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Over the past decade, major advances have been made in the management of advanced 
non-small cell lung cancer (NSCLC). There has been a particular focus on the identifi-
cation and targeting of putative driver aberrations, which has propelled NSCLC to the 
forefront of precision medicine. Several novel molecularly targeted agents have now 
achieved regulatory approval, while many others are currently in late-phase clinical trial 
testing. These antitumor therapies have significantly impacted the clinical outcomes of 
advanced NSCLC and provided patients with much hope for the future. Despite this, 
multiple deficiencies still exist in our knowledge of this complex disease, and further 
research is urgently required to overcome these critical issues. This review traces the 
path undertaken by the different therapeutics assessed in NSCLC and the impact of 
precision medicine in this disease. We also discuss the areas of “imprecision” that still 
exist in NSCLC and the modern hypothesis-testing studies being conducted to address 
these key challenges.
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iNTRODUCTiON

The management of advanced lung cancer has evolved dramatically over the past two decades. Back 
in the early 1990s, little was done to distinguish between the different histological subgroups of non-
small cell lung cancer (NSCLC), with most trials focused on intensifying chemotherapy regimens 
and establishing the most effective treatments for advanced NSCLC (1), irrespective of histological 
subtype (2–4). Subsequently, subgroup analysis for a large randomized trial revealed critical differ-
ences in survival between patients with squamous and non-squamous histology treated with differ-
ent chemotherapeutic agents (pemetrexed versus gemcitabine, in combination with cisplatin) (5). 
The development of tyrosine kinase inhibitors (TKIs) to epidermal growth factor receptor (EGFR) 
mutated NSCLC heralded the era of precision medicine in lung cancer. This prompted a paradigm 
shift toward the search for molecularly targeted agents against other putative driver aberrations in 
NSCLC and has led to the development of novel therapeutics matched against specific actionable 

Abbreviations: CRUK, cancer research United Kingdom; EGFR, epidermal growth factor receptor; EMA, European medicines 
agency; FDA, food and drug administration; FISH, fluorescent in situ hybridization; IHC, immunohistochemistry; NGS, next 
generation sequencing; NICE, national institute for clinical excellence; NSCLC, non-small cell lung cancer; OS, overall survival; 
PCR, polymerase chain reaction; PFS, progression-free survival; RP2D, recommended phase 2 dose; TKI, tyrosine kinase 
inhibitor; VEGFR, vascular endothelial growth factor receptor.
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FigURe 1 | Oncogenic pathways currently being targeted in non-small cell lung cancer.
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aberrations, such as crizotinib (Pfizer) against ALK and ROS1 
aberrations (6, 7) (Figure 1).

Despite these selected successes in NSCLC and the initial 
promise of individualizing treatments for all patients, the man-
agement of this disease for most remains generally imprecise. 
Current efforts are now focused on the matching of multiple 
actionable drivers with targeted agents in specific disease sub-
groups through large basket and umbrella adaptive trials. This 
article describes the current state of play in the development of 
molecularly targeted therapies for NSCLC and addresses the suc-
cesses, pitfalls, and opportunities of precision medicine in this 
disease.

FOOD AND DRUg ADMiNiSTRATiON 
(FDA)-APPROveD MOLeCULARLY 
TARgeTeD AgeNTS

EGFR Mutations
The initial rationale for targeting EGFR in NSCLC was based on 
the overexpression of EGFR in NSCLC (8) and its association 
with worse survival (9). Initial clinical trials (IDEAL 1 and 2) 
involving the EGFR TKI gefitinib (AstraZeneca) were promis-
ing (10, 11) and led to accelerated FDA approval (12). However, 
after the failure of the drug in a large randomized phase III study 
(ISEL trial) (13), FDA approval for gefitinib was withdrawn. 
Importantly, a subgroup of patients who were non-smokers and/or  

of Asian descent appeared to benefit from the drug. During the 
same period, another EGFR TKI, erlotinib (Roche), showed 
a survival benefit in an unselected population of patients with 
refractory NSCLC (BR.21 trial) (14), which subsequently led to 
FDA approval. Much time and effort was spent on studying EGFR 
alterations, using immunohistochemistry (IHC), gene ampli-
fication, and gene-copy number, with no clear correlation with 
efficacy. Sequencing of receptor tyrosine kinase genes revealed 
somatic mutations in EGFR and only tumors with these mutations 
responded to gefitinib, while wild-type tumors did not respond 
(15). It took another 5 years, before the landmark IPASS trial (16) 
and several other pivotal phase III randomized studies (17, 18) 
demonstrated the importance of EGFR mutations as a critical 
driver in NSCLC, and established EGFR TKIs as the standard-
of-care first-line therapy for this subgroup of patients. Gefitinib 
had FDA approval reinstated for first line, after a phase IV study 
done in the Caucasian EGFR-mutated population demonstrated 
similar responses and survival to randomized studies (19).

