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Modeling the solubility of light 
hydrocarbon gases and their 
mixture in brine with machine 
learning and equations of state
Mohammad‑Reza Mohammadi1, Fahimeh Hadavimoghaddam2,3, Saeid Atashrouz4*, 
Ali Abedi5, Abdolhossein Hemmati‑Sarapardeh1,6* & Ahmad Mohaddespour7*

Knowledge of the solubilities of hydrocarbon components of natural gas in pure water and aqueous 
electrolyte solutions is important in terms of engineering designs and environmental aspects. In the 
current work, six machine-learning algorithms, namely Random Forest, Extra Tree, adaptive boosting 
support vector regression (AdaBoost-SVR), Decision Tree, group method of data handling (GMDH), 
and genetic programming (GP) were proposed for estimating the solubility of pure and mixture of 
methane, ethane, propane, and n-butane gases in pure water and aqueous electrolyte systems. To this 
end, a huge database of hydrocarbon gases solubility (1836 experimental data points) was prepared 
over extensive ranges of operating temperature (273–637 K) and pressure (0.051–113.27 MPa). Two 
different approaches including eight and five inputs were adopted for modeling. Moreover, three 
famous equations of state (EOSs), namely Peng-Robinson (PR), Valderrama modification of the 
Patel–Teja (VPT), and Soave–Redlich–Kwong (SRK) were used in comparison with machine-learning 
models. The AdaBoost-SVR models developed with eight and five inputs outperform the other 
models proposed in this study, EOSs, and available intelligence models in predicting the solubility of 
mixtures or/and pure hydrocarbon gases in pure water and aqueous electrolyte systems up to high-
pressure and high-temperature conditions having average absolute relative error values of 10.65% 
and 12.02%, respectively, along with determination coefficient of 0.9999. Among the EOSs, VPT, 
SRK, and PR were ranked in terms of good predictions, respectively. Also, the two mathematical 
correlations developed with GP and GMDH had satisfactory results and can provide accurate and 
quick estimates. According to sensitivity analysis, the temperature and pressure had the greatest 
effect on hydrocarbon gases’ solubility. Additionally, increasing the ionic strength of the solution and 
the pseudo-critical temperature of the gas mixture decreases the solubilities of hydrocarbon gases 
in aqueous electrolyte systems. Eventually, the Leverage approach has revealed the validity of the 
hydrocarbon solubility databank and the high credit of the AdaBoost-SVR models in estimating the 
solubilities of hydrocarbon gases in aqueous solutions.

Abbreviations
AAPRE	� Average absolute percent relative error
AdaBoost	� Adaptive boosting
AdaBoost-SVR	� Adaptive boosting support vector regression
DT	� Decision tree
EOS	� Equation of state
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ET	� Extra tree
exp	� Experimental
PR	� Peng–Robinson
pred	� Predicted
RMSE	� Root mean square error
r	� Relevancy factor
SD	� Standard deviation
SVR	� Support vector regression
SRK	� Soave–Redlich–Kwong
RF	� Random forest
R2	� Coefficient of determination
VPT	� Valderrama modification of the Patel–Teja

One of the crucial theoretical and practical challenges in petroleum, chemical, and geochemical engineering is 
the solubilities of hydrocarbons, such as methane, ethane, propane, n-butane, or their mixtures, in pure water 
and aqueous electrolyte solutions. Achieving optimal conditions for gas and oil transportation, designing thermal 
separation processes, coal gasification, and hydrate formation require accurate information about the solubilities 
of hydrocarbon gases in different aqueous phases1–5. Natural gases coexist with aqueous solutions in petroleum 
reservoirs under the circumstances of high temperature and high pressure, which makes the solubilities of gases 
an important challenge for engineers. The water content of gases can undergo a phase alteration from vapor to 
gas hydrates, water condensate, and ice in the production and transportation of hydrocarbons. The condensed 
water phase in the compressor can damage impeller blades. Also, corrosion and pipeline blockage, as two serious 
flow assurance problems, can be caused by the formation of gas hydrates and/or ice throughout the production 
and transportation of hydrocarbons1,6–8. From an environmental point of view, gases solubility in water is a sub-
stantial problem because of the legislation and restrictions on the hydrocarbons contents in the water disposal9. 
In addition, leaking pipelines, underground oil storage tanks, and accidents on oil platforms and ships of the 
hydrocarbons’ transportation are responsible for oil spillage in water10–12.

Because of complex non-idealities from the strong H-bonding of water molecules, an accurate description of 
the phase behavior of these systems, utilizing theoretical methods is a challenging issue13. Accurate gas solubil-
ity data is essential to develop thermodynamic models for giving a qualified evaluation of the water content in 
the gases phase9. Therefore, the objective of thermodynamic calculations is the estimation of the compositions, 
content, and other equilibrium properties of the phases. Traditional equations of state (EOSs) are mainly applied 
to estimate thermodynamic and physical properties such as gas solubility. However, accurate estimates of gases 
solubility in various solvents by EOSs face serious problems such as iterative calculations, limited flexibility, and 
adjustable parameters at different temperatures and pressures. This makes the application of current conventional 
approaches, for example EOSs, unreliable and convinces researchers to seek better predictive techniques14–19.

The petroleum industry needs appropriate and precise knowledge of the correlation between operating con-
ditions (i.e., pressure and temperature), vapor and liquid phases compositions, and the salinity of the aqueous 
phase for the systems containing aqueous electrolyte solutions and natural gas’ components. This knowledge can 
help design/optimize the operating condition for gas processing units and avoid/diagnose problems accompany-
ing natural gas applications. Literature survey shows that there are many sets of experimental solubility data for 
various gas − liquid systems. Available experimental sources mainly present the solubility of pure hydrocarbon 
gases2,4,20–22, hydrocarbon gas mixtures1,5,6,9,23–25, and non-hydrocarbon gases (e.g., N2 and CO2)26–30 in water/
brine systems. On the other hand, due to the difficulties encountered in measuring the low content of water of 
gases at low-temperature and high-pressure conditions, experimental data of water content of hydrocarbon and 
non-hydrocarbon gases are limited and scattered. However, Mohammadi et al.1 demonstrated that complexi-
ties associated with experimental measurement of the water content in natural gas could be eliminated by gas 
solubilities data, which provides an accurate estimate of water content1. Attempts to model the vapor–liquid 
phase equilibria of non-hydrocarbon and hydrocarbon gases and brine solutions have always been considered 
by researchers due to the limited number of measurements. The activity coefficient, Henry’s constant approach, 
and EOSs were widely used in thermodynamic models in order to gain information about the equilibrium 
conditions of non-hydrocarbon and hydrocarbon gases and pure water or aqueous electrolytes solutions5,9,31–41. 
Although Henry’s law can appropriately be utilized to estimate the solubilities, this approach has several draw-
backs. For instance, this approach is correct for unique compounds at low concentrations under equilibria 
conditions with no chemical reactions for the aqueous phase. Also, it is appropriate for near-ideal or dilute 
solutions42. Moreover, at low temperatures, there is a limited count of Henry’s constants for the systems contain-
ing hydrocarbons-aqueous solutions3. On the other hand, the advantages such as lower count of parameters, the 
easiness of implementation, and computational efficiency make the use of EOSs widespread2,4,9,43. However, the 
accuracy of EOSs is highly dependent on the appropriation of empirical adjustments via incorporating the binary 
interaction parameters. Therefore, reliable sources of experimental data for the vapor–liquid equilibria of binary 
or even multi-component mixtures are essential to determine these parameters23,44. Hence, developing EOS for 
extensive applications such as calculations of natural gas’ solubility faces serious problems, and numerous EOSs 
developed so far are mostly attributed to limited systems. Due to the above discussions, in recent years, research-
ers have tried to provide accurate and reliable approaches to predict the solubilities of non-hydrocarbon and 
hydrocarbon gases in pure water and aqueous electrolyte systems. Literature survey shows that many intelligent 
models have been proposed to estimate the solubilities of non-hydrocarbon gases, especially CO2, in water and 
brine45–50. Regarding hydrocarbons solubility in pure water and brine, Safamirzaei et al.51 utilized a simple artifi-
cial neural network (ANN) with overall 101 solubility data points for modeling n-alkanes (nC1–nC6) solubilities 
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in water. They showed that an ANN-based model could be an alternative to other methods such as EOSs with 
high accuracy51. Samani et al.52 proposed two hybrid models based on least-squares support vector machine 
and coupled simulated annealing algorithms for estimating the solubility of hydrocarbons (C1–C4) and non-
hydrocarbon gases (CO2 and N2) in aqueous electrolyte systems. Regarding hydrocarbon gases, their database 
had 1175 solubility data points, and the average absolute error of their proposed model was 30.6%52. Nabipour 
et al.53 used a similar database including 1175 data points and an extreme learning machine algorithm to develop 
a model for predicting hydrocarbon gases (C1–C4) solubility in electrolyte solutions. The mean relative error 
of their model was 22.05%53. Although two relatively comprehensive intelligent models have been developed to 
predict the solubilities of hydrocarbon gases in aqueous electrolyte systems, the error of these models is slightly 
high. Also, due to the nature of the data-driven soft computing approaches, incorporating a larger number of 
data, various operating conditions, and adopting different modeling approaches may propel a comprehensive 
predictive tool for estimating the solubilities of light hydrocarbon gases and their mixture in water and aque-
ous electrolyte solutions. Furthermore, the development of easy-to-use mathematical correlations by advanced 
algorithms can simplify and accelerate the prediction of hydrocarbon gas solubilities in brine.

