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Abstract

Pancreatic ductal adenocarcinoma (PDAC) ranks among the leading causes of

cancer‐related deaths worldwide. Despite advances in precision oncology in other
malignancies, treatment of PDAC still largely relies on conventional chemotherapy.

Given the dismal prognosis and heterogeneity in PDAC, there is an urgent need for

personalized therapeutic strategies to improve treatment response. Organoids,

generated from patients' tumor tissue, have emerged as a powerful tool in cancer

research. These three‐dimensional models faithfully recapitulate the morphological
and genetic features of the parental tumor and retain patient‐specific heterogeneity.
This review summarizes existing precision oncology approaches in PDAC, explores

current applications and limitations of organoid cultures in personalized medicine,

details preclinical studies correlating in vitro organoid prediction and patient treat-

ment response, and provides an overview of ongoing organoid‐based clinical trials.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest

cancers with a 5‐year survival rate of approximately 13% for all

stages combined.1 With its high mortality rate and rising incidence,

PDAC poses a substantial challenge in clinical care and represents a

global healthcare burden. Despite advances and successes in

precision oncology in other malignancies, treatment of PDAC still

heavily relies on chemotherapy, following a trial‐and‐error approach.
Given the dismal prognosis and tumoral heterogeneity in PDAC,

personalized therapeutic strategies are urgently needed to improve

patient outcomes. Patient‐derived organoids (PDOs) have emerged
as a promising tool in cancer research for preclinical drug evaluation

and individualization of treatments. This review summarizes existing
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precision oncology strategies in PDAC, explores the feasibility of

organoid cultures in personalized medicine, and offers an overview of

ongoing clinical trials using organoid models.

CHALLENGES AND OPPORTUNITIES FOR
PRECISION ONCOLOGY IN PANCREATIC CANCER

Pancreatic tumors can be categorized as resectable, borderline

resectable, locally advanced, or metastatic based on radiological

criteria and involvement of local vasculature. This classification, along

with biological and patient‐related criteria, guides treatment op-
tions.2 For resectable PDAC, upfront surgery is commonly followed

by adjuvant therapy with (modified) FOLFIRINOX (leucovorin, 5‐
fluorouracil, irinotecan, oxaliplatin)3 or gemcitabine with or without

capecitabine4 outside of clinical trials. In borderline resectable and

locally advanced tumors, neoadjuvant chemo(radio)therapy is rec-

ommended, followed by surgical resection and adjuvant therapy, if

feasible. Despite advances in surgical and perioperative approaches,

recurrence rates after curative intended surgery remain high, with

relapse rates ranging between 60% and 79% after 3 years.3 The

majority of patients (>80%) are diagnosed at an advanced tumor
stage and treated with palliative multiagent chemotherapy regimens.

Well‐established first‐line options in the advanced setting are gem-
citabine with or without erlotinib,5,6 gemcitabine plus nanoparticle

albumin‐bound (nab)‐paclitaxel,7 (modified) FOLFIRINOX,8 or

NALIRIFOX (nanoliposomal irinotecan, leucovorin, 5‐fluorouracil,
oxaliplatin).9 Frequent mutations and deletions in cancer driver genes

such as KRAS, TP53, CDKN2A, and SMAD4, accompanied by a high

number of passenger alterations, generate an exceptional inter‐ and
intra‐tumoral heterogeneity. This heterogeneity induces a consider-
able variation in responses to antitumor therapies. Nevertheless, the

choice of regimen primarily depends on clinical aspects such as pa-

tients' performance status and comorbidities, as reliable biomarkers

for predicting treatment effectiveness are lacking in clinical routine.

Chemotherapy is paralleled by extensive systemic toxicity, frequently

requiring dose reductions and often impeding long‐term treatment.
Low tumor specificity and acquired resistance ultimately result in

tumor progression, which is often accompanied by rapid deteriora-

tion of the patients' performance status limiting further therapeutic

options.

