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Abstract
Staufen-1 (STAU1) is an RNA-binding protein that becomes highly overabundant in numerous neurodegenerative disease
models, including those carrying mutations in presenilin1 (PSEN1), microtubule-associated protein tau (MAPT), huntingtin
(HTT), TAR DNA-binding protein-43 gene (TARDBP), or C9orf72. We previously reported that elevations in STAU1
determine autophagy defects and its knockdown is protective in models of several neurodegenerative diseases. Additional
functional consequences of STAU1 overabundance, however, have not been investigated. We studied the role of STAU1 in
the chronic activation of the unfolded protein response (UPR), a common feature among neurodegenerative diseases and
often directly associated with neuronal death. Here we report that STAU1 is a novel modulator of the UPR, and is required
for apoptosis induced by activation of the PERK–CHOP pathway. STAU1 levels increased in response to multiple
endoplasmic reticulum (ER) stressors, and exogenous expression of STAU1 was sufficient to cause apoptosis through the
PERK–CHOP pathway of the UPR. Cortical neurons and skin fibroblasts derived from Stau1−/− mice showed reduced UPR
and apoptosis when challenged with thapsigargin. In fibroblasts from individuals with SCA2 or with ALS-causing TDP-43
and C9ORF72 mutations, we found highly increased STAU1 and CHOP levels in basal conditions, and STAU1 knockdown
restored CHOP levels to normal. Taken together, these results show that STAU1 overabundance reduces cellular resistance
to ER stress and precipitates apoptosis.

Introduction

Stress granules (SGs) are cytoplasmic aggregates of ribo-
some units, mRNA and RNA-binding proteins that assem-
ble as an adaptive response to stress, allowing survival
under adverse conditions. Staufen-1 (STAU1) is an RNA-
binding protein that localizes to SGs during stress, and can
shape a cell’s transcriptome through multiple mechanisms,
including regulation of translation efficiency, SG assembly,
mRNA transport, and Staufen-mediated mRNA decay

[1–11]. We recently identified STAU1 as an interactor of
wild-type and mutant ATXN2. Mutant ATXN2 causes the
polyglutamine disease spinocerebellar ataxia type 2 (SCA2)
[1, 2]. We subsequently discovered substantial increases in
STAU1 in multiple cell and animal models of human neu-
rodegenerative diseases, including those carrying mutations
in presenilin1, microtubule-associated protein tau, hun-
tingtin, TAR DNA-binding protein-43 gene (TARDBP), or
C9orf72–SMCR8 complex subunit (C9orf72) [1], as well as
stroke and myotonic dystrophy [1, 3, 12]. STAU1 over-
abundance can also be triggered by a variety of acute
noxious stimuli such as calcium increase, endoplasmic
reticulum (ER) stress, hyperthermia, and oxidative stress
[1, 13]. Autophagy defects and IRES-mediated translation
are the currently described mechanisms for STAU1
increase, both relevant protein abundance regulatory path-
ways during neurodegeneration [1, 13].

In neurodegenerative diseases, pathological mutations
cause an increased load of misfolded and aggregated pro-
teins and alterations in calcium homeostasis, leading to ER
stress and activating the unfolded protein response (UPR)
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[14, 15]. The UPR is a coordinated cellular response
orchestrated by three main signaling pathways downstream
of protein kinase RNA-like ER kinase (PERK), inositol-
requiring enzyme 1 (IRE1), and activation transcription
factor 6 [15]. Activation of the UPR upregulates adaptive
mechanisms that promote proper protein folding and reg-
ulate calcium balance, including chaperone gene expres-
sion, global suppression of protein synthesis, and
stimulation of autophagy and the proteasome. Failure to
restore ER homeostasis leads to eIF2α phosphorylation
downstream of PERK and induction of the proapoptotic
transcription factor C/EBP homologous protein (CHOP),
triggering the intrinsic apoptotic pathway [15–17]. In
addition to signaling through the UPR, phosphorylation of
eIF2α is a critical early step of SG formation, as inhibition
of protein synthesis leads to the aggregation of inactive
translation complexes into SGs [18, 19].

