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Abstract

Quantifying the distributions of disease risk in space and time jointly is a key element for understanding spatio-temporal
phenomena while also having the potential to enhance our understanding of epidemiologic trajectories. However, most
studies to date have neglected time dimension and focus instead on the ‘‘average’’ spatial pattern of disease risk, thereby
masking time trajectories of disease risk. In this study we propose a new idea titled ‘‘spatio-temporal kernel density
estimation (stKDE)’’ that employs hybrid kernel (i.e., weight) functions to evaluate the spatio-temporal disease risks. This
approach not only can make full use of sample data but also ‘‘borrows’’ information in a particular manner from
neighboring points both in space and time via appropriate choice of kernel functions. Monte Carlo simulations show that
the proposed method performs substantially better than the traditional (i.e., frequency-based) kernel density estimation
(trKDE) which has been used in applied settings while two illustrative examples demonstrate that the proposed approach
can yield superior results compared to the popular trKDE approach. In addition, there exist various possibilities for
improving and extending this method.
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Introduction

Modern epidemiology is founded on spatial analysis that can be

traced back to the classical paradigm of John Snow’s work on

cholera in the middle of nineteenth century [1]. However, only in

the past two decades have advances in geographic information

systems (GIS) and in statistical methods for analyzing spatially-

referenced health data allowed epidemiologists to re-evaluate

spatial epidemiology from the perspective of visualizing the

trajectory of disease risk across space and time [2]. Among others,

the kernel density estimation (KDE) based spatial relative risk

function (sRRF) have attracted much attention because of its

flexibility in applications and its minimal assumptions regarding

the underlying data structure [3]. In 1990, Bithell first introduced

the method of kernel density ratio between cases and controls into

the field of epidemiology for describing the spatial relative risks

[4,5]. Kelsall and Diggle further developed the 1-dimensional case

[6] and also extended it to the 2-dimensional spatial settings [7].

More recently, the ratio of adaptive kernel density estimation has

been proposed to depict the spatial variation of disease risk [8,9].

In addition to the theoretical development, there have been many

successful applications of sRRF in human and veterinary

epidemiology. For example, Sabel et al. studied the spatial pattern

of motor neurone disease risk in Finland [10], Prince et al.

examined the geographic risk of primary biliary cirrhosis in a

region of north-east England [11], Wheeler detected the childhood

leukemia clustering and clusters in the US state of Ohio [12],

Berke generated the relative risk maps of pseudorabies-seropositive

(Aujeszky’s disease) pig herds in an animal-dense region of

Germany [13], while Zhang et al. assessed the schistosomiasis risk

in a region of Anhui province in China [3]. Nowadays, spatial

epidemiology is increasingly being used to assess disease risk, but

the patterns of disease risk tend to have both spatial and temporal

components [14]. The risk pattern in discrete time dimension has

always been neglected [2].

In recent years, there has been a growing interest in integrating

temporal information in GIS, while advances in computing

technologies have made it possible to implement many of the

new concepts developed to address temporal problems [15]. This

has led to the increasing availability of spatio-temporal disease

data sets where the risk patterns in space and time need to be

considered simultaneously [16,17]. The above mentioned KDE-

based idea is well-suited for such problem. It is obvious that spatio-

temporal data are mixed variable types comprised of continuous

spatial variables and an ordered categorical time variable.

Unfortunately, the conventional KDE presumes that the under-

lying variable is continuous in nature, and a widely used approach

in such settings is the traditional ‘‘frequency’’ based KDE (trKDE)

[7,9,10]. trKDE first splits the samples into subsets, one for each

realization of the time variable so that each subset contains only
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the continuous spatial variables, and then traditional kernel

estimation is conducted for each subset. Though statistically

consistent, one may often encounter sparse subsets containing

insufficient data to deliver accurate nonparametric density

estimates [18].

This paper introduces spatio-temporal kernel density estimation

(stKDE) based on the concept of ‘‘generalized product kernels’’.

Ttraditional product kernels only allows the variables with the

same data types, while this ‘‘generalized product kernels’’ relax this

constraint by allowing different data types. Rather than breaking

related data into subsets and modeling the density of continuous

variable only, this approach models the full (i.e. joint) spatio-

temporal density and smooth the ordered time variable in an

appropriate way. Monte Carlo simulations and two epidemiolog-

ical examples were first provided to assess the method that is used

to determining the spatio-temporal variation in disease risks.