Afatinib (Boehringer Ingelheim), a pan-HER family small-
molecule inhibitor, binds irreversibly to EGFR and is considered 
a second-generation EGFR TKI. Phase III trials in Western popu-
lation and the Asian populations (Lux-Lung 3 and Lux-Lung 6)  
demonstrated a progression-free survival (PFS) benefit over 
platinum-based doublet therapy (20, 21). While both trials did 
not demonstrate an overall survival (OS) benefit for afatinib 
over chemotherapy, a combined analysis of both trials revealed 
a statistically significant OS benefit for patients with exon 19 
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mutations in EGFR (22). Afatinib has also been combined with 
cetuximab (Merck), a chimeric monoclonal anti-EGFR antibody 
and has demonstrated promising clinical activity in EGFR-mutant 
NSCLC, albeit at the cost of high rates of diarrhea and skin rash 
(23). Erlotinib and gefitinib have been compared head-to-head 
in two randomized phase III studies and revealed no significant 
differences in response rates and survival, suggesting equivalence 
between the two drugs (24, 25).

Although response to initial therapy with EGFR TKI is 
common, resistance to therapy is invariable and is often due to 
secondary mutations in EGFR and amplification of MET. The 
most common secondary mutation in EGFR is the substitu-
tion of methionine for threonine (T790M) (26). Osimertinib  
(Astra Zeneca), a third-generation EGFR TKI with activity against 
T790M was FDA approved for use in patients with NSCLC EGFR 
mutations, who have progressed on prior EGFR therapy and 
harbor EGFR T790M mutations. In a phase III study, osimertinib 
demonstrated a PFS benefit of 5.7 months over platinum doublet 
therapy (27). The role of afatinib in inhibiting EGFR T790M-
mutant NSCLC still remains unclear in the clinic and is probably 
now academic given the regulatory approval of osimertinib.

ALK Translocations
Inversion of the short arm of chromosome 2 leads to the joining 
of exons 1 to 13 of EML4 and exons 20 to 29 of ALK, resulting 
in the EML4–ALK chimeric protein, which is known to occur in 
approximately 4–7% of NSCLC (28, 29). ALK translocations are 
usually mutually exclusive to EGFR and KRAS mutations (30). 
Crizotinib (Pfizer) was initially developed as a MET inhibitor 
(31), but was also found to be a potent inhibitor of ALK signal 
transduction (32). Compared to EGFR TKIs, ALK-inhibitor tri-
als have been conducted primarily in biomarker-selected studies, 
involving patients with ALK-translocated NSCLC. These early to 
late clinical trials have demonstrated clear survival benefit and 
have since obtained regulatory approval for routine clinical use. 
Crizotinib demonstrated a PFS benefit versus chemotherapy 
(docetaxel or pemetrexed) in patients previously treated with a 
platinum doublet chemotherapy (6). Benefit in a chemotherapy-
naïve population was then subsequently proven in a trial of 
crizotinib versus platinum/pemetrexed (33). OS benefit was not 
demonstrated in either trial, likely due to a cross-over effect. 
Despite initial antitumor responses, resistance to crizotinib in vari-
ably develops, commonly in the gatekeeper mutation L1196M, 
or G1269A and G1202R (34), providing the rationale for the 
development of second-generation ALK-inhibitors.

Ceritinib (Novartis) is 20 times more potent than crizotinib 
and was developed in the clinic in a small, biomarker-driven 
phase I study of ALK-translocated NSCLC, in which 66% of 
patients were previously treated with crizotinib, demonstrating 
excellent response rates of 58% and a PFS of 7 months (35), lead -
ing to FDA approval of the drug after a phase I study (a first  
in the modern oncology era). The efficacy of ceritinib was proven 
further in a phase II study (36), and phase III studies are currently 
ongoing (NCT01828112, NCT01828099). It should be noted 
that while ceritinib has shown activity against the L1196M and 
G1269A resistance mutations, it is ineffective against G1202R 
mutations (35). Brain metastases are common in NSCLC, and are 

often a “sanctuary site” of disease progression for patients on TKI 
therapy. Crizotinib has only modest cerebrospinal fluid penetra-
tion, while another second-generation ALK-inhibitor, alectinib 
(Genentech) has comparatively much improved activity against 
brain metastases (37). Two phase II studies in crizotinib-resistant 
ALK-translocated NSCLC have demonstrated significant response 
and disease control (38, 39). Both were single-arm studies that 
included ALK-translocated NSCLC that that failed crizotinib 
therapy and demonstrated response rates of 50%, leading to FDA 
approval for alectinib. Preliminary data were presented for a first-
line Japanese study (J-ALEX) comparing alectinib with crizotinib 
(40) and suggested an improved PFS for alectinib over crizotinib, 
with better tolerance. Final data from the J-ALEX study as well as 
the ALEX (global) study are awaited.

Lorlatinib (Pfizer) was developed to target the G1202R-
mutated population, which is resistant to crizotinib, ceritinib, 
and alectinib. It has demonstrated antitumor activity in patients 
who have progressed on two or more prior ALK-inhibitors (41). 
Other ALK-inhibitors that are currently in clinical trials include 
brigatinib (Ariad), which also targets G1202R mutations (42) 
and ensartinib (X-396; Xcovery), a potent second-generation 
inhibitor with activity against L1196M and C1156Y mutations 
(43). Other resistance mechanisms to ALK-inhibitors include 
bypass signaling through HER3 and insulin-like growth factor-1 
receptor pathways, and these will probably require combina tion 
strategies to overcome such complex networks of signaling 
resistance (44).