Here we demonstrate that STAU1 is required for the acti-
vation of apoptosis triggered by ER stress. Accordingly,
STAU1 knockout cells were refractory to apoptosis induced by
ER stress. STAU1 knockdown was sufficient to prevent the
terminal activation of the UPR in cellular and animal models of
SCA2 and ALS associated with improvement of motor deficits
in vivo [2]. In all, our study describes a novel connection
between the RNA-granule protein STAU1 and ER-stress-
induced apoptosis that can be targeted in neurological diseases.

Methods

Cell lines and cell culture

Cell culture media and reagents were purchased from
Thermo Fisher Scientific unless otherwise specified.
HEK293 cells and fibroblasts were maintained in DMEM
supplemented with 10% fetal bovine serum. Gene editing of
endogenous ATXN2 in HEK293 cells to express ATXN2
with 58 CAG repeats was performed with CRISPR/Cas9
according to the published protocols [20], as detailed pre-
viously in our work [2]. Cells were periodically screened by
PCR to confirm the preservation of ATXN2-Q58. Fibro-
blasts from patients were obtained from a skin punch biopsy
or from Coriell Cell Repositories (Camden, NJ, USA). All
subjects biopsied gave written consent and procedures were
approved by the Institutional Review Board at the Uni-
versity of Utah (IRB_00035351 and IRB_00040048).
Supplementary Table 1 lists all human fibroblasts, their
genetic mutation and repository identification number. All
mutations were verified by PCR sequencing. Identity
authentication of HEK293 cells and human fibroblasts was
carried out by short tandem repeat analysis with the Gen-
ePrint 24 System (Promega, USA) and mycoplasma testing
was carried out regularly.

Mice

All mice were housed and bred in standard vivarium con-
ditions and experimental procedures were approved by the
Institutional Animal Care and Use Committee (IACUC) of
the University of Utah. The Stau1tm1Apa(−/−) (Stau1−/−)
mouse [5] was a generous gift from Prof. Michael A. Kie-
bler, Ludwig Maximilian University of Munich, Germany.
Stau1−/− mice were maintained in a C57BL/6BJ back-
ground and Pcp2-ATXN2[Q127] (ATXN2Q127) mice [21]
were maintained in a B6D2F1/J background. ATXN2Q127

(Pcp2-ATXN2[Q127]) mice [21] were crossed with
Stau1tm1Apa(−/−) (Stau1−/−) mouse to generate ATXN2Q127/Tg

Stau1tm1Apa(+/−) and ATXN2Q127/Wt Stau1tm1Apa(+/−).
These mice were then bred to produce ATXN2Q127/Tg

Stau1tm1Apa(−/−) and ATXN2Q127/Wt Stau1tm1Apa(−/−) in a
mixed background of B6D2F1/J and C57BL/6J. Animals
were genotyped according to the previously published
protocols [5, 22]. To obtain western blot samples, mice
were sacrificed at 34 weeks of age.

Primary cultures of cortical neurons

Cultures of cortical neurons were prepared from WT or
Stau1−/− neonatal mice euthanized according to the IACUC
approved protocols. Cortices from 6 to 7 animals were
isolated, cut into 2 mm segments, and incubated with 50
units of papain (Worthington Biochemical, USA) in Earle’s
balanced salt solution with 1.0 mM L-cysteine and 0.5 mM
EDTA for 15 min at 37 °C. Digested tissue was washed
with EBSS and mechanical dissociation was performed with
a 1 ml micropipette in the presence of 0.1 mg/ml of DNase1
(Sigma-Aldrich). Cell suspension was filtered through a 40
µm strainer (Corning) to remove any remaining aggregates.
Neurons were seeded on poly-L-ornithine (Sigma-Aldrich)
and laminin coated plates at a density of 50,000 per cm2 in
Neurobasal Plus medium containing 2% B27 Plus supple-
ment. To prevent proliferation of glial cells 1 µM cytosine
arabinoside (Sigma-Aldrich) was added on day 2 and 90%
of the media volume was changed after 24 h. From there on,
60% of culture medium was replenished every 2–3 days.
Experiments were conducted on day 9–10 by replacing all
culture media with fresh media containing thapsigargin or
vehicle (DMSO).

