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Abstract: A carbazole-based polymer (poly(tris(4-carbazoyl-9-ylphenyl)amine) (PtCz)) is
electrosynthesized on an indium tin oxide (ITO) electrode. PtCz film displays light yellow at
0.0 V, earthy yellow at 1.3 V, grey at 1.5 V, and dark grey at 1.8 V in 0.2 M LiClO4/ACN/DCM
(ACN/DCM = 1:3, by volume) solution. The ∆T and coloration efficiency (η) of PtCz film
are 30.5% and 54.8 cm2·C−1, respectively, in a solution state. Three dual-type electrochromic
devices (ECDs) are fabricated using the PtCz as the anodic layer, poly(3,4-ethylenedioxythiophene)
(PEDOT), poly(3,3-dimethyl-3,4-dihydro-thieno[3,4-b][1,4]dioxepine) (PProDOT-Me2), and poly(3,4-
(2,2-diethylpropylenedioxy)thiophene) (PProDOT-Et2) as the cathodic layers. PtCz/PProDOT-Me2

ECD shows high ∆Tmax (36%), high ηmax (343.4 cm2·C−1), and fast switching speed (0.2 s) at 572 nm.
In addition, PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs show satisfactory
open circuit memory and long-term stability.

Keywords: electrochemical polymerization; optical contrast; electrochromic switching; coloration
efficiency; electrochromic device

1. Introduction

π-conjugated polymers (CPs) and oligomers have attracted a great deal of interest due to
their suitability for potential applications in supercapacitors [1,2], catalysts [3–5], actuators [6],
polymer light-emitting diodes [7–9], electrochromic devices (ECDs) [10–12], polymer solar cells [13],
and sensors [14–16]. The most commonly studied classes of CPs are poly(phenylene vinylene)s
(PPV) [17], polycarbazoles (PCz) [18,19], polythiophenes (PT) [20], polypyrroles (PPy) [21],
poly(3,4-ethylenedioxythiophene) (PEDOT) [22], and polyanilines (PANI) [23]. Cz-based polymers
have been widely used as hole transporting and host materials in optoelectronic devices due
to the nitrogen atom of Cz ring shows good hole transporting ability, high thermal stability,
and ease of formation of radical cations and dications [24]. Polythiophenes and polypyrroles
have been extensively used as electrochromic materials due to the fact that they can be easily
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synthesized electrochemically or chemically with a wide range of electrochromic properties available
through alkyl, alkoxy, and phenyl substitution on polythiophenes and polypyrroles. PEDOT
and its derivatives poly(3,3-dimethyl-3,4-dihydro-thieno[3,4-b][1,4]dioxepine) (PProDOT-Me2) and
poly(3,3-diethyl-3,4-dihydro-thieno[3,4-b][1,4]dioxepine) (PProDOT-Et2) were extensively investigated
for many useful properties including low oxidation potential, electron-rich dioxy group, optical
transparency in doped state, moderate band gap, and high stability [25,26].

There have been no reports for the applications of poly(tris(4-carbazoyl-9-ylphenyl)amine)
as anodic polymer in electrochromic devices. In the present study, a carbazole-based monomer
(tris(4-carbazoyl-9-ylphenyl)amine, tCz) was synthesized and its corresponding homopolymer (PtCz)
was polymerized electrochemically. The spectroelectrochemistry, electrochromic photographs, optical
contrast, and coloration efficiency of PtCz film in solution state were studied. Moreover, dual-
type ECDs based on PtCz and PEDOT derivatives were fabricated, the electrochromic behaviors,
open circuit memory, and long-term switching stability of PtCz/PEDOT, PtCz/PProDOT-Me2,
and PtCz/PProDOT-Et2 ECDs were also investigated.

2. Materials and Methods

2.1. Materials

All chemicals were purchased from Sigma-Aldrich, Tokyo Chemical Industry Co., Ltd. (TCI,
Tokyo, Japan), Acros (Geel, Belgium), Alfa-Aesar (Ward Hill, MA, USA), and used as received.
Tris(4-carbazoyl-9-ylphenyl)amine, 3,3-dimethyl-3,4-dihydro-thieno[3,4-b][1,4]dioxepine (ProDOT-Me2)
and 3,3-diethyl-3,4-dihydro-thieno[3,4-b][1,4]dioxepine (ProDOT-Et2) were synthesized following
previously published procedures [27,28].

