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Abstract: As wireless sensor networks have become more prevalent, data from sensors in daily life
are constantly being recorded. Due to cost or energy consumption considerations, optimization-based
approaches are proposed to reduce deployed sensors and yield results within the error tolerance. The
correlation-aware method is also designed in a mathematical model that combines theoretical and
practical perspectives. The sensor deployment strategies, including XGBoost, Pearson correlation,
and Lagrangian Relaxation (LR), are determined to minimize deployment costs while maintaining
estimation errors below a given threshold. Moreover, the results significantly ensure the accuracy of
the gathered information while minimizing the cost of deployment and maximizing the lifetime of
the WSN. Furthermore, the proposed solution can be readily applied to sensor distribution problems
in various fields.

Keywords: Lagrangian Relaxation; network deployment; pearson correlation; wireless sensor
networks (WSNs); XGBoost

1. Introduction

Wireless sensor networks (WSNs) are used worldwide; approximately 500 billion
devices in various industries are connected to the Internet. Applications include manu-
facturing, e-commerce, energy, surveillance, and environmental detection [1,2]. Sensors
access information through the network to provide numerous innovative services. The
diverse requirements of services are satisfied for networking between people, between
people and machines, or even between machines for purposes ranging from residential to
social communication [3]. Thus, humans and things are beginning to use the Internet to
monitor air quality, temperature, landslides, and other data [4]. Placing a sensor at each
point requiring data collection may cause sensor redundancy, resulting in a substantial
wastage of resources [5,6]. However, reducing the number of deployed sensors may lead to
acquisition of insufficient or incorrect information [7]. It is a trade-off for network planning
and operation. For large-scale WSNs, system deployment designers must analyze relevant
trade-offs to develop a protocol extending the lifetime of WSNs by improving energy
efficiency and collecting data accurately. In this paper, the proposed sensor deployment
strategies ensure the accuracy of the gathered information while minimizing the cost of de-
ployment and maximizing the lifetime of the WSN. Based on previous studies as mentioned
in [8], a preliminary analysis was performed for several methods of balancing WSN energy
consumption. The variable-range transmission power control method optimizes traffic
distribution by deploying sensors which are inexpensive compared to transmission costs.
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The mobile-data-sink deployment and multiple-data-sink deployment methods both adjust
the position of the data sink in the network. Nonuniform initial energy assignment and
intelligent sensor or relay deployment are also methods for reducing power consumption
in WSNs [3].

This paper proposed deploying WSNs to provide services with sufficient lifetime and
reduced cost and overall energy consumption. In particular, large-scale applications were
investigated. By analyzing thermal sensor data from related experiments, we found that
the temperature measurements of many sensors are correlated. The Australian Climate
Observation Reference Network-Surface Air Temperature (ACORN-SAT) dataset includes
consistent and uniform daily temperature records from 112 observation sites beginning in
1910. Figure 1a illustrates the Australia contour and Figure 1b presents all the sites; larger
circles indicate a site with higher costs. The use of additional sensors increases the total
amount of data. It increases the likelihood that similar data are collected between sensors.
Excessive data are redundant and reduce processing efficiency. Therefore, a mathematical
model was formulated to estimate the temperature values of locations without installed
sensor nodes. In this paper, thermal sensors (for temperature data) were selected because
they are representative of many other applications, such as in heating products, pipe
temperature measurements for flowing liquids (e.g., oil or chemical products), smart
homes, refrigerator temperatures, and large-scale environmental monitoring. The proposed
method compared with previous works is called error-bound satisfaction and ensures the
quality of the results. Performance metrics are used to evaluate results and ensure that
estimation error values are within the system’s tolerance of the average estimation error.
By guaranteeing the accuracy of the estimation systematically, the lifetime of the deployed
WSN is sufficient to meet the requirements for controlling the sensors during operations.
Sensing and installation costs are fixed during sensor installation. The primary contribution
of this paper is to minimize deployment costs within given error bounds. Then, the cost
minimization methods for WSNs meet numerous metrics. The proposed WSN deployment
strategies can minimize cost and maintain accuracy within the system’s average estimation
error threshold. This work combines both theoretical and practical considerations to
minimize the deployment cost of temperature sensors. The proposed strategies are readily
applied to sensor distribution problems in various fields.