DNA constructs, siRNA, cell treatments, and
transfections

Plasmid construct 3xFlag-tagged STAU1 (3xF-STAU1)
was prepared as detailed previously [2]. All constructs were
cloned into a pCMV-3xFlag plasmid (Agilent Technolo-
gies, USA) and verified by sequencing. The sequences or
commercial origin of all siRNAs used in this study are listed
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in the Supplementary Table 4. For siRNA experiments
HEK293 cells or fibroblasts were transfected with lipo-
fectamine 2000 and harvested after 72 h. For over-
expression of recombinant proteins in HEK293 cells we
utilized lipofectamine 3000 for 4 h and harvested after 72 h.
For experiments involving both overexpression of recom-
binant protein and siRNA, HEK293 cells were transfected
as specified for recombinant protein and 24 h later for
siRNA. Cells harvested 48 h after the last transfection.
Information on the pharmacological agents used to treat
cells are listed in Supplementary Table 3.

Western blotting

Protein homogenates from cultured cells were prepared by
scraping cells in phosphate buffered saline and lysing the
pellets in Laemmli sample buffer (Bio-Rad), followed by
boiling for 5 min. Tissues were manually homogenized with
a pestle in extraction buffer (25 mM Tris-HCl pH 7.6, 300
mM NaCl, 0.5% Nonidet P-40, 2 mM EDTA, 2 mMMgCl2,
0.5 M urea, and protease inhibitors (Sigma-Aldrich)). After
clarification supernatants were mixed with Laemmli buffer
and boiled for 5 min. All protein extracts were resolved by
SDS-PAGE and transferred to Hybond P membrane
(Amersham Bioscience), blocked in Tris-buffered saline
0.1% Tween-20 with 5% skim milk and primary antibody
was incubated overnight in this same solution or 5% bovine
serum albumin when antibodies were directed against
phosphorylated epitopes. Information about all antibodies
used in Supplementary Table 2. After incubation with the
corresponding secondary antibody signal was detected
using Immobilon Western Chemiluminescent HRP Sub-
strate (EMD Millipore) or SuperSignal™ West Pico PLUS
Chemiluminescent Substrate (Thermo Fisher Scientific) and
photographed with a Bio-Rad ChemiDoc. Analysis and
quantification was performed with Image Lab software
(Bio-Rad). Relative protein abundance was first normalized
against actin band intensity and then expressed as the ratio
to the normalized control.

Immunocytochemistry

Cells were cultured in NUNC Lab-Tek chamber slides,
fixed with paraformaldehyde 4% in phosphate buffered
saline, and staining was performed according to the pre-
viously published protocols [21, 23]. Imaging was per-
formed at the Fluorescence Microscopy Core Facility, a part
of the Health Sciences Cores at the University of Utah.

Quantitative RT-PCR

RNA extraction from cell cultures was performed with the
RNeasy mini kit (Qiagen) according to the manufacturer’s

instructions and cDNA was prepared from 1 µg of RNA
with the ProtoScript cDNA synthesis kit (New England
Biolabs). Quantitative RT-PCR was performed at the
Genomics Core Facility, a part of the Health Sciences
Cores at the University of Utah. PCR reactions were carried
out with Sybr Green PCR Master Mix (Thermo
Fisher Scientific). Primer sequences are listed in Supple-
mentary Table 4. Gene expression was normalized to
GAPDH levels and analyzed with the relative standard
curve method.

Cytotoxicity quantification

Cytotoxicity was quantified with the CytoScanTM LDH
Cytotoxicity Assay (G-Biosciences). WT and Stau1−/−

fibroblasts were plated in 96-well plates and treated with
thapsigargin for 24 h. Cell culture supernatant was then
collected and LDH was quantified following the manu-
facturer’s instructions for chemical compound induced
cytotoxicity. Results were normalized for each genotype
against a maximum LDH release (cells incubated with lysis
buffer) and a spontaneous LDH activity (untreated control
cells). Cytotoxicity percentage was then calculated as
((compound treated− spontaneous LDH activity)/(max-
imum LDH release− spontaneous LDH activity)) × 100.