In this research, a huge database (1836 experimental data points) of hydrocarbon gases solubilities in pure 
water and aqueous electrolyte systems was accumulated from the literature. Next, for developing predictive 
tools, six robust machine learning algorithms viz., Random Forest, Extra Tree, adaptive boosting support vec-
tor regression (AdaBoost-SVR), Decision Tree, genetic programming (GP), and group method of data handling 
(GMDH) are implemented in this study by considering two different approaches. Additionally, three famous 
equations of state (EOSs) viz., Peng–Robinson (PR), Valderrama modification of the Patel–Teja (VPT), and 
Soave–Redlich–Kwong (SRK) are utilized in comparison with machine learning models. Furthermore, the per-
formance of machine learning-based predictive tools and mathematical correlations is studied by employing 
various statistical and visual error analyses. Besides, a well-known sensitivity analysis, i.e., the relevancy factor, 
is identified the relative impact of input variables on hydrocarbon gases solubility in brine. Ultimately, the valid-
ity of the solubility databank, along with the application domain of the best-developed predictive tools in the 
present work, is examined by the Leverage mathematical method.

Data acquisition
In this work, a large databank was collected on the basis of experimental solubility data of light hydrocarbon 
gases and their mixtures in water and aqueous electrolytes. This databank consists of 1836 data points that are 
661 data points more than what is used in Samani et al.52 and Nabipour et al.53 works. Table 1 presents the details 
and references of experimental solubility data for hydrocarbon components of natural gas in pure water and 
aqueous electrolytes used in this survey. It should be noted that the collected laboratory data for the solubility of 
gases in pure water and brine is such that most of the solubility values were reported in two-phase conditions (a 
gaseous phase and an aqueous phase in equilibrium). This means that the temperature and pressure of the system 
were such that only two phases would exist in equilibrium. This is while there is a possibility of the formation 
of three phases at conditions of pressure higher than the critical pressure of components or low-temperature 
conditions. According to the Gibbs phase rule, degrees of freedom are the number of intensive properties that 
can be altered without varying the number of phases, or the number of components in any phase54. Hence, in 
some studies such as Amirijafari’s work23, for measuring hydrocarbon gas solubility in water under high-pressure 
conditions, the temperatures were selected such that only two phases (hydrocarbon gas mixture and the liquid 
water with hydrocarbons dissolved in it) would be present. Adopting this approach makes measuring gas solubili-
ties easier and the obtained data more reliable. Although in some other studies5,6, in addition to measuring the 
solubility data in the two-phase state, the solubility values have been measured in the three-phase conditions, 
i.e. (three-phase equilibrium between the hydrate, the aqueous, and the vapor phase or three-phase equilibrium 
between water-rich liquid, hydrocarbon-rich liquid, and vapor phase). However, experimental measurements 
of solubilities in such a condition are challenging and could potentially generate unreliable laboratory data. For 
example, concentrations of light hydrocarbon gases in water are low, and moreover reaching the equilibrium 
states near and inside the gas hydrate formation region is a time-consuming process. However, the data collected 
in this research were all carefully selected from reliable references where considerable time has been spent on 
conducting experiments and calculated solubility values using specific methods, especially in three-phase con-
ditions. Further explanation of the laboratory process for calculating gas solubility is beyond the scope of this 
work and interested readers are referred to the literature6,55,56. It should be mentioned that what is mentioned as 
gas solubility in this study is x = mole fraction of hydrocarbon gas in the aqueous liquid phase, which is collected 
from reliable references reported in Table 1.

Literature survey reveals that the gaseous phase composition, aqueous phase composition, temperature, and 
pressure highly affect the solubilities of hydrocarbon gases in the aqueous solutions1,5,6,9,68. The ionic strength (I) 
as a single characteristic of aqueous electrolyte solutions was utilized in the modeling process instead of multiple 
salt concentrations of brine solutions in order to reduce the dimensions of the modeling process. Considering 
mi as the molar concentration of each ion and zi as valance of charged ions in brine solutions, the ionic strength 
(I) is defined as follows:

In this study, two approaches were considered for modeling. First, hydrocarbon gases solubility (ηh: mole 
fraction) is assumed to be a function of eight independent parameters: temperature (K), pressure (MPa), ionic 
strength of the solution (M), the mole percent of each component (C1, C2, C3, and C4) in the gas mixture, and 

(1)I =
1

2

∑

mi|zi|
2
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carbon number (IDX: 1, 2, 3, and 4) of the gas component (methane, ethane, propane, and n-butane) whose 
solubility is to be predicted:

The mentioned approach is similar to that utilized in Samani et al.52 and Nabipour et al.53 works. The second 
approach is that hydrocarbon gases solubility (ηh: mole fraction) is assumed to be a function of five input param-
eters: pressure (MPa), temperature (K), ionic strength of the solution (M), the pseudo-critical temperature of the 
gas mixture (Tpc), and the critical temperature of the gas component (Tcgas) whose solubility is to be predicted:

Here, if Tci is the critical temperature of individual components and yi is the molar fraction of individual 
components in the gas mixture of n components, Tpc can be calculated as follows69:

(2)ηh = f (P, T, I, C1, C2, C3, C4, IDX)

(3)ηh = f
(

P, T, I, Tpc, Tcgas
)

Table 1.   The solubility systems of light hydrocarbon gases in pure water and aqueous electrolyte systems.