Materials and Methods

2.1 Spatio-temporal kernel density estimation (stKDE)
Let s[R2 represents the continuous variables of spatial coordi-

nates, and t[D denotes time as an ordered discrete variable. Let si,m

be the mth component of si and let k(:) be a univariate kernel

function for continuous data (e.g. Epanechnikov), the traditional

product kernel Ks(:) for the continuous spatial variables is [19],

Ks(s; h)~ P
2

m~1

1

hm

k
si,m{sm

hm

� �
ð1Þ

Where hm represent the smoothing parameters or bandwidths for

spatial coordinates x/y; i = 1,2,…n mean the corresponding study

participants (cases or controls) and m = 1,2 are the spatial variables

of x/y coordinates.

Let Kt(:) indicate the univariate kernel of the ordered time

variable t. Wang and van Ryzin’s method of constructing the

kernel to reflect the ordinals of variable was adopted here and is

given by [20],

Kt(t; l)~

1{l if Ti~t

1{l

2
ljTi{tj if Ti=t

8<
: ð2Þ

Where l represents the smoothing parameter of this ordered

kernel.

Then the generalized spatio-temporal product kernel Kst(:) for

two continuous and one ordered variable is defined as follows

[21,22],

Kst(:)~Ks(:)|Kt(:) ð3Þ

Where Ks(:) and Kt(:) are from equations (1) and (2), respectively.

More mathematical and theoretical details on the properties of

generalized product kernels can be found in our previous reports

[21–26].

Based on the above generalized product kernel, the method of

trKDE can be logically extended to stKDE by treating the spatio-

temporal data as mixed variable types using formula (4),

f (st; h,l)~
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Theoretical underpinnings for this estimator can be found in Text

S1 or [21].

It is well known that for kernel-based estimators, selecting an

appropriate bandwidth is a key element of sound estimation. In

this study, the likelihood cross-validation (CV) was used to select

the smoothing parameter h, which has been extensively recom-

mended in the trKDE settings [27,28]. Likelihood cross validation

is a fully automatic and data-driven method and involves choosing

those bandwidths that maximize the following formula [22]

ln L~
Xn

i~1

ln f{i

^
(st; h,l) ð5Þ

Where f̂f{i(st; h,l) is the leave-one-out kernel estimator of stKDE

in equation (4). It has been shown that this method of bandwidth

selection is optimal in the Kullback-Leibler sense.

2.2 Spatio-temporal relative risk function (stRRF) and
significance test

Next, suppose we have a dataset consist of two sets of points

xi,t:i = 1,2,…n1 (cases), and yj,t:j = 1,2,…n2 (controls) on a two

dimensional region R2 observed for several time periods

(t = 1,2,…,l). Following Bithell’s raw idea of a relative risk function

(RRF) [5], the stRRF r(xst) can be generated in equation (6) by

simply taking the ratio of case and control stKDE in equation (4),

r(xst)~
fcase(st; h,l)

gcontrol(st; h,l)
ð6Þ

To mitigate scaling problems that might arise in the presence of

extreme values and to improve symmetry, the logarithms of r(xst)
have been proposed [6,7], and to reduce possible errors that might

arise when the density approaches zero, a stabilization constant is

also advocated [5] (d~10{12 was used here). Hence the stRRF is

defined as follows,

r(xst)~ln r(xst)~ln
fcase(st; h,l)zd

gcontrol(st; h,l)zd
ð7Þ

Where fcase(st; h,l) and gcontrol(st; h,l) denote case and control

stKDE, respectively, which are obtained by equation (4). r(xst)
from equation (7) based on the collected cases and controls is