Statistical analysis

All results are presented as mean ± standard error of the
mean (SEM) unless noted otherwise. Comparisons between
groups were made using the Student’s t test in OriginPro
2017 software. Level of significance was set at p ≤ 0.05.
Levels of significance are noted as *p ≤ 0.05, **p ≤ 0.01,
and ns= p > 0.05, unless otherwise specified.

Results

ER stress causes increase in STAU1 mRNA and
protein levels

To investigate STAU1 response to ER stress, we treated
HEK293 cells with thapsigargin, which depletes ER cal-
cium reserves, tunicamycin to inhibit N-linked glycosyla-
tion, ionomycin, a calcium ionophore, or brefeldin A,
blocking secretion from the Golgi apparatus [24] and
evaluated STAU1 levels and activation of the UPR after 18
h. Increasing doses of thapsigargin, tunicamycin, ionomy-
cin, and brefeldin A resulted in increasing abundances of
both STAU1 and CHOP (Fig. 1a). The effects of thapsi-
gargin on STAU1 mRNA were apparent between 4 and 8 h
after treatment and protein levels followed them between 8
and 18 h (Fig. 1b, c).
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Lowering STAU1 protects cells from apoptosis
induced by ER stress

In order to study functional consequences of STAU1
overabundance caused by ER stress in neurological disease,
we examined the response of mouse primary cortical neu-
rons and skin fibroblasts derived from WT, or Stau1−/−

mice to thapsigargin. In agreement with the results in Fig. 1,
thapsigargin elicited an increase in STAU1 in
WT cells, along with large increases in CHOP and cleaved
caspase 3. In Stau1−/− neurons, CHOP induction was sig-
nificantly lower (9.3 ± 3 in WT vs 4.6 ± 1.3 in Stau1−/−

when treated with 1 µM thapsigargin), and cleaved caspase
3 levels were significantly reduced (3.9 ± 1.2 in WT vs
1.4 ± 0.5 in Stau1−/−) (Fig. 2a). Similar results were seen in
fibroblasts, where Stau+/− cells evidence a STAU1 dose-
dependency of CHOP and cleaved caspase 3 activation
(Fig. 2b).

To further demonstrate the role of STAU1 in ER-stress-
induced apoptosis, HEK293 cells were transfected with a
control siRNA (siControl) or a STAU1 siRNA (siSTAU1)
and challenged with thapsigargin for 18 h. STAU1 siRNA
was effective at preventing induction of STAU1 expression
under stress (Supplementary Fig. 2a). Thapsigargin caused a

sharp induction of STAU1, UPR, and apoptosis in control
cells, whereas the response was greatly attenuated upon
silencing of STAU1, characterized by lower levels of BiP, p-
eIF2α, CHOP, and cleaved caspase 3 (Fig. 2d).

To confirm that the role of STAU1 in ER-stress-induced
apoptosis was general to ER stress and not specific to
thapsigargin, we analyzed cells treated with tunicamycin or
brefeldin A, which induce ER stress by vastly different
mechanisms. We found that STAU1 knockdown also atte-
nuated the UPR and apoptotosis (Supplementary Fig. 1a, b),
indicating STAU1 has a role modulating life and death
decisions when cells are faced with ER stress.

Assessment of cell death by quantification of LDH release
caused by loss of plasma membrane integrity showed a 63.9%
reduction in cytotoxicity in Stau1−/−

fibroblasts when com-
pared with WT (Fig. 2c) (20.9 ± 2.8 average cytotoxicity in
WT vs 13.2 ± 3.2 in Stau1−/−). These results indicate that the
difference in active caspase levels effectively translates to
protection against cell death in Stau1−/− cells.