Solubility system Pressure (MPa) Temperature (K) Solubility (mole fraction) References

Methane + pure water

0.973–17.998 275.11–313.11 C1: 0.000204–0.002459 9

2–40.03 283.2–303.2 C1: 0.000563–0.004049 24

2.5–100 344.25 C1: 0.000127–0.005085 5

2.53–60.8 293.1–353.1 C1: 0.000361–0.004328 25

4.13–34.47 310.9–344.2 C1: 0.000602–0.00335 23

1.327–6.451 297.5–518.3 C1: 0.0002124–0.0010337 20

9.81–113.27 423.2–633.2 C1: 0.001–0.18 57

0.101325 273.15–283.15 C1: 0.0000444–0.0000345 58

0.101325 273.42–353.15 C1: 0.0000188–0.0000445 59

Ethane + pure water

0.5–4 283.2–303.2 C2: 0.000119–0.000864 24

0.8–69.61 310.92–444.26 C2: 0.0000698–0.0033 21

2.5–100 344.25 C2: 0.000821–0.001398 5

0.05074–0.11 275.44–323.15 C2: 0.00002073–0.0000725 60

0.373–4.952 274.26–343.08 C2: 0.0000854–0.0009696 61

20–370 473.15–673.15 C2: 0.005–0.34 62

0.101325 285.5–345.6 C2: 0.000016– 0.0000434 63

Propane + pure water

0.357–3.915 277.62–368.16 C3: 0.0000321–0.0002694 2

0.0995–3.409 288.7–410.9 C3: 0.0000078–0.000313 64

0.49–4.269 278.87–422 C3: 0.0000796–0.000366 65

0.101325 285.45–347.25 C3: 0.0000118–0.0000415 63

n-Butane + pure water

2.5–100 344.25 C4: 0.000021–0.000103 5

0.12–3.044 310.9–410.9 C4: 0.000016–0.0001771 22

25.5–83 628.15–637.15 C4: 0.025–0.077 62

0.101325 277.15–328.15 C4: 0.000011–0.000058 66

Methane/ethane + pure water
1–4 275.2–283.2 C1: 0.000643–0.00115

C2: 0.000098–0.0001475
24

4.58–54.572 310.9–344.2 C1: 0.00045–0.003336
C2: 0.000232–0.002439

23

Methane/propane + pure water 4.92–55.26 377.59 C1: 0.000862–0.003702
C3: 0.00015–0.001863

23

Ethane/propane + pure water 4.58–55.26 377.59 C2: 0.000208–0.000929
C3: 0.000188–0.000642

23

Methane/ethane/propane + pure water 4.58–34.57 344.26–377.59
C1: 0.000768–0.003276
C2: 0.000119–0.001396
C3: 0.0000019–0.000607

23

Methane/ethane/n-butane + pure water 0.987–14.407 278.14–313.12
C1: 0.000218–0.002191
C2: 0.000014–0.000067
C4: 0.00000387–0.0000112

9

Methane + pure water, NaCl 10.13–61.6 324.65–398.15 C1: 0.000805–0.0043 67

Methane + pure water, NaCl, LiCl, NaBr, NaJ, CaCl2 4.09–45.89 298.15–423.15 C1: 0.00017–0.00269 68

Methane + pure water, KCl, LiBr, KBr, LiCl 0.3–10.23 313.1–373.2 C1: 0.00003–0.00154 4

Methane/ethane/propane + pure water, NaCl 6.22–20.1 274.55–299
C1: 0.00099–0.0028
C2: 0.000038–0.00024
C3: 0.000006–0.000042

6
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In the second approach, although the number of parameters has been reduced, by using the parameters of the 
pseudo-critical temperature of the gas mixture and the critical temperature of gaseous components instead of 
the mole percent of each component in the gas mixture and the carbon number, the development of the model 
becomes more general. Table 2 presents the statistical details of the databank (including all inputs utilized in 
both modeling approaches along with hydrocarbon gases solubility as the models’ target) utilized to model the 
solubility of light hydrocarbon gases and their mixtures in water and aqueous electrolyte solutions.

Table 2 reports that the ionic strength of brine solutions based on molarity is in the range of 0–37.351 M. The 
mole percent of light hydrocarbon gases (C1-C4) in the gaseous mixture was in the range of 0–100%. The experi-
mental solubility data of light hydrocarbons and their mixtures in water and aqueous electrolyte systems have 
also been gathered over broad ranges of operating temperatures, 273.15–637.15 (K), and pressures, 0.05–113.27 
(MPa). Hence, the variety of input variables is broad enough to provide a general machine learning-based pre-
dictive tool for estimating light hydrocarbon gases and their mixtures in water and aqueous electrolyte systems.

Model development
Adaptive boosting (AdaBoost).  The Adaptive boosting (AdaBoost) technique established by Freund and 
Schapire70 seeks to develop a powerful classifier by integrating weak classifiers and benefiting from their failures. 
In other words, it repeatedly chooses the training inputs in order to complement several classifiers and apply the 
proper weight for every classifier depending on its performance, with larger weights allocated to miscategorized 
data sets. The following are the common parts of the AdaBoost procedure71:

Step 1: Weights determination: wj =
1
n .j = 1.2. . . . .n

Step 2: Providing the training data to a weak learner Wli(x) , assigning weights, and calculating the weighted 
error for each i.

Step 3: The weights should be calculated for each i for estimators: βi = log
(

(1−Erri)
Erri

)

Step 4: Changing the weights of the data for each i to N (N refers to the count of the learner).
Step 5: Setting a weak learner to the data test (x) as a response.
Support vector regressors are utilized as weak learners in the AdaBoost algorithm in this research.

Support vector machine for regression (SVR).  Although support vector machine is a collection of 
controlled machine learning techniques that may be applied for regression and classification72, support vector 
regression (SVR) is routinely used for soft calculation since it has a well-defined mathematical model. Because of 
its consistency in simulating numerous complicated structures, SVR has recently piqued researchers’ curiosity. 
Since the main theory of SVR has been published73, it is just shortly presented in this work for the sake of brevity. 
The SVR objective is to catch a regressor f(x) for such a sample data [

(

x1.y1
)

. . . . ..
(

xn.yn
)

] , having x ∈ Rd as the 
d-dimensional input dataset and y ∈ R as the output variable (which relies on the inputs), in order to calculate 
the output:

Here w denotes weight, b indicates bias vectors, and φ(x) represents the kernel function. To get the 
proper aforementioned parameters, Vapnik et al.74 developed the following minimizing method:

(4)Tpc =

n
∑

i=1

yiTci

Erri =

∑n
j=1wjI(tj �= wli(x))

∑n
j=1wj

, I(x) =

{

0ifx = false
1ifx = true

(5)f (x) = w.φ(xi)+ b

minimize
1

2
wTw + C

N
∑

j=1

(

ζ−j + ζ+j

)

Table 2.   Statistical description of the solubility databank utilized in the present research.

IDX
Temperature 
(K)

Pressure 
(MPa)

Ionic 
strength (M) C1 (mole %) C2 (mole %) C3 (mole %) C4 (mole %)

Tpc of gas 
mixture (K) Tcgas (k)

Solubility 
(mole 
fraction)

Mean 1.829521 341.1801 14.11 3.252 56.65336 20.70442 15.66009 6.98213 258.7715 268.3451 0.002634

SD 0.978137 64.15295 19.78 7.656 45.11362 36.41282 33.02423 24.61655 1.79276 1.96642 0.013492

Minimum 1 273.15 0.051 0 0 0 0 0 190.56 190.56 3.87E−06

Maximum 4 637.15 113.27 37.351 100 100 100 100 425.12 425.12 0.18
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where transposed matrix of w is represented by wT , error connivance by ε , positive factors expressing the lower 
and higher extra variances by ζ+j  and ζ−j  , and positive regularization parameter indicating the variation from ε 
by C.