2.2. Synthesis of Tris(4-carbazoyl-9-ylphenyl)amine (tCz)

Carbazole (70.22 mg, 0.42 mmol), tris(4-iodophenyl)amine (68.53 mg, 0.11 mmol), K2CO3 (165.84 mg,
1.20 mmol), Cu bronze (69.58 mg, 1.095 mmol) and 18-crown-6 (8.72 mg, 0.033 mmol) were stirred in
45 mL 1,2-dichlorobenzene for two days at 190 ◦C. The crude product is vacuum distilled and the
residue is purified by column chromatography using a mixture of hexane and dichloromethane (DCM)
(2:1 by volume) as eluent. Yield: 41%. 1H-NMR (700 MHz, DMSO-d6): δ 8.26 (d, 6H, Ar-H), 7.69 (dd,
6H, Ar-H), 7.57 (dd, 6H, Ar-H), 7.50–7.46 (m, 12H, Ar-H), 7.32–7.30 (m, 6H, Ar-H). Elem. anal. calcd.
for C54H36N4: C, 87.54%; H, 4.90%; N, 7.56%. Found: C, 87.32%; H, 4.82%; N, 7.57%.

2.3. Electrosynthesis of PtCz, PProDOT-Me2, and PProDOT-Et2 Films

The electrosynthesis of PtCz film in an ACN/DCM (1:3, by volume) solution containing 0.2 M LiClO4

as a supporting electrolyte was carried out by scanning the potential between 0.0 and 1.8 V (vs. Ag/AgCl)
potentiodynamically at 100 mV·s−1 for 3 cycles. The electrochemically deposited PtCz film was
rinsed with DI water for 5 min and then dried at 105 ◦C for 3 min. As shown in Table 1, the PEDOT,
PProDOT-Me2, and PProDOT-Et2 films were deposited from 0.008 M EDOT, 0.010 M ProDOT-Me2,
and 0.017 M ProDOT-Et2 in a 0.2 M LiClO4/acetonitrile (ACN) solution, respectively. Electrosynthesis
of PEDOT, PProDOT-Me2, and PProDOT-Et2 films were performed potentiostatically at 1.7 V
(vs. Ag/AgCl) for 50 mC. Polymer thicknesses at the electrode surface obtained from an Alpha-Step
profilometer (KLA Tencor D-120, CA, USA) were about 200–300 nm.

Table 1. Feed species of cathodic polymer electrodes (a)–(c).

Electrodes Cathodic Polymer Feed Species Deposition Amount of Cathode

(a) PEDOT 8 mM EDOT 50 mC
(b) PProDOT-Me2 10 mM ProDOT-Me2 50 mC
(c) PProDOT-Et2 17 mM ProDOT-Et2 50 mC
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2.4. Electrochromic Characterization

Electrochromic characterization of the polymer films and electrochromic devices were carried out
using a CHI627D electrochemical analyzer (CH Instruments, Austin, TX, USA). Cyclic voltammetry
(CV) studies were performed using in a three-component cell, which contained an ITO-coated glass
plate (area: 1 cm × 1.5 cm) as the working electrode, a platinum wire as the counter electrode,
and an Ag/AgCl as the reference electrode. The in situ spectroelectrochemical spectra were recorded
using an Agilent Cary 60 UV-Visible spectrophotometer (Varian Inc., Walnut Creek, CA, USA) in time
course mode.

2.5. Preparation of Electrochromic Electrolytes

The polymer electrolytes of the ECDs were prepared using the solution-cast method. To prepare the
solution, poly(methyl methacrylate) (PMMA), propylene carbonate (PC), and LiClO4 were dissolved in
acetone, and the mixture was stirred magnetically at room temperature for 36 h. The polymer electrolytes
were prepared using PMMA:PC:LiClO4 in a weight ratio of 33:53:14. The final mixture was cast on
glass petri dishes. After evaporating the solvent at room temperature for 2 h, the samples were
vacuum-dried at 80 ◦C for 24 h to remove the remaining solvent completely. Finally, the self-standing
polymer electrolytes were obtained. The ECDs were fabricated by sandwiching the polymer electrolytes
between two electrodes to perform the electrochromic measurements.