STAU1 silencing significantly reduced baseline levels of
ATF4 and CHOP mRNA in HEK293 cells (Fig. 2e), and
attenuated their induction by thapsigargin (Fig. 2f). Baseline
levels of apoptotic factors were also significantly decreased
after STAU1 silencing (Supplementary Fig. 2b). Their

Fig. 1 STAU1 overabundance induced by ER stress or calcium
dyshomeostasis. a HEK293 cells were incubated with tunicamycin
(0.1 and 0.5 µM), ionomycin (0.5 and 1 µM), brefeldin A (0.5 and
1 µM), and thapsigargin (0.5 and 1 µM) for 18 h. Levels of STAU1 and
CHOP were evaluated by western blot. Graph represents quantification
of STAU1/actin from three independent experiments. Single asterisk
(*) or double asterisks (**) denote significantly different from

untreated control. b Relative STAU1 mRNA levels in HEK293 cells
treated with thapsigargin (0.5 µM) for the times indicated. c Levels of
STAU1 protein in HEK293 cells treated with thapsigargin (0.5 µM) for
the times indicated. Graph represents quantification of STAU1/actin
for three independent experiments. Data are mean ± SEM. *p < 0.05
and **p < 0.01 according to the paired sample t test.
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transcriptional induction after thapsigargin did not reach
statistical significance (not shown), in agreement with pre-
vious reports showing their acute activity is regulated
mainly posttranscriptionally.

ATF4 and CHOP transcription increased immediately
after addition of thapsigargin and peaked at 4 h (Fig. 2f). In
contrast, STAU1 protein and mRNA levels showed a
delayed increase, only evident 4–8 h after addition of
thapsigargin (Fig. 1b, c). The fact that silencing STAU1
decreased both basal and induced levels of ATF4 and
CHOP mRNAs even before overabundance of STAU1 was
evident suggests that baseline levels of STAU1 may play a
role in the modulation of ATF4 and CHOP mRNA levels.
Therefore, overabundance of STAU1 might not be neces-
sary to mediate its proapoptotic effects.

In all, our data show that STAU1 amplifies the activation
of the UPR in a proapoptotic manner and knockdown or
knockout of STAU1 is sufficient to prevent apoptosis dur-
ing ER stress.

STAU1 causes ER stress and apoptosis through the
PERK–CHOP pathway

To understand the pathways by which STAU1 can mod-
ulate ER-stress-induced apoptosis, we studied cells
expressing exogenous STAU1 in the absence of any other
stressors or disease-related mutations. Exogenous STAU1
expression caused a substantial increase in the eIF2α kinase
PERK and in p-PERK levels, p-eIF2α and activation of
caspase 3. This was prevented by a PERK inhibitor or
siRNA against PERK (Fig. 3). These results indicate
increased STAU1 signals through the PERK pathway to
cause apoptosis, and its inhibition was sufficient to com-
pletely prevent the effects of STAU1.

Because STAU1 interacts with the eIF2α kinases PKR
and GCN2 [25, 26], we studied all four eIF2α kinases for
involvement in STAU1-mediated apoptosis. We found that
each of them contributed to phosphorylation of eIF2α, but
only PERK and PKR mediated apoptosis (Supplementary

Fig. 2 Attenuated UPR and apoptosis in cells deficient in STAU1.
Western blots of cultured cortical neurons (a) or skin fibroblasts (b)
from WT, Stau1+/−, or Stau1−/− mice incubated with thapsigargin
(0.25 and 0.5 µM, 18 h). Graph represents quantification of target
protein/actin from three independent experiments. c Cytotoxicity
assessment by quantification of LDH release in WT or Stau1−/− mouse
fibroblasts exposed to indicated doses of thapsigargin for 24 h.
d Western blots of HEK293 cells transfected with siControl or

siSTAU1 for 72 h and incubated with thapsigargin (0.5 and 1 µM) for
18 h. e mRNA levels of CHOP and ATF4 in HEK293 72 h post
transfection with siControl or siSTAU1 and f after treatment with
thapsigargin (0.5 µM) for the times indicated. Single asterisk (*),
double asterisks (**), single dagger (†), or double daggers (††) denote
significantly different from WT or siControl treated with the corre-
sponding dose of thapsigargin. Data are mean ± SEM. * or †p < 0.05,
** or ††p < 0.01 by two-way ANOVA.
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Fig. 3). These results indicate that phosphorylation of eIF2α
is not required for apoptosis triggered by STAU1.