The abovementioned constraints optimization issue is transformed into a dual function utilizing Lagrange 
multipliers, yielding the subsequent solution:

where a∗k and ak indicate the Lagrange multipliers, while K(xk .xl) is the kernel function. Figure 1 presents a 
schematic image of the proposed AdaBoost-SVR in this study.

Decision tree (DT).  This method75 is derived from natural sources and may be used to tackle both regres-
sion and classification problems. Root nodes, leaf nodes, internal nodes, and branches make up this system. The 
inputs are carried by the root node, which is the initial portion of the proposed technique. The last section of 
the diagram, known as the leaf nodes or final nodes, represents the model’s output. Between the root and leaf 
nodes are internal nodes. The nodes are linked together by branches. Pruning, dividing, and halting are the three 
major activities used to build a decision tree76. The data dividing stage begins from the root node just before 

(6)











(w.∅(xi)+ b)− yi ≤ ε + ζ−j
yi − (w.∅(xi)+ b) ≤ ε + ζ+j
ζ+j .ζ−j ≥ 0.i = 1.2 . . . .m

(7)f (x) =

n
∑

j=1

(ak − a∗k)K(xk , xl)+b

Datasets

Weak SVR…. ….

Adaptive boosting 
(AdaBoost)

Strong SVR…. ….

Validation

Figure 1.   Schematic illustration of the proposed AdaBoost-SVR.
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data is presented to the system. This process of separating proceeds until a stopping condition is met77. Figure 2 
depicts the basic DT.

Random forest (RF).  The decision tree is an effective machine learning technique; however, it has two flaws. 
First, while the estimation error of the decision tree is typically low in training data, the forecasting deviation is 
sometimes high because it is susceptible to small disturbances in the training samples; second, while the separat-
ing law in each node is desirable, according to the previous section, this greedy strategy cannot assure that the 
overall decision tree is the best. By simultaneously training many trees and transforming several weak learners 
into powerful learners, ensemble techniques can address these two problems. A random forest is made up of a set 
of different decision trees that are all being learned at the same time. The system determines the superiority and 
significance of each decision tree78. Furthermore, a constructed attribute of the Classification model that is used 
to choose different attributes allows the RF to govern various inputs characteristics without the requirement to 
remove a set of variables for dimension decrement 79. The RF approach uses a process called Bagging throughout 
the simulation to increase the variety of trees in the forest. Usually, the system provides the number of trees as an 
input, and the algorithm divides datasets into distinct groupings as a result. Bagging is a sort of sample selection 
approach that uses only a third of the datasets in the learning phase of the subtree creation procedure, with the 
other inputs being known as the out-of-bag data (OOB). Moreover, verification of outputs is not necessary for 
the RF during model building since the correctness of the model may be assessed utilizing OOB’s errors80. The 
RF technique is shown in Fig. 3. If the system is provided with a training dataset as a prerequisite, the training 
procedure will be completed. If you have a training sample in the form of D = [

(

x1.y1
)

.
(

x2.y2
)

. . . .
(

xn.yn
)

] , Dt 
is the described training data for tree ht , and the final estimation of the out-of-bag dataset of sample x is Hoob , 
as shown:

The error of the OOB data is extended as following for modeling purposes:

The functioning of the RF must be randomized, and this characteristic is regulated by the variable k = log2d
80. The following equation may be used to determine the importance of a feature of a parameter Xi:

Correspondingly, the ith component is characterized by Xi in the X vector, B represents the number of trees 
in the existing RF, the original OOB datasets are offered as the OOBerrt , which involves the replaced parameters, 
and the estimated error of the OOB samples is described by ÕOBerrti , which refers to the attribute Xi of tree t.

Extra tree (ET).  The Extra trees 81 are a novel machine learning approach that was created as an improve-
ment of the random forest model and is less prone to over-fit a database81. Extra tree (ET) randomly selects a set 

(8)Hoob(x) = argmax
∑T

t=1
I(ht(x)) = y

(9)εoob(x) =
1

|D|

∑

(x.y)ǫD
I(Hoob(x) �= y)

(10)I(Xi) =
1

B

∑B

t
ÕOBerrti − OOBerrt
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Figure 2.   Schematic illustration of a typical decision tree.
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of attributes to train a basic predictor82, using the same idea as random forest. For dividing the node, it chooses 
the best characteristic and the matching value at random82. For every regression tree, ET utilizes all training data. 
In contrast, RF’s model is trained using a bootstrap replica.

Genetic programming (GP).  GP is an organized method for getting machines to automatically solve a 
problem beginning with a high-level statement of what ought to be accomplished. GP is a systematic approach 
that is independent of a problem domain, that genetically reproduces a population of programs to solve a 
problem83,84. Programs are ‘bred’ through the continuous progress of an initially random population of pro-
grams. Actually, in this iterative improvement approach, at each new step of the algorithm, it selects only the 
fittest of the descendant to pass and regenerate in the subsequent production, which is occasionally referred to 
as a fitness function85. More explanations related to the application of this algorithm in the implementation of 
symbolic regression can be found elsewhere in the literature86–88.

Group method of data handling (GMDH).  GMDH89 features fully automatic structural and parametric 
optimization of models and is a kind of inductive algorithm for computer-based mathematical modeling of 
multi-parametric datasets. In the inner levels of the GMDH method90, there are multiple independent neurons. 
All neurons per layer are attached in couples via a quadratic polynomial and form individual neurons in the 
structure of polynomials in the subsequent layer91. Each GMDH neuron’s generated value is determined by 
employing a quadratic polynomial representative that comprises the preceding neuron92,93. The quadratic poly-
nomial procedures merging the neurons in the earlier levels will create the neurons in the subsequent layers94. 
To amend the limitations of the primary GMDH method89, the hybrid GMDH is usually utilized which has 
more than two independent variables that can be combined concurrently and it permits the intersection of nodal 
within diverse layers. The succeeding formula shows the final form of the hybrid GMDH95:

Here, M is the count of inputs, l stands for the count of layers, xi, xj, …, xk are the inputs, a, bij…k denote the 
polynomial coefficients, and Y indicates the model output.

(11)Yi = a +

M
∑

i=1

M
∑

j=1

· · ·

M
∑

k=1

bij...kx
n
i x

n
j . . . x

n
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Figure 3.   A schematic of the random forest model.
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Equations of state (EOSs).  An EOS is utilized to relate pressure, volume, and temperature (PVT) for both 
systems of a pure substance and for multi-component mixtures. There are many EOSs in the thermodynamic 
literature that is used to describe vapor–liquid-equilibria, solubility estimation, thermal features, and volumetric 
properties of a substance or multi-component mixtures71. In this work, three famous EOSs, namely SRK, VPT, 
and PR, have been utilized to estimate the solubility of light hydrocarbon gases in water with the purpose of 
comparing them with machine learning algorithms. Tables S1 in the Supplementary file presents the PVT rela-
tionships of these EOSs. Also, the parameters of considered EOSs are presented in Table S2. Besides, acentric 
factors and critical properties of the light hydrocarbon gases and water are represented in Table S3 used in EOSs.

Assessment of models
The following statistical factors viz., determination coefficient (R2), average absolute percent relative error 
(AAPRE), root mean square error (RMSE), and standard deviation (SD) were employed to assess the accuracy 
of the machine learning models. The mathematical formula of these statistical criteria is defined below96,97:

where N refers to the count of data, ηi,exp shows the experimental hydrocarbon gases solubility, and ηi,pred is pre-
dicted hydrocarbon gases solubility in the liquid phase by presented models.