ROS1 Translocations
ROS1 is an insulin receptor family tyrosine kinase with trans-
location aberrations most commonly with CD74, and occurs 
in 1–2% of patients with NSCLC (45). Aberrant ROS1 kinase 
activity leads to downstream signaling of the PI3K and MAPK 
pathways (46). As ROS1 and ALK tyrosine kinase domains have 
a high degree of homology, crizotinib has been shown to also 
inhibit ROS1 effectively (45). Clinical activity in this subgroup of 
patients with crizotinib included response rates of over 70% and 
a median duration of response of 18 months (7, 47), leading to 
FDA approval of crizotinib in this subgroup of patients. Ceritinib 
appears to show clinical activity in ROS1-rearranged NSCLC 
upon progression on crizotinib (48).

Targeted Therapy in NSCLC Not Selected 
for Driver Mutations
Antiangiogenic Agents
High levels of vascular endothelial growth factor expression in 
NSCLC have been associated with a poorer prognosis, providing 
rationale for the use of antiangiogenic agents in this population. 
Several antiangiogenic agents have proven to be effective in the 
management of advanced NSCLC. Bevacizumab (Roche) was the 
first drug to show an OS benefit in combination with carboplatin 
and paclitaxel (E4599 trial) (49) and has been FDA approved for 
use in lung adenocarcinoma. However, there have been other 
negative phase III trials with the addition of bevacizumab to 
chemotherapy in the first line (50). Despite FDA approval, other 
drug approval bodies such as the National Institute for Clinical 
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Excellence in the UK have not approved the use of this regimen 
(51). Ramucirumab (Lilly Oncology), a second-generation recom-
binant human monoclonal antibody targeting the vascular 
endothelial growth factor receptor 2 (VEGFR2), was shown to 
improve OS when combined with docetaxel in the second-line 
setting in NSCLC (52) and is FDA approved for this indication. 
Nintedanib (Boehringer Ingelheim), a multikinase inhibitor 
against VEGFR, PDGFR, and FGFR showed a survival benefit 
in subset analysis in patients with lung adenocarcinoma (53) and 
is now approved for routine use in the United Kingdom. Despite 
much investment spent on the development of these novel antian-
giogenic agents in NSCLC, including several others currently in 
clinical trials, including aflibercept (Sanofi) and bavituximab 
(Peregerine) (54), the discovery of predictive biomarkers of 
response for these inhibitors remains a challenge. Several putative 
predictive biomarkers, including circulating VEGF-A isoform, 
neurophilin-1 expression, and VEGFR-1 expression, have failed 
to predict the antitumor effects of bevacizumab in lung cancer 
and other tumor types (55, 56).

Anti-EGFR Antibodies
There have been mixed results with clinical trials assessing anti-
EGFR antibodies in advanced NSCLC. Cetuximab demonstrated 
an OS benefit of 11.3 months when combined with cisplatin and 
vinorelbine chemotherapy versus 10.1  months with cisplatin 
and vinorelbine (HR 0.87, p = 0.044) in the first-line treatment 
of NSCLC in the FLEX trial (57). However, there was no PFS 
benefit, with both arms reporting a PFS of 4.8  months. This 
study was followed by a negative phase III study (BMS 099 trial) 
(58), when cetuximab was combined with a treatment regimen 
of either carboplatin and paclitaxel chemotherapy or docetaxel. 
Similar to the FLEX study, there was no PFS benefit observed in 
this trial. The OS benefit between the two arms was 9.7 versus 
8.4 months, which was not statistically significant. Interestingly, 
the magnitude of benefit between the FLEX and BMS 099 stud-
ies was similar at around 1.2 months. Based on these data, both 
the FDA and the European Medicines Agency rejected the use 
of cetuximab in the first-line setting for metastatic NSCLC in 
combination with platinum-based chemotherapy, based on the 
lack of PFS benefit and marginal improvement in OS. Apart from 
cetuximab, the second-generation anti-EGFR antibody neciti-
mumab (Lilly Oncology) has been assessed in combination with 
cisplatin and gemcitabine in squamous NSCLC in the SQUIRE 
study (59). The necitimumab combination extended OS modestly 
from 9.9 months to 11.5 months versus cisplatin and gemcitabine 
chemotherapy and has since been approved by the FDA for use in 
first-line squamous NSCLC.