Decreasing STAU1 prevents ER stress and apoptosis
in cellular and mouse models of SCA2

To study if the proapoptotic effects of STAU1 occurred in
cells stressed by mutations known to cause neurodegen-
eration, we studied cells and mice with mutations in
ATXN2, the protein mutated in SCA2 [27]. Previously we
found calcium dyshomeostasis and increased STAU1 levels
in SCA2 cells and mice [2, 28, 29] but we did not study
whether this was associated with ER stress. We utilized
HEK293 cells edited by CRISPR/Cas9 to introduce an
expansion of 58 CAG repeats into one ATXN2 allele
(ATXN2-Q58 cells) and the parental HEK293 cell line as
control (ATXN2-Q22) [2]. We found that ATXN2-Q58
cells had increased levels of the UPR proteins BiP, IRE1,
p-eIF2α, spliced XBP1, and CHOP. Silencing of ATXN2

was sufficient to restore them to normal levels (Supple-
mentary Fig. 4a, b).

Mouse models of SCA2 display increased STAU1 levels
in the nervous system. Decreasing STAU1 in vivo protects
Purkinje neurons and delays the onset of motor symptoms
[2]. We studied whether STAU1 linked ATXN2 to apop-
tosis in models of SCA2. In ATXN2-Q58 cells, STAU1
silencing was sufficient to decrease UPR activation, evi-
denced by a significant reduction in the levels of BiP, IRE1,
PERK, p-eIF2α, and CHOP (Fig. 4a). In contrast, abun-
dance of unspliced XBP1 and spliced XBP1 was increased
by STAU1 silencing. This may represent a restorative
mechanism, as XBP1 is essential to prevent cell death
caused by ER stress (Fig. 4a). STAU1 silencing significantly
decreased CHOP, total caspase 3 and cleaved caspase 3,
indicating that STAU1 was necessary for proapoptotic
activation of the UPR in this model (Fig. 4a, b). Fibroblasts
derived from an SCA2 patient with a pathological ATXN2
expansion (ATXN2-Q45) recapitulated these findings, as
evidenced by a significant decrease in CHOP when STAU1
was silenced (Fig. 4c). Increased CHOP and p-eIF2α in
cerebella of ATXN2-Q127 mice was improved by STAU1
haploinsufficiency, indicating STAU1 can also modulate
ER-stress-induced apoptosis in vivo (Fig. 4d).

Because alterations in calcium homeostasis have been
previously described in SCA2 models [28–32], we inves-
tigated whether they had a role in induction of apoptosis by
STAU1 in ATXN2-Q58 cells. We found that STAU1 levels
in ATXN2-Q58 cells were sensitive to changes in cyto-
plasmic calcium, as they were normalized by the intracel-
lular calcium chelator BAPTA-AM and a CAMKK2
inhibitor (STO-609) (Supplementary Fig. 5a, b). CAMKK2
is Ca2+/calmodulin-dependent protein kinase kinase that is
activated in response to an increase in the cytosolic-free
calcium. In addition, depleting IP3 levels with lithium and
valproic acid or blocking calcium efflux from the ER with
IP3R or RyR channel blockers (Xestospongin C, 2-ABP,
dantrolene, or DHBP) also decreased STAU1, indicating
that both types of calcium channels are involved in raising
cytoplasmic calcium in ATXN2-Q58 cells (Supplementary
Fig. 5a, b). These results provide evidence that a proa-
poptotic signaling axis involving calcium alterations,
STAU1 and ER stress is active in this model of SCA2.