In the present research, the subsequent graphical analyses are utilized simultaneously to assess the perfor-
mance of machine learning-based models and correlations:

Histogram plot: in this graph, the discrepancy between the experiments data and prediction of the model 
can be seen statistically, which helps to evaluate the model’s performance.

Cross-plot: the cross-plot graph illustrates the correlation between experimental solubilities and predicted 
values by models with the fact that the higher the concentration of data nearby the unit-slope line, the better 
the model’s prediction.

Error distribution plot: the scatter of error (exp-pred) around the zero-error line is evaluated to check for 
possible error trends.

Trend plot: the experiments data and prediction of the model are plotted versus a special property to assess 
the model’s validation by checking the coverage of these data. High data coverage shows the high validity of the 
model.

Cumulative frequency graph: it is a statistical plot for quantifying the precision of the models, which is shown 
by drawing the cumulative frequency of data against absolute error (exp-pred).

Results and discussion
Correlations’ development.  As mentioned earlier, this work employed white-box modeling approaches 
to create precise predictive correlations for the solubility of light hydrocarbon gases and their mixture in brine. 
The correlations utilize the second modeling approach having five inputs (P, T, I, Tpc of gas mixture, Tcgas) to 
calculate hydrocarbon gases solubility. The reason for choosing five parameters for the development of math-
ematical correlations was that, firstly, a simpler mathematical expression was obtained and solubility calcula-
tions become easier, and secondly, the correlation become more general by using the pseudo-critical of the gas 
mixture instead of using the percentage of gas (C1–C4) composition. The proposed correlations by GMDH and 
GP methods are presented below:

GMDH correlation:

(12)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

ηi,exp − ηi,pred
)2

(13)R2 = 1−

N
∑
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(ηi,exp − ηi,pred)

2

N
∑
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100
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N
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∣

∣

∣

∣
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∣

∣

∣

∣

(15)SD =

√

√

√

√

1
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(

ηi,exp − ηi,pred
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)2

Solubility = −0.000257478+ N6 ∗ 0.104357+ N1 ∗ 0.995504

N1 = −0.000402032+ P ∗ 3.34159e − 05+ N2 ∗ 0.976721

N2 = 0.000417773+ N5 ∗ 0.163256+ N3 ∗ 0.277835+ N3
2 ∗ 6.25097
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GP correlation:

Evaluation of the models.  In the current study, R2, AAPRE, SD, and RMSE were utilized to appraise the 
models’ estimates. The results of these statistical criteria for all predictive tools are presented in Table 3. As can 
be observed in this table, for both modeling approaches, AdaBoost-SVR, Extra Tree, Random Forest, and DT 
models can be classified in terms of high exactness for predicting the whole dataset, respectively. However, for 
the test subset, AdaBoost-SVR, Random Forest, DT, and Extra Tree models, respectively, had the best estimates, 

N3 = 0.000769644+ N4 ∗ N5 ∗ 81.1485− N4
2 ∗ 31.6265− N5

2 ∗ 30.9349

N4 = 0.0113595−T2∗1.51522e−07+T∗P∗3.24299e−09+T 4∗4.06799e−13−P∗0.000290132−P2∗1.23427e−06

(16)
N5 = 0.00995312+ Tc,

2 ∗ 4.48223e − 08− Tc
2 ∗ T2

pc ∗ 5.36312e − 13

+ (Tc)
4 ∗ 3.23202e − 14− T

2
pc ∗ 1.85458e − 07+ T

4
pc ∗ 9.26622e − 13

N6 = 0.0128381−Tc2∗2.05784e−07+Tc2∗I∗5.76622e−09+(Tc)4∗8.16174e−13−I∗0.00081115+I2∗1.35367e−05

(17)

Solubility =













log(log(c0P + c1))
c2Tc

exp(
(c3T)
c4I

)

− (exp(c5)exp(c6T)−
�

c7Tpc + log
�

log
�

log((c8P + c9))
���






c10 + c11







c0 = 0.909; c1 = −19.076; c2 = 0.45799; c3 = 0.6495; c4 = 15.867; c5 = 4.777; c6 = 0.026667;

c7 = 0.87809; c8 = 0.909; c9 = −19.194; c10 = 9.7169E − 12; c11 = 0.0018755

Table 3.   Statistical error analysis for the developed models and correlations.

Statistical criteria RMSE SD R2 AARPE, %

Random forest (8 inputs)

Train 0.001099 0.47198 0.9928 15.092

Test 0.001628 0.47280 0.9886 16.089

Total 0.001223 0.47217 0.9917 15.292

Decision tree (8 inputs)

Train 0.000154 0.27784 0.9998 17.019

Test 0.000383 0.63358 0.9991 20.762

Total 0.000220 0.37761 0.9997 17.769

AdaBoost-SVR (8 inputs)

Train 0.000099 0.20911 0.9999 10.433

Test 0.000101 0.25008 0.9999 11.497

Total 0.000099 0.21807 0.9999 10.647

Extra tree (8 inputs)

Train 0.000218 0.23459 0.9997 11.979

Test 0.002642 0.69527 0.9585 25.802

Total 0.001199 0.37821 0.9921 14.750

Random forest (5 inputs)

Train 0.001099 0.61834 0.9928 15.365

Test 0.001803 0.37921 0.9860 14.314

Total 0.001272 0.57841 0.9911 15.154

Decision tree (5 inputs)

Train 0.000170 0.43871 0.9998 18.313

Test 0.000391 0.85103 0.9991 21.875

Total 0.000231 0.54727 0.9997 19.027

AdaBoost-SVR (5 inputs)

Train 0.000102 0.25916 0.9999 11.613

Test 0.000109 0.44120 0.9999 13.643

Total 0.000104 0.30470 0.9999 12.020

Extra tree (8 inputs)

Train 0.000331 0.22614 0.9994 11.413

Test 0.002457 1.06098 0.9642 31.982

Total 0.001138 0.52128 0.9928 15.536

GMDH correlation (5 inputs)

Train 0.001973 1.06744 0.9769 17.470

Test 0.006485 0.88234 0.8190 34.834

Total 0.003397 1.03387 0.9365 20.951

GP correlation (5 inputs)

Train 0.002456 0.57392 0.9643 13.640

Test 0.006386 0.53905 0.8245 27.615

Total 0.003605 0.56727 0.9286 16.441
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which is the most important part of the assessment of models. AAPRE values of 10.64% for the total collection, 
11.49% for the test collection, and 10.43% for the train collection, as well as a total R2 value of 0.9999, indicating 
that the AdaBoost-SVR model developed with 8 inputs had the most precise predictions of hydrocarbon gases 
solubilities in aqueous electrolyte solutions. After that, in terms of accuracy, the AdaBoost-SVR model devel-
oped with 5 inputs with an AAPRE of 12.02% for the total collection and a total R2 value of 0.9999 ranks second 
among all models. AdaBoost-SVR models have the least overall values of RMSE, SD, and AAPRE along with the 
highest overall R2 value among the other machine learning models leading us to conclude that this model is the 
most accurate model for predicting light hydrocarbon gases and their mixtures in water and aqueous electrolyte 
solutions. Moreover, despite the expected poorer performance than machine learning models, the mathemati-
cal correlations yielded by GP and GMDH methods show satisfying results with AAPRE values of 16.44% and 
20.95%, respectively.