Research Scope:

• Minimizing the deployment cost of temperature sensors.
• Data used in this research is from the Australian Climate Observation Reference

Network-Surface Air Temperature.
• Data ranges from 2008–2019.
• Expected to significantly reduce the deployment cost while maintaining the error

under threshold.
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Figure 1. Australia map and the locations of the observation sites. (a) Map of Australia. (b) Locations
of the observation sites.



Sensors 2021, 21, 7121 3 of 21

2. Related Work

WSN quality of service is measured in the literature by considering coverage, connec-
tivity, network lifetime, and network deployment costs [9]. Several mathematical models,
algorithms, and heuristics also have been proposed to solve other problems such as region
of interest monitoring, intruder detection, and energy efficiency management in various
applications. This section briefly identifies the shortcomings of these methods. It derives
related sensor node deployment strategies depending on numerous factors for the system
design in network planning and operations. Some strategies include placing sensors to
minimize the number of sensors, reducing cost, and ensuring the accuracy of the data
collected results.

2.1. Correlation-Aware Deployment Methods

The sensitivity of the estimation error depends on either the static sensor deployment
or dynamic adjustment strategies. Methods of identifying the most informative sensor were
proposed in [10]. Roy et al. assumed that a set of data snapshots could characterize the
monitored phenomenon. To reconstruct the data with the required accuracy, a method for
identifying optimal sensor locations was formulated. However, to handle both stationary
and nonstationary fields, two optimization models were proposed. For both deployment
problems, an iterative solution algorithm was proposed to obtain a sensor deployment
strategy. Although the input was assumed to be perfect, errors may exist in the simulated
data based on this assumption [11].

Additionally, for monitoring spatial phenomena such as temperatures in indoor or
preconfigured environments, we can assume that the collection of data is possible in the
predeployment phase. Krause et al. defined the quality of a given topology using the con-
cept of mutual information to choose the best location for sensors using a Gaussian is the
variation of this method [12]. The solution was a polynomial algorithm defined using the
submodules of mutual information after formalizing the problem. The paper was extended
by [13], considering not only the coverage area but also the connection cost; the qualities of
the links were assumed to be Gaussian. Based on the results of the temperature measure-
ments, the Gaussian approach was unsuitable [13]. A new temperature measurement and
prediction method was designed using mathematical programming techniques.

A classic problem of measurement is the estimation of the data collected by a small
set of deployed sensors to reduce costs. In [14], Ranieri et al. proposed a greedy heuristic
algorithm to solve the related problem of perception deployment by considering a general
form and studying its mathematical characteristics. Simulations were conducted to prove
that the algorithm can solve the problem in a short time and can provide an approximate
optimal solution. In [15], a perception topology was defined to select active sensors and
inactivate other sensors. Liaskovitis et al. considered an already-deployed sensor network
and proposed an algorithm to define the network. To determine whether a sensor remains
active, they estimated changes in the sensed phenomenon online. By contrast, in this
paper, we propose that offline selection of the sensing points is made during the network
planning stage.

Furthermore, analysis of sensing data is essential. Machine learning and multiple
linear regression models were compared for remote sensing data [16]. Forkuor et al.
proposed methods including multiple linear regression, random forest regression, support
vector machine, and stochastic gradient boosting and compared the performance metrics.
The results revealed that multiple linear regression had the predicting ability. However, this
method is limited by the relationship between dependent and independent data variables.
The use of artificial intelligence and machine learning has become more prevalent, leading
to an increase in input sensor data. However, some input data may not be useful for the
model. In [17], Yan et al. used multiple linear regression to predict results with a small
number of useful variables [17]. The correlation analysis can identify the most correlated
data to predict missing sensor data with low error [18].



Sensors 2021, 21, 7121 4 of 21

In [19], Ma et al. derived a sensor deployment scheme that eliminates vacancy points
that cannot be estimated, achieving low sensor density and guaranteeing bounded estima-
tion error. Ma et al. compared various spatial patterns, including the equilateral triangle,
square, and regular hexagon. They concluded that an equilateral triangle pattern was the
best deployment strategy. In [20], Kim et al. proposed an efficient deployment scheme
for a surveillance sensor network incorporating the event occurrence rate. The scheme
aimed to minimize the number of sensors deployed in a large-scale WSN and satisfy the
target probability of detection. Their proposed scheme reduced the total number of sensors
by 10% to 40%. In [21], Han et al. established a deployment strategy for underwater
acoustic sensors. Their strategy considered network distribution in a three-dimensional
environment. They simulated numerous deployment schemes and demonstrated that a
tetrahedral scheme had better overall performance in reducing error.