Therefore, cancer management is increasingly shifting toward a

precision oncology paradigm, which aims to individualize treatments

for cancer patients based on molecular, cellular, or functional ana-

lyses of their tumor. In PDAC, targeted treatment options based on

individual genomic features demonstrated survival benefits for small

subgroups of patients. Erlotinib, a tyrosine kinase inhibitor of EGFR,

was the first small‐molecule targeted therapy in PDAC to show an
overall significant but clinically not meaningful improvement in

overall survival when combined with gemcitabine.6 In 2019, the

PARP inhibitor olaparib was approved as a maintenance therapy for

germline BRCA1/2 mutations, which are present in 4%–7% of PDAC

patients.10,11 Other targeted therapies for very rare molecular

subgroups include larotrectinib or entrectinib in NTRK fusion‐
positive tumors (0.3%)12–14; pembrolizumab in DNA mismatch

repair‐deficient or microsatellite unstable tumors (1%)15,16; selper-
catinib in RET‐altered cancers (0.6%)17; zenocutuzumab in NRG1
fusions (0.5%)18,19; dabrafenib and trametinib for BRAFV600 muta-

tions (2%)20,21; and sotorasib or adagrasib for KRASG12C mutations

(1%–2%).22,23 Currently, 12%–25% of pancreatic cancers harbor

actionable molecular alterations. However, real‐world data indicate
that less than 2% of patients who were referred for molecular

profiling ultimately received a matched therapy due to insufficient

access to drugs, logistical issues, or physician discretion.24

Genomics‐based precision medicine has the potential to signifi-
cantly improve cancer treatment. Nevertheless, as most genetic al-

terations in PDAC are not (yet) clinically targetable and some

patients do not respond to treatment despite carrying the relevant

mutation, true benefits remain limited. Increasing evidence suggests

that cancer treatment is far more complex than the “mutation‐
centric” precision medicine approach focusing on somatically altered

genes to guide therapy selection. Advances in single‐cell genomic
technologies have revealed that the complexity of cancer extends

beyond mutational heterogeneity to variations in cell transcriptional

states. For instance, Raghavan et al. systematically profiled meta-

static PDAC biopsies and matched organoid models using single‐cell
RNA‐sequencing to examine cell states, their regulation by the tumor
microenvironment (TME), and how modulating these states can in-

fluence drug responses.25 The authors concluded that changes in

transcriptional states strongly impact drug efficiency, proposing cell

state as a targetable feature in cancer treatment. Given that TME

signals play a major role in directing the transcriptional state, ther-

apeutic strategies may need to target site‐specific cells in the TME to
control cell state evolution during treatment.

So far, unselected use of conventional chemotherapy remains the

primary treatment approach for most patients. Therefore, functional

precision oncology is increasingly emerging as a complementary

approach that models individual tumors in vitro, aiming to integrate

the complex tumor phenotype into genotype‐based treatment

decisions.26

PATIENT‐DERIVED ORGANOIDS AS EMERGING
MODELS IN PANCREATIC CANCER

Preclinical systems for translational research

Immortalized cell lines, primary two‐dimensional cultures, cell line‐
derived spheroids, and xenografts have been widely employed to

model and study human disease but have inherent limitations. Hu-

man pancreatic cancer cell lines, established decades ago, are suit-

able for rapid and scalable drug discovery but fail to adequately

represent the biological heterogeneity of PDAC. Patient‐derived
xenograft (PDX) models are generated by subcutaneous or ortho-

topic engraftment of human tumor specimens into immunocompro-

mised mice. PDX models require an average time from engraftment

22 - UNITED EUROPEAN GASTROENTEROLOGY JOURNAL



to drug exposure of 3–8 months, with a take rate generally

comprised between 55% and 65%.27,28 Intra‐tumoral heterogeneity
is preserved in these models and PDX tumor growth regression

matches clinical responses in PDAC patients.27 However, significant

drawbacks for their application in real‐time precision oncology are
slow growth, limitations in tumor take rate, mouse‐specific genetic
evolution, high costs, labor‐intensive maintenance, and the inherent
inability to perform high‐throughput drug screenings.

Recently, PDOs have emerged as a valuable preclinical tool in

precision medicine, filling the gap between in vitro and in vivo

models. These three‐dimensional cultures can be established from
patients' tumor or metastasis within a reasonable timeframe and

allow for scalable, high‐throughput applications. They faithfully
recapitulate the histomorphological and molecular features of the

parental tumor. Strikingly, PDOs accurately capture intra‐tumoral
heterogeneity at a single‐cell level and preserve genetic and epige-
netic properties of the tumor they are derived from.29–31 Of note,

PDX‐derived organoids exhibit sensitivity profiles and response rates
similar to their PDX counterparts,32,33 underlining their potential to

mimic patient response.