2.6. Fabrication of the ECDs

The ECDs were constructed using two complementary polymer layers, PtCz as the anodically
coloring layer, PEDOT, PProDOT-Me2, or PProDOT-Et2 as the cathodically coloring layer. PtCz, PEDOT,
PProDOT-Me2, and PProDOT-Et2 films were deposited on ITO substrates (active area: 1 cm × 1.5 cm).
The ECDs were fabricated by arranging the oxidized and reduced films to face each other, and they
were separated by an electrolyte. The fabrication procedures of ECDs are shown in Figure 1.
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3. Results and Discussion

3.1. Electrochemistry of tCz and Its Electrochemical Polymerization

The electrosynthesis of PtCz film was implemented using CV with a scan rate of 100 mV·s−1.
The electropolymerization scheme and mechanism of PtCz are shown in Figure 2 [29]. The successive
cyclic voltammograms of 0.002 M neat tCz taken in an ACN/DCM (1:3, by volume) solution containing
0.2 M LiClO4 as a supporting electrolyte at a scanning rate of 100 mV·s−1 are shown in Figure 3. For the
first scan of cyclic voltammogram, the onset potential of tCz is 0.86 V vs. Ag/AgCl, two oxidation
peaks located at 0.95 and 1.18 V indicate the polaron and bipolaron formation of tCz, the reduction
peaks of tCz locate at 1.1 and 0.7 V. The increase in the oxidation and reduction curves wave current
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densities indicates that the amount of polymer deposited on the ITO working electrode increases with
increasing cycles. The polymerization of tCz shows two quasi-reversible oxidation and reduction
processes in Figure 3.
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Figure 2. (a) The electrochemical polymerization scheme of the carbazole-based polymer (poly(tris(4-
carbazoyl-9-ylphenyl)amine) (PtCz)); (b) the electropolymerization mechanism of PtCz.
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Figure 3. Electrochemical synthesis of PtCz in acetonitrile (ACN)/dichloromethane (DCM) (1:3,
by volume) solution at 100 mV·s−1 on indium tin oxide (ITO) working electrode.

3.2. Electrochemical Behavior of PtCz Films

The as-prepared PtCz film was swept between 0.0 to 1.8 V at various scan rates between 10 and
200 mV·s−1 in 0.2 M LiClO4/ACN/DCM solution. As shown in Figure 4, the electrochemical behavior
of the PtCz film shows a single well-defined redox process, the anodic and cathodic peak current
densities are proportional to the scan rates, implying that PtCz film is electroactive and adheres well
to the electrode, and the electrochemical processes of PtCz film are reversible and not dominated by
diffusion effects [30].
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3.3. Spectroelectrochemistry of PtCz and PProDOT-Me2 Films

Spectroelectrochemistry can be used to analyze the changes in the absorption spectra of ECDs at
various potentials [31]. Optoelectrochemical spectra of PtCz and PProDOT-Me2 films are shown in
Figure 5. The PtCz film shows a π-π* transition peak at around 360 nm at 0.0 V, and it is light yellow
in undoped state. Upon stepwise oxidation, the peak intensity at 360 nm diminishes gradually and
new absorption bands at around 800 nm emerge, the PtCz film displays earthy yellow at 1.3 V, grey at
1.5 V, and dark grey at 1.8 V. On the other hand, the PProDOT-Me2 film shows two significant
peaks at 570 and 625 nm at −1.5 V and presents dark blue in its neutral state. Upon oxidation
progressively, the peak intensity at 570 and 625 nm diminish gradually and new absorption bands at
more than 1000 nm emerge, the PProDOT-Me2 film displays grey at −0.8 V and light blue at −1.5 V.
The colorimetric values (L*, a*, and b*), CIE chromaticity values (x, y), and CIE chromaticity diagrams
of the PtCz and PProDOT-Me2 films at various potentials were shown in Table 2.
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3.4. Electrochemical Switching of PtCz Film

Double potential step techniques can be used to investigate the response time and stability of
polymer films during consecutive scans [32]. The double potential step chronoamperometry coupled
with spectrophotometer of PtCz film was performed by stepping potentials between 0.0 and 1.8 V
with a residence time of 10 s, and the transmittance-time profile of PtCz film is displayed in Figure 6.
The coloration switching time (τc) and bleaching switching time (τb) were defined as the period
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required for achieving 90% of the desired response [33–36]. The τc and τb of PtCz film estimated at the
third cycle at 760 nm are 5.5 and 5.0 s, respectively. The optical contrast (∆T%) is an important property
of electrochromic polymer films, which denotes as the transmittance difference between bleaching and
coloring states of polymer films in solution state. The optical density (∆OD) can be calculated using
the following formula:

∆OD = log(
Tox

Tred
) (1)

where Tox is the transmittance of anodic material in coloration state and Tred is the transmittance of
anodic material in bleaching state.
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As shown in Table 3, the ∆Tmax and ∆OD values of PtCz film are 30.5% and −0.28, respectively,
at 760 nm in 0.2 M LiClO4/ACN/DCM (ACN/DCM = 1:3, by volume) solution. The ∆Tmax of PtCz
film is larger than those reported for poly(9H-carbazol-9-ylpyrene) (∆Tmax = 29% at 460 nm [37]) and
poly(1,3-bis(carbazol-9-yl)benzene) (∆Tmax = 18.6% at 1050 nm [38]) (Table 4). However, the ∆T of PtCz
film is smaller than those reported for poly(ethyl-4-(3,6-di(thiophen-2-yl)-9H-carbazole-9-yl)-benzoate)
(∆Tmax = 36% at 1100 nm [39]), poly(2,5-bis(9-methyl-9H-carbazol-3-yl)-1,3,4-oxadiazole) (∆Tmax = 75% at
660 nm [40]), poly(3,6-di(carbazol-9-yl)-N-(4-nitrophenyl)carbazole) (∆Tmax = 52% at 710 nm [29]),
and poly(4,4′-bis(N-carbazolyl)-1,1′-biphenyl) (∆Tmax = 44.1% at 800 nm) [41].

Table 3. Optical and electrochemical properties investigated at the selected applied wavelength for
PtCz film and ECDs.

PtCz film and ECDs N Tox (%) Tred (%) ∆T (%) ∆OD η (cm2·C−1) τc/s τb/s

PtCz (760 nm) a 3 33.0 63.5 30.5 −0.28 54.8 5.5 5.0
PtCz/PEDOT 3 10.4 34.4 24.0 −0.52 234.9 0.6 1.0

(600 nm) a 50 10.8 33.0 22.2 −0.49 256.5 0.2 0.2
Ptz/PProDOT-Me2 3 11.6 47.6 36.0 −0.61 248.4 0.2 0.6

(572 nm) a 50 12.0 47.0 35.0 −0.59 343.4 0.2 0.2
PtCz/PProDOT-Et2 3 9.3 37.3 28.0 −0.60 336.8 0.4 0.3

(591 nm) a 50 9.8 36.4 26.6 −0.57 330.7 0.1 0.1
a The selected applied wavelength for PtCz film and ECDs.
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Table 4. Optical contrasts and coloration efficiencies of carbazole-based polymer films.

Carbazole-based polymer films ∆Tmax (%) η (cm2·C−1) Ref.

poly(9H-carbazol-9-ylpyrene) 29 (460 nm) — [37]
poly(1,3-bis(carbazol-9-yl)benzene) 18.6 (1050 nm) 180.3 [38]

poly(ethyl-4-(3,6-di(thiophen-2-yl)-9H-carbazole-9-yl)-benzoate) 36 (1100 nm) — [39]
poly(2,5-bis(9-methyl-9H-carbazol-3-yl)-1,3,4-oxadiazole) 75 (660 nm) — [40]

poly(3,6-di(carbazol-9-yl)-N-(4-nitrophenyl)-carbazole) 52 (710 nm) 35 [29]
poly(4,4′-bis(N-carbazolyl)-1,1′-biphenyl) 44.1 (800 nm) 98 [41]

PtCz 30.5 (760 nm) 54.8 This work

The coloration efficiency (η) of electrochromic materials can be estimated using the following
equation [42]:

η =
∆OD
Qd

(2)

where Qd is the charge density (injected/ejected charges per unit sample area). The η value of PtCz film
is 54.8 cm2·C−1 at 760 nm in 0.2 M LiClO4/ACN/DCM (ACN/DCM = 1:3, by volume) solution. The η

of PtCz film is larger than that reported for poly(3,6-di(carbazol-9-yl)-N-(4-nitrophenyl)carbazole)
(η = 35 cm2·C−1 [29]). However, the ∆Tmax of PtCz film is smaller than those reported for
poly(4,4′-bis(N-carbazolyl)-1,1′-biphenyl (η = 98 cm2·C−1 [41]) and poly(1,3-bis(carbazol-9-yl)benzene)
(η = 180.3 cm2·C−1 [38]).