Decreasing STAU1 prevents ER stress in cellular
models of ALS and FTD

We studied fibroblasts derived from two patients with
mutations in the TDP-43 gene and two with expansions
in C9ORF72, causative of ALS and FTD, respectively. In
these cells, STAU1 protein levels were increased between
three- and ninefold, along with a markedly activated UPR.
Silencing STAU1 was able to prevent UPR activation,

Fig. 3 Exogenous STAU1 induces apoptosis through the PERK
pathway of the UPR. HEK293 cells were transfected with 3xFlag-
STAU1 (3xF-STAU1) or empty vector control (3xF) with addition of
siRNA directed at PERK (siPERK) after 24 h or the PERK inhibitor
GSK2606414 (0.5 µM) after 48 h. After a further 18 h, protein levels
were analyzed by western blot. Graphs represent the quantification of
three independent experiments. Single asterisk (*) or double asterisks
(**) denote significantly different from 3xF control. Single dagger (†)
or double daggers (††) denote significantly different from same geno-
type control. Data are mean ± SEM. ∗ or †p < 0.05, ∗∗ or ††p < 0.01
according to the paired sample t test.
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including a strong decrease in CHOP, indicating STAU1
contributed to the pathological phenotype in cells estab-
lished from ALS and FTD patients (Fig. 5a,b).

Discussion

STAU1 is an RNA-binding protein with key roles in RNA
metabolism and SG formation [2, 11]. Previous reports
highlighted a striking overabundance of STAU1 in multiple
models of neurological disease [1, 2]. The functional con-
sequences of this observation, however, have not been fully
explored. We have identified STAU1 as a modulator of
apoptotic signaling during ER stress in multiple models of
neurological disease and also in normal cells exposed to
pharmacological stressors. This conclusion is substantiated
by a number of observations, namely, (a) ectopic expression
of exogenous STAU1 caused apoptosis through the
PERK–CHOP pathway, (b) STAU1 knockout or

knockdown cells showed attenuated UPR and apoptosis in
response to ER stressors, and (c) basal levels of UPR acti-
vation and apoptosis in cellular and mouse models of
SCA2, TDP-43 ALS, and C9ORF72 FTD were markedly
decreased by STAU1 knockdown.

Our data suggest that STAU1 lies both upstream and
downstream of UPR activation. Exogenous expression of
STAU1 was sufficient to induce ER stress, terminally
activating the PERK–CHOP pathway (Fig. 3). Analo-
gously, ER stress triggered STAU1 increase, creating a
convergent maladaptive feed forward mechanism that
amplified STAU1 abundance, ER stress, and apoptosis
(Fig. 1).

The PERK–CHOP arm of the UPR is the canonical
proapoptotic pathway, orchestrating cell death by inhibiting
autophagy, increasing SG formation, altering the redox state
of the cell, promoting expression of GADD45 (growth
arrest and DNA-damage-inducible protein), and down-
regulating the antiapoptotic mitochondrial protein BCL-2

Fig. 4 Attenuation of UPR and apoptosis in cellular and animal
models of SCA2 by siSTAU1 or genetic interaction. a Western blot
of proteins involved in the UPR, and b caspase 3 and cleaved caspase
3 in ATXN2-Q22 and ATXN2-Q58 cells. Graph represents quantifi-
cation of three independent experiments. c Western blot of fibroblasts
derived from an SCA2 patient with ATXN2-Q45 mutation. d Western
blot of cerebellar tissue from WT, ATXN2-Q127 mice and Stau1+/−

haploinsufficient littermates at 34 weeks of age. Graph represents
quantification of three animals per genotype. Single asterisk (*) or
double asterisks (**) denote significantly different from ATXN2-Q22
or WT control. Single dagger (†) or double daggers (††) denote sig-
nificantly different from same genotype control. Data are mean ± SEM.
* or †p < 0.05, ** or ††p < 0.01 according to the paired sample t test.
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[15, 33–36]. These events lead to mitochondrial damage,
release of cytochrome c, and activation of caspase 3. In the
present study we found that STAU1 could modulate the
PERK pathway, upregulating ATF4 and CHOP and there-
fore precipitating cell death (Figs. 2 and 3).