In the next step, the performance of the machine learning algorithms was compared with SRK, PR, and VPT 
EOSs. To this end, the solubilities data of light hydrocarbon gases in pure water at different operating conditions, 
acquired from the literature2,9,22,61, was predicted by the developed machine-learning models, mathematical cor-
relations, and three EOSs. Table 4 reports the predictions of these predictive tools and EOSs as well as calculated 
AAPRE. Aa represented in Table 4, AdaBoost-SVR models are superior to all machine learning-based predictive 
tools and EOSs showing AAPRE values of 5.13% (AdaBoost-SVR model with 5 inputs) and 5.45% (AdaBoost-
SVR model with 8 inputs), which is the least among these predictive tools. Among the EOSs, VPT, SRK, and PR 
are ranked in terms of good predictions, respectively. Moreover, the mathematical correlations generated by the 
GMDH and GP techniques demonstrate satisfactory results with an AAPRE of approximately 10%.

To gain a better vision of the validity of the machine learning models in the training and testing stages, 
graphical error analyses were conducted along with statistical analyses. First, cross plots of all models are com-
pared in Fig. 4. As pointed out earlier, the nearer the data to the X = Y line, the greater precision of the model 
in prognosticating hydrocarbon gases and their mixtures in water and aqueous electrolyte systems. As can be 
observed in Fig. 4, the AdaBoost-SVR models (developed with 8 and 5 inputs) have the high closest data around 
the X = Y line compared to the other suggested models and correlations, which exhibits the great robustness 
and validness of these models for the prediction of hydrocarbon gases solubility in aqueous electrolyte systems. 
However, other models have also performed well. Next, the error distribution graphs of all developed predictive 
tools based on temperature and pressure are illustrated in Fig. S1 in the supplementary file. These plots help 
to distinguish the performance of the models at different pressures and temperatures. Fig. S1(a) shows the low 
scatter of errors around the zero-error line for all models at different pressures, especially AdaBoost-SVR and 
DT models. Fig. S1(b) demonstrates that the AdaBoost-SVR models have the least scattering of errors around 
the zero-error line compared to other models and correlations at different temperatures. In relation to Random 
Forest, Extra Tree, and GMDH models, it seems that although the predictions of these models show a low error 

Table 4.   Estimates of EOSs, mathematical correlations, and machine-learning models for the solubilities of 
light hydrocarbon gases in pure water.

Solubility system Data No. P (MPa)

Gas solubility, mole fraction

Exp DT (8 inputs)
Extra tree (8 
inputs)

AdaBoost-SVR 
(8 inputs)

Random forest 
(8 inputs) DT (5 inputs)

Extra tree (5 
inputs)

AdaBoost-SVR 
(5 inputs)

Random forest 
(5 inputs)

GMDH 
correlation (5 
inputs)

GP correlation 
(5 inputs) PR SRK VPT

Methane + water, 
at 275 K9

1 0.973 0.000399 0.000263 0.000349 0.000393 0.000324 0.000263 0.000351 0.000379 0.000363 0.000331 0.000364 0.000298 0.000302 0.000351

2 1.565 0.000631 0.000668 0.000524 0.000666 0.000784 0.000667 0.000581 0.000666 0.000737 0.000559 0.000593 0.000401 0.000703 0.000553

3 2.323 0.000901 0.000668 0.000636 0.000863 0.000901 0.000668 0.000694 0.000866 0.000787 0.000764 0.000966 0.000608 0.001005 0.000805

4 2.82 0.001061 0.000668 0.000624 0.000939 0.000919 0.000669 0.000698 0.000944 0.000902 0.000766 0.001046 0.000802 0.001204 0.000947

Ethane + water, at 
303 K61

5 0.373 0.000134 0.000192 0.000150 0.000138 0.000170 0.000192 0.000156 0.000141 0.000134 0.000157 0.000171 0.000103 0.000102 0.000101

6 0.719 0.000240 0.000192 0.000225 0.000245 0.000210 0.000192 0.000247 0.000246 0.000197 0.000240 0.000222 0.000193 0.000201 0.000205

7 1.093 0.000346 0.000412 0.000353 0.000346 0.000388 0.000415 0.000356 0.000347 0.000355 0.000328 0.000275 0.000284 0.000296 0.000311

8 1.598 0.000472 0.000675 0.000492 0.000491 0.000511 0.000675 0.000462 0.000487 0.000522 0.000452 0.000471 0.000396 0.000414 0.000414

9 2.299 0.000630 0.000675 0.000598 0.000611 0.000616 0.000676 0.000570 0.000620 0.000606 0.000623 0.000629 0.000487 0.000508 0.000539

10 2.932 0.000742 0.000675 0.000694 0.000734 0.000728 0.000677 0.000654 0.000740 0.000722 0.000727 0.000741 0.000584 0.000610 0.000638

11 3.977 0.000883 0.000685 0.000755 0.000844 0.000800 0.000679 0.000731 0.000844 0.000767 0.000812 0.000882 0.000680 0.000702 0.000802

Propane + water, at 
368 K2

12 0.41 0.000032 0.000053 0.000047 0.000046 0.000052 0.000053 0.000047 0.000042 0.000045 0.000041 0.000060 0.000027 0.000028 0.000027

13 1.028 0.000089 0.000114 0.000105 0.000096 0.000110 0.000114 0.000105 0.000093 0.000114 0.000095 0.000089 0.000073 0.000075 0.000073

14 1.433 0.000120 0.000114 0.000134 0.000122 0.000135 0.000115 0.000131 0.000121 0.000137 0.000123 0.000121 0.000100 0.000102 0.000102

15 1.94 0.000159 0.000150 0.000169 0.000167 0.000177 0.000150 0.000170 0.000168 0.000173 0.000161 0.000158 0.000129 0.000132 0.000139

16 2.495 0.000199 0.000202 0.000202 0.000205 0.000204 0.000202 0.000209 0.000203 0.000204 0.000205 0.000181 0.000156 0.000160 0.000170

17 2.997 0.000224 0.000259 0.000226 0.000228 0.000232 0.000258 0.000230 0.000225 0.000235 0.000230 0.000230 0.000176 0.000181 0.000193

18 3.503 0.000248 0.000271 0.000249 0.000249 0.000257 0.000233 0.000246 0.000288 0.000263 0.000311 0.000254 0.000214 0.000210 0.000212

19 3.915 0.000260 0.000271 0.000253 0.000257 0.000259 0.000234 0.000256 0.000257 0.000274 0.000261 0.000266 0.000230 0.000223 0.000221

n-Butane + water, 
at 410 K22

20 0.2792 0.000022 0.000013 0.000052 0.000027 0.000020 0.000013 0.000041 0.000025 0.000019 0.000033 0.000018 0.000033 0.000032 0.000027

21 1.003 0.000076 0.000114 0.000087 0.000074 0.000093 0.000114 0.000082 0.000073 0.000081 0.000072 0.000063 0.000059 0.000058 0.000056

22 1.486 0.000110 0.000114 0.000117 0.000107 0.000110 0.000114 0.000112 0.000106 0.000116 0.000105 0.000086 0.000096 0.000093 0.000088

23 1.727 0.000123 0.000150 0.000124 0.000122 0.000121 0.000151 0.000124 0.000124 0.000127 0.000120 0.000116 0.000111 0.000109 0.000103

24 2.43 0.000157 0.000163 0.000156 0.000157 0.000163 0.000155 0.000158 0.000158 0.000159 0.000151 0.000161 0.000150 0.000142 0.000133

25 3.044 0.000177 0.000163 0.000171 0.000173 0.000177 0.000177 0.000175 0.000176 0.000177 0.000166 0.000177 0.000173 0.000164 0.000158

AAPRE, % 21.20 16.04 5.45 11.46 20.91 13.19 5.13 9.79 10.06 10.02 20.05 17.07 15.02
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Figure 4.   Cross-plots of the developed machine learning models and mathematical correlations.
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at low temperatures, at high temperatures, the scattering of error is high. Overall, the AdaBoost-SVR models are 
superior to other machine learning models in different temperature and pressure ranges.