Generation of patient‐derived organoids

Organoids first emerged after the establishment of self‐organizing
crypt‐villus units by Sato et al. in 2009.34 Since then, several pro-
tocols for PDO generation from pancreatic tumors have been pub-

lished.35,36 For PDO isolation, patient tumor pieces are mechanically

and enzymatically dissociated, embedded into a matrix that mimics

the extracellular environment to allow three‐dimensional growth and
propagated in a culture medium to provide growth stimulation. Once

established, organoid lines can be expanded indefinitely to reach the

critical biomass required for downstream analysis and cryopreserved

for later use. Organoid cultures can be established from the primary

tumor or metastatic organ lesiona, following different methods of

tissue acquisition, including surgical resections, endoscopic

ultrasound‐guided fine‐needle biopsies, or percutaneous biopsies.
PDOs have recently been generated from fluid‐derived samples, such
as blood, ascites, and peritoneal or pleural effusions, offering non‐
invasive sampling and the opportunity for continuous treatment

monitoring.37–39 Derivation efficacies range between 41% and 78%

and are largely influenced by the source material, sampling method,

tumor cell content, and patient treatment status (naïve vs. pre-

treated).39–47 Interestingly, a recent study found a correlation be-

tween the success rate of PDO establishment and patient survival.

The study observed that patients from whom PDOs were success-

fully isolated had shorter survival times, suggesting that more

aggressive intrinsic tumor features may facilitate organoid deriva-

tion.39 Importantly, different definitions of PDO generation efficacies

coexist, such as emergence of organoid structures within three pas-

sages,45 expansion beyond passage three48 or five,40 or proportion

undergoing preclinical drug testing,44 significantly complicating

comparisons between studies. The average turnaround time from

biopsy collection to drug testing results ranges between 48 and

96 days,39,44–46 but depends on multiple factors such as biopsy mo-

dality, source tissue yield and quality, isolation protocol, intrinsic

organoid growth rate, and required biomass for the subsequent drug

screening assay.

APPLICATIONS OF PATIENT‐DERIVED ORGANOIDS
IN PRECISION ONCOLOGY

Organoid technologies are among the most promising models in

translational research to explore patients' susceptibility to thera-

peutics, study disease mechanisms, and identify novel compounds.

Organoid pharmacotyping for drug response
prediction

Numerous endeavors are underway to cultivate PDOs for preclinical

drug testing, a process known as pharmacotyping, to identify effec-

tive treatments for patients.29 In this regard, Tiriac et al. generated a

library of 66 PDOs derived from PDAC patients that recapitulated

the mutational spectrum and transcriptomic subtype of the primary

tumors.40 PDOs were subjected to therapeutic profiling with five

commonly used chemotherapy compounds (gemcitabine, paclitaxel,

irinotecan/SN‐38, 5‐fluorouracil, and oxaliplatin) and their responses
were classified as sensitive, intermediate resistant, or resistant based

on the area under the curve (AUC) drug‐response metric. Retro-
spective comparison with clinical data in nine patients provided initial

evidence that organoid chemosensitivity profiles faithfully reflected

patient response to therapy. Interestingly, resistant PDO lines

showing poor response to conventional chemotherapeutics still

exhibited susceptibilities to targeted agents, unmasking potential

alternative treatment options for chemorefractory disease.42 At our

medical center, we conducted a prospective feasibility trial to assess

the capability of PDOs in predicting treatment response in PDAC

patients in a clinical routine setting.44 Single agent pharmacotyping

profiles from 28 PDO lines were classified as high, intermediate, or

low responders based on AUCs following Jenks natural breaks clas-

sification method.32,33 The PDO‐based prediction model accurately
prognosticated the response in 10 out of 11 chemotherapy‐naïve
patients (accuracy of 91.1%) for first‐line treatment and in 4 out of 5
patients for second‐line treatment (80.0%). Following a similar
approach, the prospective HOPE trial (Harnessing Organoids for