PROMiSiNg TARgeTS iN NSCLC

MeT Aberrations
MET amplification has gained much interest as a putative mecha-
nism of resistance to EGFR TKI therapy. However, MET over-
expression and amplification may also occur de novo in 50% 
(60) and 5% (61) of NSCLC, respectively. Tivantinib (ArQule), 
a small-molecule TKI, was studied in a large randomized phase 

III study (62) in combination with erlotinib, in patients with 
advanced NSCLC who had failed 1–2 lines of standard therapy. 
There was no improvement in OS (8.5 versus 7.8 m, p = 0.81), 
although PFS improved from 1.9 to 3.6 m (p < 0.01). Tivantinib 
was later shown to have cytotoxic activity independent of MET 
inhibition through microtubule disruption, similar to vincristine 
(63, 64). Onartuzumab (Roche), a monoclonal antibody targeting 
MET showed promising results in a phase II study (65), but failed 
to show any benefit in a large randomized phase III study when 
combined with erlotinib, with a median PFS of 2.7 versus 2.6 m on 
both arms of the study (66, 67). This study highlighted the chal-
lenges of selecting patients with truly MET-addicted NSCLC. At 
current time, MET overexpression based on IHC does not appear 
to be sufficiently robust as a predictive biomarker of response 
(68). In contrast, the recent impressive responses observed with 
crizotinib and other MET inhibitors in patients with MET exon 
14 skipping alterations, has renewed interest in the development 
of MET inhibitors in NSCLC (69, 70). MET exon 14 aberrations 
occur in approximately 3–4% of non-squamous NSCLC and are 
hypothesized to decrease MET degradation, transforming it into 
an oncogenic driver (69, 71). Capmatinib (INC280, Novartis), 
a small-molecule inhibitor of MET, has reported responses in a 
case-series in patients with MET exon 14 skipping mutations (69). 
MGCD265 (Glesatinib, Mirati Therapeutics), a small-molecule  
inhibitor of MET and Axl, is being investigated in NSCLC with 
genetic alterations in MET (72). Resistance to MET inhi bition can 
occur through secondary mutations in the MET kinase domain, 
such as D1228N and Y1230C (73, 74). High MET ampli fication 
also appears to be a promising predictive biomarker of response to 
MET inhibitors, with early studies showing antitumor responses 
to crizotinib in this subgroup of patients (75). In order to opti-
mize patient benefit and accelerate the path to drug approval, 
future trials should include molecular profiling designed to detect 
MET-driven NSCLC through MET amplification and exon 14 
skip p ing alterations.

BRAF Mutations
These occur in about 2% of NSCLC, and like KRAS mutations, 
are more common in smokers (76). Similar to melanoma, the 
most common mutation is V600E in exon 15. BRAF inhibitors, 
such as vemurafenib (Genentech), which are approved for use in 
melanoma, have shown to have preliminary clinical activity in 
NSCLC as well (77). Of 20 patients treated, the objective response 
rate was 42%, median PFS was 7.3  months and 12-month OS 
was 66%.

HER2 Mutations
Compared to the more familiar HER2-amplification in breast 
and gastric cancer, HER2 mutations occur in about 1–2% of 
NSCLC, most commonly in exon 20. Trastuzumab (Roche), 
which is standard-of-care for HER2-amplified breast and gastric 
cancers, has failed to robustly demonstrate antitumor activity 
in HER2-mutated NSCLC (78). However, afatinib, an irrevers-
ible small-molecule TKI that inhibits HER1, 2, and 4, has been 
shown to have clinical activity in this subgroup of patients (79). 
Neratinib (Puma), a pan-HER inhibitor was evaluated in combi-
nation with temsirolimus in a phase I study, with two out of six 
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HER2-mutated NSCLC demonstrating a partial response (80).  
A phase II trial evaluating neratinib in HER2-mutated NSCLC is 
currently ongoing (NCT1827267). Dacomitinib (Pfizer), also an 
irreversible pan-HER TKI, demonstrated an overall response of 
12% in HER2-mutant NSCLC in a phase II study (81).

RET Translocation
RET translocation with genes KIF5B, CCDC6, and NCOA4 occurs 
in about 1% of adenocarcinoma NSCLC (82). Cabozantinib 
(Exelixis) a small-molecule inhibitor of RET, MET, AXL, and 
VEGFR2, has shown activity in RET-translocated NSCLC in 
a phase II trial (83). Case reports have also been reported of 
response to vandetanib (AstraZeneca) (84).

Pi3K Pathway Aberrations
PIK3CA mutations have been described in 9% of squamous 
NSCLC (85) and are also postulated to occur as a resistance 
mechanism to EGFR inhibitors (86), while AKT mutations occur 
in about 5% of squamous NSCLC (87). In addition, PTEN loss 
occurs in approximately 20% of squamous NSCLC and 4% of 
lung adenocarcinoma (85). Several trials assessing mTOR, PI3K, 
and AKT inhibitors have been conducted to target this pathway in 
NSCLC. Unfortunately, most of these studies have been conducted 
in biomarker “unselected” populations, leading to negative results. 
Everolimus (Novartis), an inhibitor of mTORC1, had a response 
rate of 4.7%, with significant toxicities, including diarrhea (72%), 
rash (53%), and stomatitis (72%) (88). Another study combining 
everolimus with docetaxel in an unselected population had an 
ORR of 8%, which did not improve on the historical single agent 
response rates of docetaxel (89). Several novel TORC and PI3K 
inhibitors are currently in clinical trials, with early results already 
presented in abstract form. Buparlisib (Novartis) is a pan-PI3K 
inhibitor, which was assessed in a PIK3CA-activated [defined 
as PIK3CA mutation, PTEN mutation, or PTEN loss (less than 
10% protein expression by IHC)] NSCLC population. The study 
reported a modest ORR of 3%, and a 12-week PFS of just 20%, 
leading to early termination of the study (90).