In the next step, the histograms of errors between experimental solubilities and prognosticated values associ-
ated with all models are illustrated in Fig. 5. The computed error values for all models are located in a narrow 
scope from −0.001 to 0.001. This figure shows that the histograms of all machine learning models benefit from 
normal distributions. However, despite the excellent performance in the training phase, the histogram of the 
Extra Tree model seems to be a bit skewed in the testing phase. As can be observed in Fig. 5, all histogram plots 
benefit from the bursts of growing at zero-error value, which indicates the excellent match between the estimated 
solubility data and experimental values. However, again AdaBoost-SVR and DT models display less error for 
more data during both testing and training stages in both modeling approaches.

The next step of graphical error analysis is a helpful statistical plot for quantifying the precision of the models 
and correlations, named cumulative frequency plot. As shown in Fig. 6, the cumulative frequency curves of the 
AdaBoost-SVR models are very close to the vertical axis, which indicates the high accuracy of these models. 
Besides, more than 70% of predicted gas solubility data by the AdaBoost-SVR models have an absolute error of 
less than 0.00004, and more than 90% of the predicted data have an error of less than 0.00013. Meanwhile, other 
models and correlations including Extra Tree, DT, Random Forest, GP, and GMDH represent absolute errors of 
0.00015–0.0003 for 90% of the data, respectively. Therefore, this conclusion can be drawn that the AdaBoost-SVR 
models are superior to other models and correlations in estimating the solubility of hydrocarbon gases and their 
mixtures in water and aqueous electrolytes.

According to the results of statistical and graphical analyses of machine learning models, it can be concluded 
that the AdaBoost-SVR models (developed with 8 and 5 inputs) are more precise in estimating the solubility of 
hydrocarbons in water and brine solutions than other models suggested in this work. To assess the accuracy of 
the proposed AdaBoost-SVR models against the available predictive models in the literature for estimating the 
solubility of hydrocarbon gases, the AdaBoost-SVR results were compared with two machine learning models, 
including Samani et al.52 and Nabipour et al.53, which are shown in Table 5. As depicted in Table 5, the AdaBoost-
SVR models proposed in this study have the lowest AAPRE values plus the highest R2 value, indicating that the 
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Figure 5.   Histograms of residuals for the machine learning models and correlations.
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AdaBoost-SVR models are more precise than other artificial intelligence models presented in the literature for 
estimating the solubility of hydrocarbon gases.

Trend analysis.  As mentioned earlier, the AdaBoost-SVR models are more accurate in predicting the solu-
bility of light hydrocarbon gases in aqueous solutions than other models. Hence, the solubilities of hydrocarbon 
gases in several solubility systems have been investigated to evaluate the ability of the AdaBoost-SVR models 
in estimating the true physical trend of gases solubility in the liquid phase. In the beginning, the solubilities of 
methane, ethane, and n-butane in a gas mixture + pure water system at a temperature of 283 K9 were estimated 
utilizing the AdaBoost-SVR models and three EOSs, and the outcomes are depicted in Fig. 7. As demonstrated 
in Fig. 7, EOSs overestimated or underestimated the solubilities of hydrocarbon gases in water at low-temper-
ature conditions. However, VPT EOS again is superior to SRK and PR EOSs and provides better estimations. 
Nevertheless, both AdaBoost-SVR models (developed with 8 and 5 inputs) offer an exceptional ability to track 
solubility data of hydrocarbon gases with increasing pressure at low-temperature conditions compared to EOSs. 
Although the accuracy of EOSs has been lower than machine learning models, this does not mean questioning 
the capabilities of these thermodynamic equations. EOSs predict solubility data based on the thermodynamic 
variables within an analytical framework and they are valuable tools in the modeling of a wide range of indus-
trial processes. Here, only a comparison between predictions of developed models and EOSs was made to clarify 
the high predictability of these models. Hence, machine learning models can be considered as an alternative to 
achieve accurate and fast predictions of the solubility of gases in brine in order to cover the disadvantages of 
EOSs mentioned earlier.

Next, the solubilities of methane and propane mixtures in pure water, which has been experimentally inves-
tigated by Amirijafari23 at a temperature of 377.59 K under high-pressure conditions, was predicted by the 
AdaBoost-SVR models, as demonstrated in Fig. 8. As depicted in the figure, both AdaBoost-SVR models cor-
rectly predicted the solubilities of methane and propane in pure water by increasing the pressure as an important 
parameter affecting solubility.

Figure 5.   (continued)
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In the next step, the solubility of methane in water versus pressure at different temperatures was predicted by 
the AdaBoost-SVR models, which has been examined in the literature9. The solubilities of methane, as the basic 
constituent of natural gas, in pure water and aqueous electrolyte systems at different pressure and temperature is 
crucial for the petroleum industry. As shown in Fig. 9, the solubility of methane in water at various pressure and 
temperature conditions is accurately predicted by the AdaBoost-SVR models. As can be seen, the temperature 
has a decreasing impact on the methane’ solubility in water at the studied pressures, which is correctly estimated 
by the AdaBoost-SVR models.

Eventually, the solubilities of methane in pure water and in aqueous NaCl solutions with different salt concen-
trations at a temperature of 324.65 K, which has been studied experimentally in the literature67, was predicted by 
the AdaBoost-SVR models. As can be observed in Fig. 10, the solubility of methane has an appreciable decrease 
with an increase in salt concentration or ionic strength of the solution. Again, both AdaBoost-SVR models pro-
vide accurate predictions for the systems of methane + water and methane + aqueous salt solution with different 
concentrations at different pressures with very little deviation from the experimental data.
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Figure 6.   Cumulative frequency plot of the proposed predictive tools for estimating the solubility of 
hydrocarbon gases.

Table 5.   Statistical factors for the available hydrocarbon gases solubility predictive models and the proposed 
AdaBoost-SVR models.

Models RMSE R2 AARPE, %

Samani et al.52

Train 0.00013 0.9893 28.78

Test 0.00017 0.9834 37.84

Total 0.00014 0.9880 30.60

Nabipour et al.53

Train 0.0001 0.9850 22.049

Test 0.0001 0.9870 22.054

Total 0.0001 0.9850 22.050

AdaBoost-SVR (8 inputs)

Train 0.000099 0.9999 10.433

Test 0.000101 0.9999 11.497

Total 0.000099 0.9999 10.647

AdaBoost-SVR (5 inputs)