Personalized therapy) reported a positive correlation between PDAC

PDO drug‐sensitivity profiles and clinical outcomes in all 12 pa-
tients.46 The aforementioned studies explored the feasibility of

generating organoids from predominantly advanced PDAC patients

and demonstrated their ability to predict patient responses to

chemotherapy. A relevant drawback in the translation of organoid‐
based treatment selection in the palliative setting is the relatively

lengthy turnaround time for obtaining pharmacotyping results, as

patients need to commence chemotherapy quickly. To facilitate the
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bench‐to‐bedside precision medicine for PDAC, a recently published
study morphologically classified PDOs as gland‐like or densely
proliferating within two weeks after tissue sampling. The gland‐like
subtype showed a better in vitro response to gemcitabine and was

associated with a significantly longer overall survival in patients,

indicating that PDO morphological subtype determination may pre-

dict patient outcome within a short timeframe.47

In the resectable setting, Deyman et al. assessed the power of

organoid pharmacotyping to predict response and resistance to

neoadjuvant therapy in nine PDO lines isolated prior to or after

treatment.41 High concordance between organoid‐predicted che-
mosensitivity, pathological response grading, and patient clinical

response to neoadjuvant therapy was found. Interestingly, PDOs

from one longitudinal patient were collected before and after neo-

adjuvant treatment with gemcitabine and nab‐paclitaxel. The post‐
neoadjuvant line showed poor response to both gemcitabine and

paclitaxel, indicative of acquired resistance. This mirrored the pa-

tient's clinical scenario who experienced a short recurrence‐free
survival of 3.7 months following continued adjuvant therapy with

gemcitabine plus nab‐paclitaxel.41 In another study, Farshadi et al.
used five neoadjuvant FOLFIRINOX‐treated and five distinct treat-
ment‐naïve PDAC PDO lines to investigate chemoresistance to this
regimen. Treated organoids exhibited higher refractoriness to oxali-

platin and irinotecan as well as to the FOLFIRINOX combination, but

not to 5‐fluorouracil and gemcitabine, highlighting specific acquired
resistance mechanisms to this regimen. These findings prove PDOs as

a robust platform to study drug resistance and suggest that the

adjuvant chemotherapy for pancreatic cancer patients should be

determined at the individual level, as continuing the same regimen

may not benefit all patients.41,49 A recent study demonstrated that

PDO‐based predictions aligned with patient outcomes in 31 out of 34
predominantly pretreated advanced PDAC patients.39 By testing a

panel of 25 approved antitumor agents, the study identified a median

of three effective treatments per patient, thus offering alternative

options for later‐line therapies.39

Interestingly, mouse pancreatic tumor organoids exhibited

similar growth characteristics as in vivo tumors following radiation

exposure, implying that PDAC organoids may not only predict

response to chemotherapy but also to radiotherapy.50

Organoid pharmacotyping for drug discovery and
biomarker identification

Apart from evaluating individual drugs or chemotherapy combina-

tions to predict individual treatment response, PDOs play a pivotal

role as a drug screening platform to identify and validate novel

pharmacological targets. For example, Driehuis et al. performed high‐
throughput drug screening on 30 PDO lines using 76 therapeutic

agents and revealed sensitivities currently not exploited in the

clinic.29 Interestingly, organoids featured sensitivity to several agents

targeting microtubule dynamics such as AURKA, PIK3CA, and TOP1

inhibitors, unmasking convergent evidence of a true biological

vulnerability for this molecular pathway and highlighting the

robustness of such an approach.29 Hirt et al. established a biobank of

31 PDAC PDOs and conducted a drug repurposing screen of 1172

FDA‐approved drugs using an automated pipeline.51 The authors
found that missense mutations in ARID1A, encoding for a subunit of

the SWI/SNF chromatin remodeling complex, were linked to

increased sensitivity to the kinase inhibitors dasatinib and VE‐821, a
known synthetic lethal interaction in ovarian clear cell carcinoma.

Furthermore, they identified 26 effective compounds, including the

cardiac glycoside ouabain and the anti‐protozoal drug emetine,
demonstrating that employing organoids to repurpose agents is much

more cost‐effective and resource‐sparing than mouse models.51

Intriguingly, PDOs can be generated from both tumor and healthy

tissue, facilitating the identification of agents with high anti‐cancer
selectivity and enabling toxicity assessment in normal tissue