These negative findings have led to much discussion about 
whether such aberrations along the PI3K pathway are bona fide 
“driver” oncogenic mutations or simply “passenger” bystander 
mutations. However, AZD2014 (AstraZeneca), a dual TORC1 
and TORC2 inhibitor, has reported early antitumor activity in 
patients with advanced squamous NSCLC, when combined with 
weekly paclitaxel, including those previously exposed to taxane 
chemotherapy (91). AZD5363, a potent catalytic inhibitor of all 
three isoforms of AKT (AKT1, 2, and 3), has demonstrated single 
agent activity in AKT E17K-mutated lung cancers, which occur in 
about 1% of NSCLC (92).

Targeting the PI3K pathway is more complex than inhibiting 
other pathways, probably because of the complex network of 
signaling pathways, including the disruption of negative feedback 
loops or development of signaling crosstalk with parallel resist-
ance pathways.

FGFR1 Amplification
FGFR1 amplifications are seen almost exclusively in smokers 
and occur in about 25% of squamous NSCLC (93). BGJ398 

(Novartis) is a pan-FGFR inhibitor and was tested in a phase I, 
biomarker-selected dose-escalation study of FGFR1-amplified 
squamous NSCLC, where only 12% achieved partial responses 
(94). AZD4547 (AstraZeneca), a FGFR1–3 inhibitor, was assessed 
in a biomarker-driven group of patients with squamous NSCLC 
with FGFR amplification. Again, only 7% of patients had partial 
responses (95). Several questions have been raised on the validity 
of FGFR amplification being chosen as the predictive biomarker 
for these drugs and if this is indeed a true oncogenic driver (96). 
Importantly, high-level clonal amplification of FGFR2 has been 
shown to have a differentially higher response to AZD4547 in 
gastric cancer (97), and this should now be assessed in lung can-
cer to allow for better patient selection in FGFR inhibitor trials.

KRAS Mutations
KRAS mutations comprise approximately 25% of NSCLC, espe-
cially in smokers (98). Drugging RAS has unfortunately largely 
failed to date (99) and efforts to target the pathway downstream 
of RAS has yielded only modest results. For example, in a trial of 
selumetinib (AstraZeneca) in combination with docetaxel, PFS 
was improved from 2.1 to 5.3 months, and a trend in OS improve-
ment (9.4 versus 5.2 m) was observed (100). In another trial of 
selumetinib with erlotinib, the combination of the two drugs led 
to increased toxicity without any improvement in ORR and PFS 
(101). In addition, the MEK inhibitor trametinib (Novartis) did 
not show any benefit in PFS or ORR when compared to docetaxel 
in KRAS-mutated lung cancer (102). Chemotherapy remains 
the standard-of-care for first-line metastatic KRAS-mutated 
NSCLC. A novel RAF/MEK inhibitor, RO5126766, showed 
promise in a phase I expansion of KRAS-mutated NSCLC with 
preliminary results being recently presented, and mature results 
are awaited (103).

DDR2 Mutations
DDR2 mutations occur in approximately 4% of squamous cell 
NSCLC. DDR2 is a receptor tyrosine kinase that binds to col-
lagen and promotes cellular proliferation. While the main target 
of dasatinib (Bristol-Myers Squibb) is BCR/ABL, it also inhibits 
DDR2 and appears to have early signals of antitumor activity in 
this subgroup of patients (104).

NTRK Translocation
NTRK translocation occurs in <1% of NSCLC and include rear-
rangements in NTRK1, NTRK2, and NTRK3. NTRK activation 
leads to downstream signaling through the MAPK and PI3K 
pathways. Entrectinib (RXDX-101) demonstrated a durable 
response in a patient with NTRK1 gene rearrangement (105) and 
trials investigating this drug are currently on going.

MODeRN PReCiSiON MeDiCiNe TRiAL 
DeSigNS iN NSCLC

One of the main issues to address in NSCLC is that many driver 
aberrations only constitute a small percentage of the entire NSCLC 
population (Figure  2). Traditional registration trial strategies 
involving randomized, placebo-controlled, double-blind phase 
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III clinical trials are, therefore, not optimal approaches and may 
even be considered unethical in view of the placebo control arms. 
Technical issues also arise as the detection of the multiple driver 
mutations are performed on different platforms. For example, 
EGFR mutations are usually detected by real-time polymerase 
chain reaction, while ALK rearrangements are detected by IHC 
and/or fluorescent in situ hybridization. Currently, a large number 
of driver aberrations in NSCLC can be assessed using large mul-
tiplexed next-generation sequencing (NGS) platforms. These are 
now increasingly being incorporated into clinical trials and daily 
clinical practice (106). Such an approach involving multiple NGS 
platforms abrogates issues associated with screening patients for 
“low frequency” genetic aberrations, especially if they are directly 
linked to a master protocol adaptive clinical trial. Umbrella tri-
als assess multiple pre-specified genetic aberrations using NGS 
or other platforms and are matched to targeted agents, usually 
involving specific tumor types. Basket trials involve patients with 
a single or family of genetic abnormalities and are matched to 
targeted therapies, regardless of tumor origin (Table 1).

