHs for the core haplotypes
in a candidate gene with those across the genome. P values
were obtained by log-transforming the REHH values in the bin
to achieve normality. Core haplotypes with extreme REHHs
(beyond the 95th percentiles) in the empirical distribution
were considered significant (Sabeti et al. 2002; Qanbari et al.
2010).

Validating the Evidence for Candidate SNPs and
Genes under Selection

As true causal variants should display most signatures of pos-
itive selection (e.g., high-derived allele frequencies and long
extended haplotype; e.g., Andersen et al. 2012; Li et al. 2013),
we further validated the evidence for candidate SNPs and
major genes under selection as identified above. Because fa-
vorable alleles of candidate genes under divergent selection
tend to have greater frequencies in populations with higher
relevant trait values (Orr and Kim 1998; Pritchard and Di
Rienzo 2010; Turchin et al. 2012), we tested the correlation
between the allele frequencies of the 230 candidate SNPs and
PC1 values of the environmental variables, which explained
most (50.78%) of the total variance of the environmental
data, by examining the Spearman’s rank correlation coeffi-
cient (rho) and its statistical significance in the 21 breeds (by
excluding the 11 breeds included in the FST-outlier selection
tests from the 32 initially selected worldwide old, autochtho-
nous sheep breeds) with a worldwide range of geographic
origins and climates. We computed SNP allele frequencies
in the population using the PLINK program (Purcell et al.
2007). The same statistical tests were also applied between
frequencies of the core haplotypes for the 17 strong candidate
genes and the PC1 values in the 21 populations. We further
examined the distributions of allele frequencies, as well as
their correlation coefficients with PC1, for the 230 candidate
SNPs and 2,000 randomly selected loci from the total SNP set
in the 32 populations.

Supplementary Material
Supplementary material, figures S1–S4, and tables S1–S10 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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