actually an observed risk which we denote r̂r0(xst). In order to

assess the statistical significance of local peaks and troughs and also

prevent over-interpretations of false positive results, we adopt the

use of point-wise tolerance contours. In essence, under the null

hypothesis of no spatial-temporal variations of disease risk, the

cases and controls are drawn from a common distribution. There

we randomly split the data into two groups of simulated cases n1

and controls n2, and then randomly reallocate the simulated cases

and controls into each time cell based on its original sample size to

thereby generate a simulated spatio-temporal data set under the

null hypothesis of no spatio-temporal variation. Then, we can

construct the simulated stRRF as before. Using this randomization

mechanism we can repeat this process a number of times via

Monte Carlo simulations. After performing this simulations M

times, for each point we obtain a sorted series of simulated risk

values (r̂r1(xst), r̂r2(xst), …, r̂rM (xst)) drawn under the null, then the

p value for each position can be calculated using the formula,

p~(mz1)=(Mz1) (8) (m is rank of r̂r0(xst) among all the

simulated risk values) and p-value surface for the study area in each

time can be obtained accordingly. The 2.5% and 97.5% contours

Nonparametric Evaluation of Dynamic Disease Risk

PLoS ONE | www.plosone.org 2 March 2011 | Volume 6 | Issue 3 | e17381



from this p-value surface can be further extracted and overlaid on

the map of r̂r0(xst) to highlight the regions with significantly low

and high risks for a two-sided statistical test. For one-sided test, the

5% or 95% contour is used to detect the significance of low or high

risks, respectively. This is the so-called approach of 95% point-

wise tolerance contours. More details can be found in previous

work [3,6–8,29].

2.3 Monte Carlo simulations
To investigate the performance of our proposed stKDE

approach in finite-sample settings, four simulation studies were

conducted. For each simulation, the samples were first randomly

generated from the 3-dimensional multivariate normal distribution

whose parameters were summarized in Table 1 and then one of

the variables was converted into an ordinal categorical variable.

This categorical variable and the other two untransformed

continuous variables were used to simulate a spatio-temporal

dataset with mixed variable types. Eight different sample sizes

were used, 50,100,150,200,300,600,900 and 1200; three different

levels of 2, 4 and 6 for the ordered variables were simulated. So

there are 96 combinations in all, and 100 Monte Carlo replications

were conducted for each combination.

Smoothing parameters were selected via likelihood cross

validation using a conjugate gradient search algorithm to avoid

local maxima and minima, and second-order Gaussian kernel for

the continuous variables [30] and Wang and van Ryzin’s kernel

for ordinal variable were used to calculate the stKDE as defined

above [20]. For the purpose of comparison, the trKDE was also

calculated by dividing the samples into different subsets based on

the levels of the ordered variable, and then trKDE was applied in

each separate time level (subset). Mean integrated square error

(MISE) was adopted to assess their performance and was

computed via E
Ð n

i~1
f̂f (st){f (st)
h i2

dst

� �
for stKDE and

Pt
l~1

E
Ð n0

i~1
f̂f (sl){f (sl)
h i2

dsl

� �
for trKDE (n and n’ mean the

total sample size and the individual sample size of each time level,

respectively). Grouped box plots were generated to summarize the

MISE of stKDE and trKDE, respectively.

2.4 Epidemiological examples
Two epidemiological examples were analyzed to demonstrate

the value added by the proposed approach in applied settings

through stKDE-based stRRF and 95% pointwise tolerance

contours. One dataset is on Burkitt’s lymphoma in Uganda and

another considers schistosomiasis in China.

Burkitt’s lymphoma is a common cancer in eastern Africa and

has attracted epidemiological attentions for many years [31]. This

dataset used in this study is comprised of 188 cases of Burkitt’s

lymphoma in the Western Nile district of Uganda for the period of

1961–1975. Accompanying the cases, the onset date of the disease

and transformed spatial coordinates of numeric grid easting X and

northing Y for confidential reasons were also available. So a

spatio-temporal dataset with three variables of the onset year of

disease (YEAR) and spatial locations (X and Y) could be built

[32,33]. But no controls were obtainable. To account for the

population-at-risk distribution, the same sample size of controls as

that of cases were randomly selected in that region which was

assumed to represent the distribution of population at risk and the

same controls were used in different years by assuming the at risk

population were stable during the study period.

Schistosomiasis japonica is one of the most important parasitic

diseases and has significant public health and socioeconomic

impacts in China [34]. The schistosomiasis data set was from our

previous studies in the Guichi region of Anhui province in China.