Umbrella Trials
BATTLE-2 Study
A Biomarker-Integrated Targeted Therapy Study in Previously 
Treated Patients with Advanced NSCLC (BATTLE-2) included 
patients with advanced NSCLC without sensitizing EGFR muta-
tions and ALK fusion genes that progressed on at least one line of 

standard therapy (107). Two hundred patients were randomized 
into four arms: erlotinib, erlotinib + MK-2206 (AKT inhibitor; 
Merck), MK-2206 + selumetinib (MEK inhibitor), or sorafenib 
(Bayer), stratified for KRAS-mutation status. The median 
PFS was 2 months (95% CI, 1.9–2.8 months), median OS was 
6.5 months (95% CI, 5.1–7.6 months), and 1-year survival was 
28%. Only six partial responses and no complete responses were 
observed in this cohort of patients with a median of three prior 
lines of therapy. Importantly, there was no significant difference 
in PFS or OS between the different arms. Of note, KRAS-
mutated patients had an improved PFS in the arms involving 
MK-2206 + selumetinib and sorafenib when compared with the 
erlotinib-containing arms.

Lung-MAP
A Biomarker-Driven Master Protocol for Previously Treated 
Squamous Cell Lung Cancer (Lung-MAP) is a study conducted 
in patients with squamous NSCLC, after developing disease pro-
gression on first-line platinum doublet therapy (NCT02154490) 
(108). Mandatory archival or fresh tumor biopsy samples must be 
provided for biomarker testing, which includes an NGS panel of 
over 200 genes (Foundation Medicine) and IHC for patient allo-
cation to different rational therapies. Five different arms targeting 
PD-L1, PI3K, CDK4/6, FGFR, and c-Met pathways, involve the 
investigational agents durvalumab (AstraZeneca), taselisib 
(Genentech), palbociclib (Pfizer), AZD4547, and rilotumumab 
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TAbLe 1 | Modern precision medicine trials in NSCLC.

Trial name Precision medicine 
trial type

investigational agent and target if known inclusion criteria Target 
recruitment (n)

Sponsor/
country

NCT identifier

BATTLE-2

Biomarker-integrated 
targeted therapy 
study

Umbrella Phase II Group 1: erlotinib
Group 2: erlotinib + MK-2206
Group 3: AZD6244 + MK-2206
Group 4: sorafenib

Stage IIIB or IV NSCLC 
progressed on first-line 
treatment

334 MD Anderson 
Cancer Centre, 
USA

NCT01248247

S1400 Lung-MAP

Lung cancer  
master protocol

Umbrella Phase II/III MEDI4736 (durvalumab): no active drug-biomarker option Recurrent advanced, stage IV 
squamous NSCLC

10,000 SWOG/NCI, 
USA

NCT02154490
AZD4547: FGFR1, FGFR2, FGFR3
Erlotinib ± rilotumumab: HGF/c-MET
Nivolumab ± ipilimumab: no active drug-biomarker option
Palbociclib: CDK4/6, CCND1, 2, and 3
Taselisib: PI3KCA expression
All arms are randomized to biological agent or docetaxel

MATCH

Molecular analysis  
for therapy choice

Basket Phase II Afatinib: HER2; EGFR mut Solid tumors and lymphoma 
post progression on standard 
therapy

3,000 NCI, USA NCT02465060
AKT inhibitor AZD5363: Akt mut
Binimetinib: NRAS mut in codon 12, 13, or 61
Crizotinib: MET amp/exon 14 del; ALK trans; ROS1 trans/inv
Dabrafenib (+trametinib): BRAF V600
Dasatinib: DDR2 S768R, I638F, or L239R mut
Defactinib: NF2 inactivating mut
FGFR inhibitor AZD4547: FGFR1–3 amp, mut, or trans
Nivolumab: mismatch repair deficiency
Osimertinib (AZD9291): EGFR T790M
Palbociclib: CCND1, 2, or 3 amp + Rb expression by immunohistochemistry
PI3Kbeta inhibitor GSK2636771: PTEN mut, del, expression, loss
Sunitinib maleate: cKIT exon 9,11,13, or 14 mut
Taselisib: PTEN loss; PI3K mut or amp without RAS mut
Trametinib: BRAF V600 (with dabrafenib); BRAF fusion or non-V600; NF1 mut;  
GNAQ or GNA11 mut
Trastuzumab emtansine: HER2 amp
Vismodegib: SMO or PTCH1 mutation