3.5. Spectroelectrochemistry of PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs

Figure 7 shows the UV-Visible spectra of PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2

ECDs at various voltages. At 0.0 V, the PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs
show π-π* transition peaks of PtCz film at around 360 nm.
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Figure 7. UV-visible spectra of (a) PtCz/PEDOT (b) PtCz/PProDOT-Me2, and (c) PtCz/PProDOT-Et2 ECDs.

Upon increasing the potential gradually, the π-π* transition peak of PtCz film diminishes
and new absorption band at around 580–650 nm emerges. At 1.7–1.8 V, PEDOT, PProDOT-Me2,
and PProDOT-Et2 films exhibit distinct absorption band at around 500–700 nm, and PtCz/PEDOT,
PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs became dark blue at 1.7–1.8 V. The electrochromic
photographs, colorimetric values (L*, a*, and b*), CIE chromaticity values (x, y), and CIE chromaticity
diagram of the PtCz/PProDOT-Me2 ECD at various potentials are summarized in Table 5.
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Table 5. Electrochromic photographs, colorimetric values (L*, a*, and b*), CIE chromaticity values (x, y),
and CIE chromaticity diagram of the PtCz/PProDOT-Me2 ECD at various applied potentials.

ECD Potential (V) Photographs L* a* b* x y Diagram

PtCz/
PProDOT-Me2

−0.8
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Figure 8 shows the transmittance-time profiles of PtCz/PEDOT, PtCz/PProDOT-Me2,
and PtCz/PProDOT-Et2 ECDs by repeating potentials between 0.0 and 1.8 V with a time interval
of 10 s. The τc and τb estimated at various cycles for PtCz/PEDOT, PtCz/PProDOT-Me2,
and PtCz/PProDOT-Et2 ECDs are listed in Table 3. The τc and τb of PtCz/PEDOT ECD at 600 nm
were 0.2 and 0.2 s, respectively, at the 50th cycle. Under similar conditions, the τc values of
PtCz/PProDOT-Me2 ECD at 572 nm and PtCz/PProDOT-Et2 ECD at 591 nm were 0.2 and 0.1 s
at the 50th cycle, respectively, and the corresponding τb values were 0.2 and 0.1 s at the 50th
cycle, respectively, indicating that PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs
showed fast switching speed when PtCz, PEDOT, PProDOT-Me2, and PProDOT-Et2 are employed
as electrochromic layers. The τc and τb values of PtCz/PEDOT ECD were 0.6 and 1.0 s, respectively,
at the third cycle, and 0.2 and 0.2 s, respectively, at the 50th cycle, indicating that switching time
shortened with the number of switching cycles. Under similar conditions, PtCz/PProDOT-Me2 and
PtCz/PProDOT-Et2 ECDs showed fast switching speed at high switching cycles than those at low
switching cycles.
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As summarized in Table 3, the ∆T values of PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-
Et2 ECDs were 24.0, 36.0, and 28.0% at the 3rd cycle, respectively. The ∆T of PtCz/PProDOT-Me2

and PtCz/PProDOT-Et2 ECDs were larger than that of PtCz/PEDOT, indicating PProDOT
derivatives facilitated to increase the transmittance disparity when we employed PProDOT
derivatives as cathodic layers in ECDs. PtCz/PProDOT-Me2 ECD shows the highest ∆T among
these ECDs, the ∆T of PtCz/PProDOT-Me2 ECD is higher than those reported for poly(4,4′-
di(N-carbazolyl)biphenyl)/PEDOT [43], poly(9H-carbazol-9-ylpyrene)/PEDOT [37], poly(3,6-bis(2-
(3,4-ethylenedioxy)thienyl)-N-methylcarbazole)/PEDOT [44], poly(carbazole-co-indole-6-carboxylic
acid)/PProDOT- Me2 [45], poly(4,4′-di(N-carbazoyl)biphenyl-co-2,2′-bithiophene)/PEDOT [46]
and poly(2,5-bis(9-methyl-9H-carbazol-3-yl)-1,3,4-oxadiazole)/PEDOT [40] ECDs (Table 6).
However, PtCz/PProDOT-Me2 ECD shows lower ∆T than that reported for poly(4,4′-di(N-
carbazoyl)biphenyl-co-4H-cyclopenta[2,1-b:3,4-b′]dithiophene)/PEDOT ECD [47].