All the acute schistosomiasis cases among permanent residents of

that region from 2001–2006 were collected and the same sample

size of controls were obtained by the probability proportion to size

sampling approach that represent the underlying at-risk popula-

tion distribution that gave rise to the cases [3,35,36]. All the spatial

positions for cases and controls were obtained by the hand-held

global positioning system (GPS) and the years the cases occurred

were also retrieved from the raw records to establish the spatio-

temporal dataset. The same controls were used in different years

with an assumption that the at risk population were stable during

the study period.

Both stKDE- and trKDE-based relative risk functions were used

to analyze these two examples and 95% pointwise contour lines

were added to the risk maps to highlight the statistically significant

‘‘peak’’ regions.

Results

3.1 Simulation results on comparisons of stKDE and
trKDE

The simulation results are displayed with grouped box plots in

Figure 1. The actual MISE values are available upon request.

Figure 1 shows that stKDE consistently outperforms trKDE for all

combinations of different levels of ordered variable and sample

sizes given its smaller finite-sample MISE. And its performance

improves as the number of levels for the ordered variable

increases, that is, the ordered trait of the categorical variable

becomes more pronounced. For the sample sizes considered, the

MISE of trKDE tends to decrease for a given level of the ordered

variable as the sample size increases as one would naturally expect

(both approaches are consistent, stKDE is more efficient).

Furthermore, if we examine variation in MISE (say, by the

inter-quartile range i.e. the length of the ‘‘box’’ in the boxplot),

stKDE has an obvious narrower variation than trKDE that shrinks

with the augmented number of levels of the ordered variable.

Naturally, this variation decreases as the sample size increases for

both stKDE and trKDE.

Besides, we observe that the results of simulation 1 and 3 (group1)

are similar, while simulation 2 and 4 (group2) are similar for both

stKDE and trKDE. And group 2 (shifted distributions) performs

slightly better than that of group 1 (identical distributions). For

individual MISE in groups 1 and 2, both stKDE and trKDE

perform slightly worse for the dependent simulations 3 and 4 than

independent simulations 1 and 2, respectively, as one would expect.

This means the distribution properties and data dependence can

influence the performance of stKDE and trKDE, but the overall

influence on stKDE seems to be weaker than that on trKDE.

Table 1. Distribution parameters of four simulations.

Simulation Distribution
Mean
vector Covariance

1 Independent identical
distribution

0,0,0 1,0,0/0,1,0/0,0,1

2 Independent shifted
distribution

0,1,2 1,0,0/0,2,0/0,0,3

3 Dependent identical
distribution

0,0,0 1,.5,.7/.5,1,.8/.7,.8,1

4 Dependent shifted
distribution

0,1,2 1,.5,.7/.5,2,.8/.7,.8,3

doi:10.1371/journal.pone.0017381.t001
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3.2 Epidemiological examples
The numbers of Burkitt’s lymphoma cases from 1961 to 1975 are 5,

4, 6, 12, 8, 20, 11, 12, 14, 15, 21, 15, 22, 5 and 18, respectively. Clearly,

this is the case where data in each period are sparse, hence we would

expect that modeling the joint distribution of the spatial and temporal

variables would be immediately apparent. From the stKDE results

displayed in Figure 2, we have the following three major observations.

Firstly, there is a significantly high risk region in northwest of the study

area which is stable among all the 15 years. Secondly, in the southern

part and southeastern part, two significantly high risk regions can be

seen intermittently, but disappeared after 1972. Finally, the overall risk

in the study area seemed to increase gradually and reached a peak

during 1966–1970 and then gradually decreases. While the results of

trKDE are quite tenuous as expected, see Figure S1 for the plot.

The numbers of schistosomiasis cases from 2001 to 2006 are 13,

23, 13, 14, 14 and 6, respectively [36], and again the scarcity of

Figure 1. Grouped box plots of MISE for simulations of stKDE and trKDE. Box-whisker plots of MISE for different sample sizes and factor
levels of ordered variable were grouped together for a clear comparison. The middle bold band inside the box is the 50th percentiles or median; the
bottom and top of the box are the 25th and 75th percentiles, that is, the lower and upper quartiles, respectively. The whiskers in the bottom and top
are the values of 1.5 inter-quartile range (IQR) times the lower and upper quartiles. The y-axis represents the MISE and the x-axis is the sample sizes
for three different levels of ordered time variable, which are 2, 4 and 6 levels in turn from left to right.
doi:10.1371/journal.pone.0017381.g001
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data for each time period is obvious. From the stKDE results in

Figure 3, four significantly high risk regions consistently appeared

including two large regions in northeast and southwest, and two

small regions in northeast and southwest. The former two regions

are more stable in the study period of six years both in size and

shapes, which may prompt that the risk factors in those regions are

steady. The latter two regions are more variable, suggesting that

the risk factors in these regions are dynamic. Hence, different

control strategy might be warranted. Similar to the Burkitt’s

lymphoma example, the results of trKDE for schistosomiasis are

also quite tenuous; see Figure S2 for the resulting plot.