MPACT

Molecular profiling-
based assignment  
of cancer therapy

Basket Phase II Everolimus: PI3K pathway defect Advanced solid tumors 700 NCI, USA NCT01827384
MK-1775 (Wee1 inhibitor) + carboplatin: DNA pathway repair defects
Temozolomide + veliparib (ABT-888; PARP inhibitor): DNA repair pathway defects
Trametinib DMSO: Ras/Raf/Mek pathway mut

National lung  
matrix trial

Umbrella Phase II AZD4547 (FGFR inhibitor) Stage IIIB or IV NSCLC 620 University of 
Birmingham, 
UK

NCT02664935
AZD2014 (MTORC1/2 inhibitor)
AZD5363 (AKT inhibitor)
AZD9291 (EGFRm + T790M + inhibitor)
Crizotinib (ALK/MET/ROS1 inhibitor)
MEDI4736 (anti-PDL1)
Palbociclib (CDK4/6 inhibitor)
Selumetinib (MEK inhibitor) + doectaxel

(Continued)
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(Amgen) + erlotinib, respectively, with a standard arm of doc-
etaxel chemotherapy. After results of rilotumumab in gastric can-
cer showed poor efficacy and increased toxicities, the sub-study 
of Lung-MAP with rilotumumab + erlotinib was withdrawn. All 
sub-studies included 1:1 randomization to investigational agent 
or docetaxel. This study is currently recruiting, and the expected 
accrual is 10,000 patients across the United States.

MATRIX Trial
The National Lung Matrix trial is non-randomized multi-arm 
study in the United Kingdom sponsored by University of 
Birmingham and Cancer Research UK (NCT02664935) (109). 
This study involved eight investigational arms—AZD5363 (AKT 
inhibitor), AZD 4547 (FGFR inhibitor), AZD2014 (mTORC1/2 
inhibitor), palbocilib (CDK4/6 inhibitor; Pfizer), crizotinib, 
AZD9291 (third-generation EGFR inhibitor), selumetinib (MEK 
inhibitor) + docetaxel, and durvalumab (anti PD-L1 monoclonal 
antibody). Biomarker testing involves a multiplex NGS panel 
(Illumina) that includes various actionable mutations, which 
determines the allocation of patients to the appropriate investi-
gational arms.

basket Trials
One of the first basket studies reported was in non-melanoma 
patients with BRAF V600 mutations treated with vemurafenib 
(77). The results of the NSCLC cohort of this study have been 
described in a previous section of this article.

MATCH Trial
The NCI Molecular Analysis for Therapy Choice (MATCH) 
trial (NCT02465060) is a study that utilizes somatic genomic 
screening to assign patients with specific molecular aberrations 
to matched targeted therapy, regardless of the primary tumor site 
(110). This study is coordinated by the ECOG-ACRIN Cancer 
Research Group and involves 1,059 sites across the United States 
with a target recruitment of 3,000 patients. All patients must have 
advanced solid tumors refractory to standard therapy, undergo 
a mandatory fresh biopsy prior to enrolling onto the study, and 
to undergo a biopsy upon progression of disease. The molecular 
profiling assays include a targeted Ampliseq panel of 143 genes 
and other assays, such as IHC. The latest protocol involves 24 
arms and includes agents, which have either attained FDA 
approval or completed trials to achieve recommended phase 2 
dose (RP2D). FDA-approved drug arms include afatinib, crizo-
tinib, osimertinib, dabrafenib (Novartis), trametinib (Novartis), 
ado-trastuzumab emtansine (Roche), vismodegib (Genentech), 
sunitinib (Pfizer), dasatinib, palbocilib, and nivolumab (Bristol-
Myers Squibb). Other investigational drugs include taselisib 
(PI3K inhibitor), GSK2636771 (PI3K inhibitor; Glaxo-Smith 
Kline), defactinib (FAK inhibitor; Verastem), AZD4547 (FGFR 
inhibitor), AZD5363 (AKT inhibitor), and binimetinib (MEK 
inhibitor; Array Biopharma).

Molecular Profiling-Based Assignment of Cancer 
Therapy (MPACT) Trial
The MPACT study (NCT01827384), which is sponsored by the 
NCI aims to recruit 700 patients across three sites in the United 
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States. Similar to the MATCH study, patients with advanced 
cancers, including NSCLC refractory to standard therapy will 
undergo a fresh biopsy to identify mutations in one of three path-
ways—MAPK, PI3K, or DNA repair. Patients with no identifiable 
mutations will be excluded from the study. The four treatment 
arms comprise veliparib (PARP inhibitor; Abbvie) + temozolo-
mide, AZD-1775 (Wee1 inhibitor; Astra Zeneca) + carboplatin, 
everolimus (mTOR inhibitor), and trametinib (MEK inhibitor). 
The major difference between MATCH and MPACT is that 
patients in MPACT are randomized in a 2:1 fashion to either a 
“matched” arm or another arm based on their biomarker analysis. 
Biomarker analysis is performed on a 20-gene panel, and an 
informatics system, GeneMed, assists in streamlining the annota-
tion of sequencing data, facilitating review of variant mutations, 
and identifying actionable mutations (110).