organoids.52

Studying pancreatic precursor lesions is crucial for understand-

ing the mechanisms underlying tumorigenesis and advancing early

detection and prevention strategies. The development of bona fide

organoids derived from intraductal papillary mucinous neoplasms

(IPMNs), cystic pancreatic precursors with the potential to progress

into invasive pancreatic adenocarcinoma, constitutes a unique model

to interrogate cancer progression. Two studies have established a

living biobank of PDOs derived from patient IPMN samples, offering

a dynamic preclinical platform to study the transition of IPMNs into

invasive cancer.53,54 Histological and genomic characterization of

these organoids has offered valuable insights into the various IPMN

subtypes and their potential to evolve into malignancies. Another

example of biomarker discovery was introduced by Huang et al., who

identified extracellular vesicle protein markers using media super-

natant of organoid cultures. These were validated in patient plasma

and segregated PDAC patients from patients with benign gastroin-

testinal diseases.32 Preclinical organoid models are promising tools

for discovering novel biomarkers, refining early detection and sur-

veillance, and developing personalized therapeutic interventions, all

of which could significantly improve patient outcomes.

Organoid‐based clinical trials in PDAC

The clinical utility of PDO‐based treatments has mostly been inves-
tigated through retrospective or observational studies with small

patient cohorts eligible for correlation between in vitro prediction

and patient response. Despite positive signals for drug response

prediction, these clinical correlative studies lack sufficient sample

size and accessible clinical follow‐up data to ensure statistical val-
idity. Larger randomized clinical trials are urgently needed to eval-

uate the predictive value of employing PDOs in clinical routine.

Ongoing clinical trials in PDAC assess different aspects of PDO

feasibility, including organoid derivation, drug testing, correlation of

chemoresponse with patient outcomes, association with genomic

mutations, and pharmacotyping‐guided treatment decision‐making
(Table 1).
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In the adjuvant setting, two studies explore the feasibility of an

organoid‐based selection of adjuvant therapy in resectable PDAC
patients. The UNITEPANC study, conducted by the AIO Pancreatic

Cancer Group and led by our institution and five academic sites in

Southern Germany (Figure 1), is a single‐arm trial aiming to evaluate
the 18‐month disease‐free survival (DFS) in post‐operative patients
receiving chemotherapy predicted to be effective by organoid

pharmacotyping. UNITEPANC will provide initial indications of

whether such an organoid‐based adjuvant treatment selection can
achieve better outcomes than the historically reported 18‐month
DFS rate of 60% following six cycles of adjuvant mFOLFIRINOX.3

Likewise, a phase 3 randomized trial is currently recruiting patients

to assess the therapeutic benefit of a comparable organoid‐guided
strategy for additive chemotherapy selection in resectable patients

(NCT04931394).

In the advanced setting, two phase 3 randomized trials,

respectively single (NCT04931381) and multicenter

(NCT05842187), are actively recruiting patients to investigate the

effectiveness of organoid‐guided treatment regimens for improving
outcomes of patients in palliative care. Recently presented pre-

liminary results from the PASS‐01 trial (NCT04469556), a multi-
center phase 2 study, demonstrated the feasibility of upfront multi‐
omic profiling and PDO pharmacotyping in advanced PDAC patients.

Correlative studies are underway to determine if this approach en-

ables better precision choices.55

Results from these interventional trials are eagerly awaited and

will hopefully license organoids as robust companion diagnostic tools

and foster their integration into clinical practice.

Potential applications of PDOs in clinical care

Conceptually, using PDOs as patient avatars may aid clinicians in

selecting effective chemotherapeutic drugs or targeted agents on an

individual basis, prevent toxicities from ineffective compounds, and

offer alternative agents in primary or acquired resistance. A poten-

tial workflow for integrating organoid‐informed decision‐making into
clinical routine is depicted in Figure 2.

In resectable PDAC patients, organoid‐based adjuvant chemo-
therapy may be feasible as PDOs can be expanded within 8–12 weeks

of postoperative recovery. Following neoadjuvant chemotherapy,

PDOs may inform decisions regarding adjuvant therapies and offer

alternative regimens in cases of acquired resistance.

In the palliative setting, the time required for pharmacotyping is

a crucial factor in determining its applicability for guiding treatment.

Currently, first‐line therapy is often initiated before pharmacotyping
results are available. Decisions about whether to continue the cur-

rent treatment or switch to a tumor‐sensitive, predicted second‐line
regimen, can be made after re‐staging. To effectively guide first‐line
treatment in the palliative setting, the development and testing of

PDOs should ideally be completed within two weeks. Multiple efforts

are currently underway to explore strategies for reducing turn-

around times. Ideally, organoid cultures should be developed in aT
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F I GUR E 1 Study design of the UNITEPANC trial: Using organoids to predict efficacy of adjuvant treatment to improve outcome in

resectable pancreatic cancer. The primary objectives are feasibility of selecting organoid‐based adjuvant treatment (Part I) and disease‐
free survival at 18 months (Part II). DFS, disease‐free survival; mFOLFIRINOX, modified, 5‐fluorouracil, leucovorin, irinotecan, oxaliplatin;
OS, overall survival; PDAC, pancreatic ductal adenocarcinoma.