Discussion

Spatial epidemiology can be used to investigate the spatial

distribution of diseases for detecting and highlighting areas with

elevated disease risk, and to examine ecological risk factors for disease

transmission. This is helpful in making rational disease control

strategies and for effective allocation of resources [3,37]. Most studies

consider data aggregated over a period of time and therefore provide

the average spatial pattern of disease risk over the analyzed period, so

cannot reflect the time pattern of disease risk [2]. However,

quantifying the distributions of disease risk in space and time is

important for understanding spatio-temporal phenomena (e.g.

disease occurrence and its dynamics) [1]. Uncovering the full

spatio-temporal profiles of disease risks may considerably strengthen

the epidemiologic interpretations in the following three aspects [2]:

depicting the changes of overall disease risks; pinpointing the stable

high-risk regions throughout the whole period where potential risk

factors are relatively fixed; and identifying unstable high-risk regions

over time where there is substantial variability for the patterns of

disease risk, which may prompt that potential risk factors are more

variable. These results are useful for decision-makers to develop

control strategies for different types of risk regions.

Figure 2. Spatio-temporal relative risk surface showing the risk changes of Burkitt’s lymphoma in the Western Nile district of
Uganda from 1961–1975. The degree of risk is denoted by the shade of gray with black shading representing the highest risk and the white the
least risk. The solid contour lines delineate the significant high risk regions.
doi:10.1371/journal.pone.0017381.g002
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Kernel density estimation (KDE) provides a simple and flexible

way of modeling data and has become an important nonparametric

approach toward estimating distribution pattern of disease risk

[3,38,39]. There is an important limitation, however, that the

traditional KDE can only deal with continuous data. This study

proposed a new idea of using so-called generalized product kernels to

construct the stKDE to deal with spatio-temporal data of mixed data

types. Through Monte Carlo simulations, we demonstrate that the

proposed stKDE has a smaller MISE and narrower variation

compared with trKDE under all the combinations considered.

Appreciable improvements in finite-sample performance increase as

the number of time periods increases. By analyzing two epidemio-

logical examples using stKDE-based RRF, we further demonstrate

that the efficacy of the proposed approach is satisfactory because

stKDE not only makes use of the full sample rather than resort to

sample splitting [18] but also borrow information from neighboring

points in spaces and adjacent times periods, thus producing more

stable estimation [14]. For the Burkitt’s lymphoma data, Bailey and

Gatrell used the k-function based approach to analyze this data set

and concluded that significant space-time clustering existed [32]. Our

proposed approach is from local cluster’s perspective and it can

further provide visual summaries on disease high-risk regions, its

significance and dynamic changes. Since there were no controls

available for the raw dataset, the results relied on the representative-

ness of selected controls. The purpose of this example was to show

that our method can also be used jointly with sampling techniques

which is important for epidemiological studies. For the data of

schistosomiasis, the selected controls were reasonably representatives

of the population at risk. In addition to the previous analyses [3,35],

the time information was included in the present analysis. Spatio-

temporal pattern of disease risk will help to further characterize the

spatial high risk regions that are stable or not over time [2].

Our proposed stKDE has three advantages. Firstly, as a

nonparametric method, it places modest assumptions on the data

structure. Secondly, it can handle the case involving mixed data

types which is not possible for trKDE. Also, the basic idea of

generalized product kernels can be easily extended to other more

complicated situations of mixed data types such as mixtures of

continuous, ordered and unordered categorical variables. Finally,

it is simple to construct the stRRF for evaluating disease risk under

Figure 3. Spatio-temporal relative risk surface depicting the dynamic changes of schistosomiasis risk in the Guichi region of China
from 2001–2006. The degree of risk is denoted by the shade of gray with black shading representing the highest risk and the white the least risk.
The solid contour lines delineate the significant high risk regions.
doi:10.1371/journal.pone.0017381.g003
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different conditions and easily extended to other new functions