Table 6. Optical contrast and coloration efficiencies of ECDs.

ECD configuration ∆Tmax (%) ηmax
(cm2·C−1) Ref.

poly(4,4′-di(N-carbazolyl)biphenyl)/PEDOT 19 (550 nm) — [43]
poly(9H-carbazol-9-ylpyrene)/PEDOT 23 (623 nm) 290 [37]
poly(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-N-methylcarbazole)/PEDOT ca. 30 — [44]
poly(carbazole-co-indole-6-carboxylic acid)/PProDOT-Me2 32 (575 nm) 372.7 [45]
poly(4,4′-di(N-carbazoyl)biphenyl-co-2,2′-bithiophene)/PEDOT 28.6 (700 nm) 234 [46]
poly(4,4′-di(N-carbazoyl)biphenyl-co-4H-cyclopenta[2,1-b:3,4-b′]dithiophene)/PEDOT 39.8 (628 nm) 319.98 [47]
poly(2,5-bis(9-methyl-9H-carbazol-3-yl)-1,3,4-oxadiazole)/PEDOT 35 (620 nm) — [40]
PtCz/PProDOT-Me2 36 (572 nm) 343.4 This work

The ∆T values of PtCz/PEDOT ECD were 24.0 and 22.2% at the 3rd and 50th cycles, respectively.
The ∆T of PtCz/PEDOT ECD decreases 1.8% from the 3rd to 50th cycles. Under similar conditions,
the ∆T values of PtCz/PProDOT-Me2 and PtCz/PProDOT-Et2 ECDs were 36.0 and 28.0% at the
3rd cycle, respectively, and 35.0 and 26.6% at the 50th cycle, respectively. The ∆T values of
PtCz/PProDOT-Me2 and PtCz/PProDOT-Et2 ECDs decrease 1.0 and 1.4% from the 3rd to 50th cycles,
respectively. This result indicates that the incorporation of PProDOT-Me2 and PProDOT-Et2 as cathodic
polymers gives rise to better ∆T stability than that obtained using PEDOT as the cathodic polymer.

The η value is high when η of ECDs is larger than 300 cm2·C−1. As summarized in Table 3, the ηmax

values of PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs were calculated as 256.5, 343.4,
and 336.8 cm2·C−1, respectively, the ηmax value of PtCz/PProDOT-Me2 and PtCz/PProDOT-Et2 ECDs are
larger than that of PtCz/PEDOT ECD, indicating that PProDOT derivatives-based cathodic polymer leads
to higher η than that of PEDOT-based cathodic polymer. As shown in Table 6, PtCz/PProDOT-Me2

ECD shows higher ηmax than those reported for poly(9H-carbazol-9-ylpyrene)/PEDOT [37],
poly(4,4′-di(N-carbazoyl)biphenyl-co-4H-cyclopenta[2,1-b:3,4-b′]dithiophene)/PEDOT [47], and poly(4,4′-
di(N-carbazoyl)biphenyl-co-2,2′-bithiophene)/PEDOT [46] ECDs. However, PtCz/PProDOT-Me2

ECD shows lower ηmax than that reported for poly(carbazole-co-indole-6-carboxylic acid)/PProDOT-
Me2 ECD [45].

3.6. Open Circuit Memory of ECDs

The optical memory of PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs were
monitored at 600, 572, and 591 nm, respectively, as a function of time at 0.0 and 1.8 V by applying
the potential for 1 s at each 100 s time interval. As shown in Figure 9a–c, three ECDs show almost no
change of transmittance in the bleached state, i.e., a durable memory effect. The transmittances of
three ECDs in the colored state are less stable than in the bleached state, but the transmittance loss is
less than 3%. Both the bleached and colored states were highly stable, and the ECDs kept their color
without loss, demonstrating PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs reveal
satisfied open circuit memory.



Polymers 2017, 9, 543 11 of 15

Polymers 2017, 9, 543  11 of 15 

 

change of transmittance in the bleached state, i.e., a durable memory effect. The transmittances of 
three ECDs in the colored state are less stable than in the bleached state, but the transmittance loss is 
less than 3%. Both the bleached and colored states were highly stable, and the ECDs kept their color 
without loss, demonstrating PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs reveal 
satisfied open circuit memory. 