TAPUR Trial
Testing the Use of FDA-Approved Drugs That Target a Specific 
Abnormality in a Tumor Gene in People with Advanced Stage 
Cancer (TAPUR) is a trial sponsored by the American Society 
of Clinical Oncology with a plan to enroll 1,030 patients with 
advanced solid tumors refractory to standard therapy. All patients 
will need to harbor at least one somatic genomic variant that can 
be targeted by one of the drugs in the 15 arms of the study.

COMbiNATiON TReATMeNT STRATegieS 
AND PReCiSiON MeDiCiNe

Combining various anticancer agents with different mechanisms 
of action and minimal overlapping toxicities has been a principle 
applied to the management of NSCLC with varying degrees 
of success. In the chemotherapy era, the addition of platinum 
chemotherapy to other agents showed clear benefit of combina-
tion therapy (111). However, there was a limit to the number of 
chemotherapeutic agents that could be combined simultaneously, 
with triplet therapies not showing an incremental benefit over 
doublet regimens due to increasing toxicity (112). Combination 
regimen with targeted agents has innumerable permutations and 
is an area of active research, with many trials being conducted. 
A major challenge with combination targeted therapy has been 
synergistic toxicity, particularly involving horizontal blockade of 
parallel signaling pathways. These toxicities prevent dose escala-
tion of drugs to single agent RP2Ds, leading to subtherapeutic 
doses and lack of target modulation due to poor pharmacokinetic 
exposures. While a few positive trials have emerged, many more 
studies have been negative (113).

Combination Therapy with egFR inhibitors
During the early development of EGFR inhibitors, four large ran-
domized phase III trials were conducted combining erlotinib and 
gefitinib with first-line chemotherapy in unselected patients with 
NSCLC. All these combination trials failed to show a survival 
benefit and were associated with increased toxicities (114–117). 
Intercalated erlotinib and chemotherapy (platinum given on day 
1, gemcitabine on day 1 and 8, and erlotinib day 15–28) showed 
an OS benefit of 3.1  months (18.3 versus 15.2  months) in the 

FAST-ACT2 study in an unselected population, but subgroup 
analysis demonstrated that the benefit was only in the EGFR-
mutated population (118). The combination of pemetrexed and 
gefitinib has demonstrated a PFS benefit of 4.9  months (15.8 
versus 10.9 months) in a phase II study of EGFR-mutated NSCLC 
(119). Combining chemotherapy upon progression on EGFR 
TKI therapy also did not demonstrate a benefit in the phase III 
IMPRESS trial (120). Combination of bevacizumab with erlotinib 
in an EGFR-mutated population demonstrated a PFS benefit of 
6.3 months (16 versus 9.7 months), with OS data pending (121). 
The rational combination of cetuximab and afatinib appear to 
combine with favorable response rates, albeit with higher toxicity 
(23). The insulin growth factor-1 receptor monoclonal antibody 
figitumumab (Pfizer) did not demonstrate a survival benefit 
and also had significantly higher toxicities when combined with 
erlotinib (122).

iMMUNe CHeCKPOiNT iNHibiTiON  
AND PReCiSiON MeDiCiNe

Immune checkpoint inhibition has transformed the current 
management landscape of NSCLC and the incorporation of this 
group of agents into NSCLC management is rapidly evolving. 
Pembrolizumab (Merck), nivolumab (Bristol-Myers Squibb), 
and atezolizumab (Roche) have been FDA approved for use 
in NSCLC. It is beyond the scope of this review to discuss 
immunotherapeutic strategies in detail. Cumulative data suggest 
PD-L1 expressing tumors benefit from both PD-1 and PD-L1 
antibodies. However, several uncertainties exist, including the 
definition of PD-L1 positivity and variation in results observed 
between PD-L1 IHC assays used by different pharmaceutical 
companies. Currently, nivolumab is FDA approved for use in the 
second-line treatment of NSCLC after failure of platinum doublet 
therapy without biomarker selection, while pembrolizumab is 
FDA-approved for use in the first-line setting for tumors that 
express PD-L1 in at least 50% of cells. This in itself highlights the 
discrepancies in current clinical practice in the management of 
NSCLC with PD-1 inhibitors. The debate surrounding biomarker 
selection for immunotherapies rages on, with other novel promis-
ing predictive biomarkers of response emerging (123).

CONCLUSiON

The management of advanced NSCLC continues to evolve due 
to rapid recent advances made in precision medicine. The ulti-
mate goal remains the identification of molecular subgroups of 
patients with driver aberrations who may benefit from molecu-
larly targeted therapies that provide long-term control of NSCLC 
with minimal toxicities. It is now clear that there is unlikely to 
be a single “magic bullet” for NSCLC, and there is still a large 
proportion of patients with unknown or complex multiple driv-
ers, and those harboring known driver aberrations, which are 
currently still not druggable. Moving forward, we will need to 
focus on innovative biomarker-driven trial designs with greater 
collaborations between academic and industry partners. There is, 
therefore, still much work to be done before we can truly achieve 
precision medicine in NSCLC.
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