F I GUR E 2 Organoid‐based precision medicine in pancreatic cancer. Potential workflow to incorporate patient‐derived organoids into
clinical care. Organoids can be generated from surgical resections and tissue or liquid biopsies from treatment‐naïve or pretreated PDAC
patients. PDOs can be subjected to pharmacotyping and may inform treatment decisions. PDAC, pancreatic ductal adenocarcinoma; PDO,

patient‐derived organoid. Source: Created with BioRender.com.
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specialized organoid core facility to ensure robust reproducibility.

Treatment decisions should then be made in conjunction with the

(molecular) tumor board or within the context of clinical trials.

CHALLENGES AND FUTURE DIRECTIONS OF
ORGANOID‐BASED PRECISION MEDICINE

Organoid technologies bridge the gap between conventional in vitro

culture systems and translational research, but while these exciting

models facilitate progress, they also reveal several limitations that

require further refinement. The use of organoids as a platform for

drug screening, drug repurposing, and disease modeling undoubtedly

requires standardization and improvements to allow for high‐
throughput approaches with high reproducibility within clinically

relevant timeframes.

Standardization of organoid culture and
pharmacotyping

Lately, concerns were raised regarding the composition of the

organoid culture medium which has been shown to impact PDO

growth rates,32,48 PDO transcriptome, and pharmacotyping results.48

A recent study demonstrated that pharmacotyping results can vary

depending on the type of media used. For example, PDO lines

cultured in WNT‐free PTOM (pancreatic progenitor and tumor

organoid media)36 showed increased sensitivity to 5‐fluorouracil and
oxaliplatin, while the same lines grown in WNT‐containing culture
media35 exhibited higher sensitivity to gemcitabine and SN‐38.48

These findings underscore the significant impact of culture conditions

on proliferation and pharmacotyping. However, the optimal media

composition for efficient PDO growth and accurate tumor response

prediction still needs to be determined.

Another concern is the widespread use of mouse‐derived
hydrogels or basement membrane extract matrices that vary in

protein concentration and composition between batches and ven-

dors. Standardized products and fully synthetic hydrogels from

commercial suppliers are needed to circumvent inter‐laboratory
differences. Other parameters that merit attention to ensure

comparability between laboratories are readout systems and data

analysis techniques. Metabolic activity‐based cell viability assays are
frequently employed to assess drug response in PDOs. However, a

wide variety of readout approaches exist, including cytotoxicity as-

says, live‐cell imaging‐based apoptosis tracking,56,57 organoid

morphology‐based imaging58,59 immunofluorescent imaging‐based
quantification of apoptotic markers,60 and optical metabolic imag-

ing of drug‐induced changes in cell metabolism,61 among others.
Differences in drug sensitivity scoring systems that are either based

on half maximal inhibitory concentration values or AUC values

further contribute to variabilities between laboratories.

Standardizing organoid technology remains a critical bottleneck,

and is imperative to ensure consistent, reproducible, and comparable

results across laboratories. Ongoing clinical trials aim to assess appli-

cability, standardization, and automation across multiple trial sites

(NCT04469556, NCT02869802, NCT03146962, NCT04469556).

Strategies to reduce PDO turnaround times

For the organoid‐based decision‐making approach to be applicable in
clinical settings, reducing turnaround times is critical, particularly in

the advanced setting. A notable advancement in this area has been

the miniaturization and automation of drug screening methods. For

instance, in 2018, Hou et al. demonstrated a high‐throughput pilot
screen using both 384‐well and 1536‐well plates in primary

pancreatic organoid tumor models, incorporating approximately

3300 approved drugs.62 Such miniaturization reduces turnout times

and facilitates testing of a greater number of drugs and drug com-

binations. In addition, automation through robot‐assisted systems
contributes to standardization and ensures reproducibility.