Absence of caspase 3 cleavage and lowered LDH release
were consistent with resistance to ER-stress-induced
apoptosis in STAU1 knockout and knockdown cells
(Fig. 2a, b, c). Our results indicate that STAU1 over-
abundance increases cellular sensitivity to apoptosis, as
STAU1 overabundance increased both total caspase 3 and
cleaved caspase 3 levels in baseline and stressed conditions,
whereas STAU1 knockout or knockdown decreased baseline
transcript levels of CHOP, ATF4, and BCL-2 family of
apoptosis mediators. As increased caspase 3 levels can
decrease the apoptotic threshold when cells are exposed to
stress, lowering STAU1 could therefore constitute a strategy
to increase resistance to proapoptotic stress by lowering
total caspase level and transcripts of ATF4, CHOP, and
BCL-2 family of apoptosis mediators.

We showed profound changes in eIF2α phosphorylation
levels in response to STAU1 overexpression (Fig. 3) or
STAU1 silencing (Figs. 4 and 5) and in STAU1 knockout
cells (Fig. 2). A previous report showed that modulating
STAU1 abundance did not impact levels of phosphorylated
eIF2α under normal or stress conditions, despite being able
to alter SG dynamics [6]. A probable reason for this dis-
cordance is that in Thomas et al., p-eIF2α was analyzed a
maximum of 3 h after the addition of the stress, while we
assessed it after 18 h of stimulation or in chronic patholo-
gical states generated by disease-causing mutations. In

agreement with results in our previous study, knockdown of
Stau1 by only 50% in SCA2 mice significantly reduced the
presence of aggregates positive for ATXN2 and STAU1 [2].
Our results suggest that overabundance of STAU1, resulting
in p-eIF2α elevations, could contribute to abnormal for-
mation of SG or SG persistence, contributing to aberrant
translation, ribostasis, and proteostasis and leading to
CHOP-dependent apoptosis [1, 2, 18].

Our study of cells derived from patients with ATXN2,
TDP-43, and C9ORF72 mutations, as well as cerebella from
SCA2 mice show that the STAU1–CHOP axis described
here is basally active in these models of neurodegeneration
(Figs. 4 and 5). We previously demonstrated that SCA2
mice benefit from STAU1 knockdown, with improvement
of motor and molecular phenotypes and preservation of
Purkinje cell firing frequency [2]. Our results suggest that a
decrease in ER stress and proapoptotic UPR could be
responsible for these phenotypic improvements. In addition,
PERK is upregulated in several models of neurodegenera-
tion, including overexpression of TDP-43, prion-related
protein and tau, and its inhibition protects against neuronal
damage [14, 37]. These data support STAU1 as a preferred
therapeutic target for neurological disease compared with
PERK, since targeting PERK is limited by its pancreatic
toxicity [38–41].

In conclusion, the present work informs on the role of
STAU1 in multiple diseases by showing that it is a key
modulator of ER-stress-induced apoptosis. STAU1 over-
abundance caused by ER stress or calcium alterations
reduces cellular resistance to ER stress and precipitates
apoptosis through the PERK–CHOP pathway. By

Fig. 5 STAU1 knockdown reduces the proapoptotic activation of
the UPR in fibroblasts from patients with ALS and FTD-causing
mutations. a Western blot of STAU1, p-eIF2α, and CHOP in fibro-
blasts derived from human subjects without disease-related mutation
(normal), with TARDBP A382T (line 1) and one with TARDBP G298S
(line 2) (b) and two individuals with C9ORF72 GGGGCC repeat

expansion (lines 1 and 2). Single asterisk (*) or double asterisks (**)
denote significantly different from control patient. Single dagger (†) or
double daggers (††) denote significantly different from same genotype
control. Data are mean ± SEM. * or †p < 0.05, ** or ††p < 0.01
according to the paired sample t test.
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decreasing ER stress and reducing p-eIF2α, ATF4, CHOP,
and caspases, targeting STAU1 could ameliorate proteos-
tasis, ribostasis, and aberrant SG phenotypes in diseases
caused by ATXN2, TDP-43, and C9ORF72 mutations as
well as other disease gene mutations or sporadic forms of
neurodegenerative diseases. Further understanding of the
molecular mechanisms linking STAU1 and ER stress will
provide insight needed to safely modulate death pathways
for therapeutic benefit.
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