 
Figure 9. Open circuit stability of (a) PtCz/PEDOT (b) PtCz/PProDOT-Me2, and (c) PtCz/PProDOT-
Et2 ECDs at 0.0 V and 1.8 V. The working electrode is PtCz film-coated ITO glass substrate. 

3.7. Long-Term Stability of ECDs 

The stability of long-term switching between redox states is important for ECDs’ applications 
[48,49]. The long-term switching ability between redox states of PtCz/PEDOT, PtCz/PProDOT-Me2, 
and PtCz/PProDOT-Et2 ECDs were examined using CV at potentials between 0.0 and 1.5 V with a 
scan rate of 500 mV∙s−1 (Figure 10). From the observation of switching between bleaching and coloring 
states of the ECDs, 93%, 92%, and 93% of their electrical activities are retained after 500 cycles for 
PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs, respectively, and 87%, 87%, and 
87% of their electrical activities are retained after 1000 cycles for PtCz/PEDOT, PtCz/PProDOT-Me2, 
and PtCz/PProDOT-Et2 ECDs, respectively, the electrical activities of PtCz/PEDOT, PtCz/PProDOT-
Me2, and PtCz/PProDOT-Et2 ECDs at 500th cycle are larger than those reported for P(BTN-co-
BT)/PEDOT ECD (stability = 79% at 500th cycle) [50] and PBTBE/PEDOT ECD (stability = 80.2% at 
500th cycle) [51], indicating they are good candidates for electrochromic applications. 

Figure 9. Open circuit stability of (a) PtCz/PEDOT (b) PtCz/PProDOT-Me2, and (c) PtCz/PProDOT-Et2
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3.7. Long-Term Stability of ECDs

The stability of long-term switching between redox states is important for ECDs’ applications [48,49].
The long-term switching ability between redox states of PtCz/PEDOT, PtCz/PProDOT-Me2,
and PtCz/PProDOT-Et2 ECDs were examined using CV at potentials between 0.0 and 1.5 V
with a scan rate of 500 mV·s−1 (Figure 10). From the observation of switching between bleaching and
coloring states of the ECDs, 93%, 92%, and 93% of their electrical activities are retained after 500 cycles
for PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs, respectively, and 87%,
87%, and 87% of their electrical activities are retained after 1000 cycles for PtCz/PEDOT,
PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs, respectively, the electrical activities of
PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs at 500th cycle are larger
than those reported for P(BTN-co-BT)/PEDOT ECD (stability = 79% at 500th cycle) [50] and
PBTBE/PEDOT ECD (stability = 80.2% at 500th cycle) [51], indicating they are good candidates for
electrochromic applications.
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Et2 ECDs as a function of repeated with a scan rate of 500 mV·s−1 between 1 and 1000 cycles.
The working electrode is PtCz film-coated ITO glass substrate.

4. Conclusions

A carbazole-based monomer (tCz) was synthesized, and its corresponding homopolymer (PtCz)
was prepared using electrochemical polymerization. The electrochemical processes of PtCz film
are reversible, and the PtCz film shows four color variations (light yellow, earthy yellow, grey,
and dark grey) from an undoped state to a doped state. Three ECDs based on PtCz as anodic
polymer and PEDOT, PProDOT-Me2, and PProDOT-Et2 as the cathodic polymers were constructed,
and the spectroelectrochemical properties of ECDs were characterized. The colors of constructed
PtCz/PProDOT-Me2 ECD switched from yellowish-grey, light grey, purple, and dark blue upon
the application of potential between −0.8 and +1.5 V. Electrochromic switching studies showed
that the ∆Tmax values of PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs were
24.0%, 36.0%, and 28.0%, respectively, and the ηmax values of PtCz/PEDOT, PtCz/PProDOT-Me2,
and PtCz/PProDOT-Et2 ECDs were calculated as 256.5, 343.4, and 336.8 cm2·C−1, respectively.
Moreover, PtCz/PEDOT, PtCz/PProDOT-Me2, and PtCz/PProDOT-Et2 ECDs reveal satisfied open
circuit memory and long-term switching ability between redox states. The results show that the
PtCz film is a potential anodic material for electrochromic applications in rear-view mirrors and
motorcycle helmet-visors.
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