PDOs derived from circulating tumor cells (CTCs) rather than

tumor tissue were reported to have relatively short expansion

times. Additionally, these liquid biopsies are minimally invasive,

allowing for serial sampling. In a recent study, CTC‐derived PDOs
were established from 31 PDAC patients within 3–4 weeks,

achieving a propagation efficacy of 87.8%.38 Drug sensitivity pro-

files from CTC‐derived organoid cultures correlated with patient
treatment response and provided actionable information consistent

with the tumor genotype.38 Undoubtedly, organoids have the po-

tential to predict responses to targeted treatments, as sensitivities

to tailored agents may vary even among patients with identical

mutations.

Enhancing tumor microenvironment representation

Finally, increasing evidence indicates that responsiveness and resis-

tance to therapeutics are not only driven by intrinsic properties of

the cancer cells but also by their surrounding TME. PDAC, one of the

most stroma‐rich cancers, is histologically characterized by a vast
desmoplastic reaction, which constitutes up to 90% of the tumor

volume. This dense stroma notably collapses blood vessels, creating a

hypoxic microenvironment, and limits immune cell infiltration. Cancer

cells communicate with stromal cells through physical contact and

paracrine signaling to support tumor progression and aggressivity.

Bioengineering efforts are thus underway to advance multicellular

organoid systems that could recapitulate the PDAC TME and its

intricate dynamic cell‐cell interactions. The importance of developing
complex culture systems was recently emphasized in a study inves-

tigating the impact of cancer‐associated fibroblasts (CAFs) on

pancreatic cancer response to chemotherapies. Here, Schucht et al.

observed increased chemoresistance in tumor organoids upon co‐
culture with patient‐matched CAFs.63 Similary, Raghavan et al. un-
covered a relationship between the local TME and cancer cell tran-

scriptional states that impacts drug responses.25 Incorporating TME
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cellular and non‐cellular components into the current organoid sys-
tems will further enhance PDAC disease modeling and allow to

investigate biologically relevant tumor‐stroma interplays as well as
cancer cell‐immune cell crosstalks, to better comprehend response to
immunotherapies.64 Increasing efforts are also put to vascularize and

innervate organoid systems to finely reconstruct pancreatic cancer

TME and explore the dialog between malignant cells and cellular

compartments.64–67 Recent advances in bioengineering have led

to the development of microfluidic cell culture devices that include

multiple cell types, control physiological conditions, and allow high‐
throughput approaches. As such, Lai Benjamin et al. microeng-

ineered a three‐dimensional vascularized culture system composed
of PDAC PDOs, primary human fibroblasts, and endothelial cells. By

co‐culturing PDOs and fibroblasts within a perfusable vascular sys-
tem, the authors observed that perfusing gemcitabine into the tumor

stroma resulted in a reduced efficacy compared to direct application

to tumor organoids. This recapitulated the inhibitory effect of des-

moplasia on drug efficacy, highlighting the importance of studying the

cancer cells within their TME.68

Despite the complex technical setups and expertise required for

implementation, microfluidic chips could offer solutions to several

limitations of organoid culture, such as enhancing reproducibility,

improving experimental control, reducing turnaround time, and

facilitating high‐throughput readouts. However, as researchers

develop more complex organoid models to better mimic the TME,

analytical tools must also evolve in sophistication. One of the key

challenges posed by the vast amount of data generated through high‐
throughput screenings is the need for comprehensive and effective

data analysis. Artificial intelligence (AI) and machine learning algo-

rithms can facilitate efficient processing of large datasets.69 As an

example, Matthews et al. developed the deep learning platform

OrganoID, an automated image analysis tool capable of measuring

live‐cell organoid responses in high‐throughput experiments.59

Despite these advances, microfluidic systems, and AI‐powered ana-
lytic tools are still under development and future studies will be

necessary to prove their translational value.

CONCLUSION

Organoids, awarded as the Method of the Year 2017 by Nature,70

have emerged as a powerful model in translational cancer research

and are increasingly replacing conventional cell culture and animal

models for preclinical drug evaluation. As organoid‐based precision
medicine continues to evolve, addressing challenges in standardiza-

tion, automation, and TME simulation will be crucial to enhance its

applicability in clinical settings. Many efforts are being undertaken to

implement PDOs into precision medicine as retrospective and

observational studies demonstrate high concordance between phar-

macotyping results and patient outcomes. However, prospective

validation in large, randomized clinical trials is still missing and will

ultimately determine whether organoid‐based decision‐making
should be integrated into clinical practice.
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