such as excess risk function. Corresponding to the widely used

parametric methods of Bernoulli and Poisson spatial-temporal

scan statistic and spatio-temporal permutation scan statistic [40],

the method of stRRF presented in this study can be extended to

construct the weighted stRRF with counts and population at risk

as weights and stKDE-based spatio-temporal permutation analy-

sis, respectively. There are various possibilities for improving and

extending the method described here and these are the subjects of

continuing research. However, the previously popular scan statistic

can only provide the information on when and where there are

clusters, whereas other useful information is neglected such as the

dynamic changes of overall risk and clusters which can be

displayed as stated above.

There are three possible disadvantages for the stKDE method.

Firstly, it is computationally intensive. To deal with this, parallel

computing approaches have been developed to alleviate the

computational burden associated with large dataset [18]. Secondly,

multiple testing for the method of stKDE-based stRRF may result in

false positive results. Thirdly, its statistical efficiency may be slightly

lower than parametric method when the parametric models are

correctly specified. As a result, false negative results may appear.

However, true data generating process is always unknown before-

hand [3], and this may be not that serious because the inverse effects

caused by multiple testing may cancel it to some extent.

stKDE belongs to the technique of KDE, and therefore the

problems of edge effect and bandwidth selection deserve a brief

discussion. Edge effects are due to the fact that the information used to

construct a map is spatially and temporally censored, i.e. the map and

the study period has a border/limit and information from outside the

study region and period is missing [13]. The current recommended

solution for trKDE to this boundary problem is to apply explicit edge

corrections, but it cannot be easily extended to higher dimensions with

mixed data types [3,7]. Thus, the generated density maps for individual

cases and controls may suffer from the impacts of edge correction.

However, we conjecture that the impact of the edge effect can be

alleviated for stRRF to some degree because of possible cancellation by

divisions between the case and control densities [3,5,41]. Bandwidth

selection is another important topic. For stKDE, only the likelihood-

based cross validation was explored to select the smoothing parameter,

how about the other methods to choose optimum bandwidths? Are

there important differences among different methods? For spatial

RRF, the use of separate bandwidths has advantages in theories for 2

dimensional situations, particularly when case and control densities or

their sample sizes are very different. However, in practice some authors

argue that a common bandwidth is better than separate bandwidths,

especially when the densities of cases and controls are equal [6,29,42].

Whether this applies for stRRF is not known, so separate bandwidths

are applied in the present study. All these questions deserve further

studies, which, unfortunately, cannot be solved in a short-term period

because many feasible ideas/methods in spatial settings cannot be

easily extended to spatio-temporal cases. The main aim of this study is

to show the promising of the new idea on dealing with spatio-temporal

studies in the field of epidemiology.

In summary, this study demonstrates a new idea of generalized

product kernels and to demonstrate the promising of stKDE and

stRRF for describing the patterns of spatio-temporal disease risks

by including the time dimension. We believe that this is a

competing method for spatio-temporal data analysis and would

strongly encourage other researchers to explore this method

further for better understanding of its theories and applications.

Supporting Information

Text S1 Brief introduction on the theoretical underpin-
nings of stKDE. The theoretical underpinnings of stKDE are

briefly introduced here and more references are pointed out for

interested readers.

(PDF)

Figure S1 trKDE Spatio-temporal relative risk surface
showing the risk changes of Burkitt’s lymphoma in the
Western Nile district of Uganda from 1961–1975. The

degree of risk is denoted by the shade of gray with black shading

representing the highest risk and white the least risk. The solid

contour lines delineate the significant high risk regions. Compared

to stKDE, trKDE is substantially less efficient and far less useful in

small-sample settings as these examples clearly illustrate.

(TIF)

Figure S2 trKDE Spatio-temporal relative risk surface
depicting the dynamic changes of schistosomiasis risk
in the Guichi region of China from 2001–2006. The degree

of risk is denoted by the shade of gray with black shading

representing the highest risk and white the least risk. The solid

contour lines delineate the significant high risk regions. Compared

to stKDE, trKDE is substantially less efficient and far less useful in

small-sample settings as these examples clearly illustrate.

(TIF)
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