Train 0.000102 0.9999 11.613

Test 0.000109 0.9999 13.643

Total 0.000104 0.9999 12.020
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Sensitivity analysis.  In parametric studies, identifying the impacts of all inputs on the output can be valua-
ble. As stated earlier, two modeling approaches with 8 and 5 inputs were adopted in this work. The first approach 
was that there were 8 inputs including the temperature, pressure, ionic strength of the solution, the mole percent 
of each component (C1, C2, C3, and C4) in the gas mixture, and carbon number (IDX) of the gas component 
whose solubility is to be predicted. On the other hand, the second approach considered 5 inputs containing the 
temperature, pressure, ionic strength of the solution, the pseudo-critical temperature of the gas mixture, and 
the critical temperature of the gas component whose solubility is to be predicted. To check the relative effects 
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of these input variables on the solubilities of hydrocarbon gases in water and aqueous electrolyte systems, the 
relevancy factor (r)98 was employed in this research. It should be mentioned that the outcomes of all developed 
models and correlations developed in this work along with experimental data have been utilized for sensitivity 
analysis to make a comparison between the results of all models in both modeling approaches. Positive or nega-
tive values of r for an input parameter indicate a direct or inverse relationship between that parameter and the 
output, respectively. The higher value of r between an input variable and output, the greater the impact of that 
input on the solubilities of hydrocarbon gases in water and aqueous electrolyte systems. The subsequent equation 
is utilized for calculating the r-values for the input parameters99:

where i could be any of the input parameters considered for modeling; inpm,i and inpi,j respectively indicate the 
mean and jth value of the ith input parameter. ηm stands for the mean of predicted solubility of hydrocarbon 
gases in water and aqueous electrolyte systems and ηj is the jth value of predicted solubilities of hydrocarbon 
gases. Figure 11 illustrates the relative impacts of considered input variables on the solubilities of hydrocarbon 
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gases in water and brine solutions. As seen in Fig. 11a, in the first modeling approach, the temperature, pressure, 
and methane (mole %) in the gas mixture had the greatest effects on hydrocarbon gases solubility. Also, the mole 
percent of the n-butane in the gas mixture was the least effective parameter for estimating the solubilities of 
hydrocarbon gases. Based on results, the temperature, pressure, and mole percent of methane and n-butane in 
the gas mixture have direct effects, and mole percent of ethane and propane in the gas mixture, IDX, and ionic 
strength of the solutions have reverse effects on the solubility of investigated hydrocarbon gas. An increase in the 
ionic strength of the solution decreases the solubilities of hydrocarbon gases in aqueous electrolyte systems. In 
the second modeling approach, as shown in Fig. 11b, the results of sensitivity analysis for temperature, pressure, 
and ionic strength variables have been obtained quite similarly to the previous case. Moreover, the pseudo-critical 
temperature of the gas mixture and the critical temperature of the gas components have negative effects on the 
solubility of light hydrocarbon gases and their mixture in brine, which exhibits that the solubility decreases with 
the rise of these parameters. As inferred from the results of the sensitivity analysis of both modeling approaches, 
the feature-solubility correlations are completely independent of machine learning frameworks and the impact 
of each specific input variable applied for modeling in each model or correlation developed in this work are the 
same and similar to the laboratory results.

Implementation of Leverage method.  Finally, the degree of precision of utilized data along with the 
application scope of the AdaBoost-SVR models was examined using the Leverage approach100–102, which can 
assess the validity of these model and solubility databank. The subsequent equation was utilized to calculate the 
variations of the prognosticated solubility values by the model from the real data, which is named standardized 
residuals (R)103:

in which, the mean square error of the predictive tool is shown by MSE; Hzz shows Leverage of the zth data; and 
ez denotes the variation of the estimations from the experiments of the zth data. Afterward, the following formula 
is utilized to calculate the values of Hat matrix Leverage104:

where KT shows the transpose of the matrix K, which is (g × c) matrix; g and c indicate the number of databank 
points and the number of input variables, respectively. Besides, the critical Leverage limit (H*) is achieved using 
3(c + 1)/g.

The reliable zone is considered to be the cut-off area of R-values (−3 and 3) and Hzz ≤ H*, as shown in William’s 
plot in Fig. 12. This figure exhibits that the bulk of data, called valid data, rested in the reliable zone that proves 
the high reliability of the hydrocarbon solubility databank and high validation of the AdaBoost-SVR models. 
For the AdaBoost-SVR model developed with 8 inputs, as depicted in Fig. 12a, quantitative identification of the 
outliers of the used databank shows that only 54 data points (2.94% of the whole data) have an R-value outside 
the range of −3 to 3, which is considered suspected data. In addition, only 35 data points (1.91% of the whole 
data) have Hzz > 0.0147, which is regarded as out of Leverage data, while other data have acceptable Leverage 
(Hzz ≤ 0.0147). For the AdaBoost-SVR model developed with five inputs, due to the reduction of the number 
of input variables, the critical Leverage limit value is reduced to H* = 0.0098, and the application scope of the 
model becomes more limited. However, there is no specific change in the number of suspected data points (54 
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data points means 2.94% of the whole data), and only the out of Leverage data has increased to 70 (3.81% of 
the whole data). As shown in Fig. 12b, these points are also predicted by the model with a very low error, and 
they are just statistically beyond the critical Leverage limit. Hence, it cannot be considered a negative point for 
the model. The results of the Leverage mathematical method reveal the validity of the hydrocarbon solubility 
databank and the high credit of both AdaBoost-SVR models in estimating the solubility of hydrocarbon gases 
in water and brine solution systems.

Conclusions
In the present study, the solubilities of the principal hydrocarbon components of natural gas in water and aqueous 
electrolyte solutions were modeled utilizing six machine learning algorithms. A large databank (1836 experi-
mental data points) of hydrocarbon gases solubility was gathered from numerous sources of literature to cover 
a wide range of temperature and pressure conditions. Two different approaches including eight and five inputs 
were adopted for modeling. Also, three famous EOSs, including PR, VPT, and SRK were used in comparison 

Idx Temperature Pressure Ionic strength C1 C2 C3 C4

Experimental -0.1087 0.6300 0.4606 -0.0643 0.1227 -0.0792 -0.0807 0.0006

AdaBoost-SVR -0.1087 0.6305 0.4604 -0.0640 0.1227 -0.0793 -0.0808 0.0008

Extra Tree -0.1026 0.6363 0.4619 -0.0643 0.1186 -0.0798 -0.0808 0.0090

Random Forest -0.1110 0.6452 0.4713 -0.0659 0.1258 -0.0813 -0.0829 0.0008
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Figure 11.   The impact of input variables on hydrocarbon gases solubility in water and aqueous electrolyte 
systems in the (a) first and (b) second modeling approaches.
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with machine learning models. Based on graphical and statistical analyses, the best-developed models in this 
work, namely AdaBoost-SVR developed with eight and five inputs, are able to predict the solubility of hydro-
carbon gases and their mixture with an overall AAPRE of 10.65% and 12.02%, respectively, and R2 of 0.9999. 
The AdaBoost-SVR models outperform other models developed in this work, EOSs, and intelligence models 
proposed in the literature. Also, the Random Forest, DT, and Extra Tree models are positioned subsequent to 
the AdaBoost-SVR model in terms of high precision in predicting test collection in both modeling approaches. 
Despite higher errors than machine learning models, two mathematical correlations generated by the GMDH 
and GP techniques had satisfactory outcomes. Among the EOSs, VPT, SRK, and PR are ranked in terms of good 
predictions, respectively. Based on sensitivity analysis, the temperature and pressure had the greatest effect on 
hydrocarbon gases solubility in both modeling approaches. Regarding the gas mixture composition (C1–C4), the 
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Figure 12.   Detection of applicability area, suspected data, and outliers of AdaBoost-SVR models developed 
with (a) 8 inputs and (b) 5 inputs.
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percentage of methane and n-butane in the gas mixture was the most and least effective parameter for predicting 
the solubility of hydrocarbon gases in brine, respectively. Additionally, an increase in the ionic strength of the 
solution and the pseudo-critical temperature of the gas mixture decreases the solubilities of hydrocarbon gases 
in aqueous electrolyte systems. Moreover, the influence of input variables on light hydrocarbon gases solubility is 
completely independent of machine learning frameworks. Eventually, the investigation of the Leverage technique 
proved the high validity of the hydrocarbon solubility databank and the high credit of the AdaBoost-SVR models 
in predicting hydrocarbon gases solubility in water and aqueous electrolyte systems.
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