2.2. Sensor Deployment Applications

The applications of WSNs are versatile. Ramesh et al. proposed a system of pore pres-
sure transducers, dielectric moisture sensors, and movement sensors to detect landslides
in real time [22,23]. The system had numerous sensor columns distributed over an area
of interest. Moreover, their work included a complete architecture of the physical sensor
columns and the backend software service. Huang et al. proposed a fiber-optic sensing
system capable of monitoring debris flows [24]. The system included a light source, a
data logger, a four-port coupler, and four fiber Bragg grating accelerometers. The results
revealed that the proposed fiber-optic system outperformed conventional sensing systems
and had high reliability; the system’s performance was promising for monitoring natural
disasters. Marin-Perez et al. proposed a building automation system using the PLUG-
N-HARVEST architecture that uses Internet of things (IoT) to achieve reliable security
and intelligent management [25]. The automated building had low energy consumption.
Moreover, in [26], Wright proposed a system for decision-making and operations on a
fully autonomous ship using machine learning and artificial intelligence with multiple
sensor modalities.

2.3. Summary

Recent studies have considered constraints such as network connectivity and energy
consumption. All coverage formulas assume that the sensor has a given detection range
in event perception methods or assume the distribution of sensor measurement values in
the appropriate perception method; examples include [27] for wind monitoring and [28]
for data center server overheating detection. To design deployment methods, considering
the characteristics of application instances, a new application-aware deployment method
shown in Table 1 is proposed. The thermal sensor deployment in this paper is similar. In
previous studies, methods of identifying the most informative sensors have been proposed
and implemented in several fields. Several predictive models and their distribution have
been discussed. In this research, the data only contained the temperature for each site
on each day. Thus, one site can be the dependent variable, and another site can be the
independent variable. Correlations between the dependent and independent variables
can be analyzed to discover correlative pairs. Due to cost or energy consumption consid-
erations, the solution is proposed to reduce the number of deployed sensors and yield
results within the error tolerance. The correlation-aware method is also designed in a
mathematical model that combines theoretical and practical perspectives to determine
sensor deployment strategies.

Summary of the Research Gap:

• Focuses on the temperature data which can be widely applied in various fields, such
as humidity monitoring, air quality sensing, GPS surveillance, or landslide detection.

• Uses optimization-based methods to achieve reliable results.
• The methods used in this work are suitable for data from other fields.
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Table 1. Proposed Model Comparisons With Literature.

Model Related Work Sensor
Allocation

Cost/Energy
Consumption

Data
Collection

Correlation
Aware

Deployment
Strategy

Dynamic Coverage Measures [9] X X X

Sparsity-Enforcing Sensor Management
Methods [10] X X

Gaussian and Non-Gaussian Process [12,27] X X

FrameSense [14] X X X X

Lightweight and Intelligent Intrusion
Detection Method [18] X

Proposed model X X X X X

3. System Architecture and Problem Formulation
3.1. System Structure

Characterization of the Deployment Region: IoT applications have recently expanded
to almost every industry. To increase flexibility, we propose an optimal deployment strategy
of minimizing cost while ensuring the accuracy of the collected data. Temperature data
were used in the mathematical model, but the research can also be applied to other data
such as humidity, air quality, or pressure [1,2,4]. Therefore, we attempt to generalize
the mathematical model for sensor deployment. The mathematical model is suitable for
application in different time zones or different climates.

Node Deployment: ACORN-SAT dataset includes consistent and uniform daily tem-
perature records from 112 observation sites beginning in 1910. Figure 1b presents all
the sites. The website (http://www.bom.gov.au/climate/data/acorn-sat/ (accessed on
25 October 2021).) displays ACORN-SAT v.2 (1911–2019), which is the original record of
each highest and lowest daily temperature without any modifications due to extreme
weather or strange weather records. Training data were collected from year of 2010–2018
and the testing data from 2019. The dataset contains relevant data including the longitude
and the latitude of each site; the data were thus separated into different sections by lon-
gitude. These data-sets were used to verify the suitability of the mathematical model in
different time zones. We propose three categories of experiments: (1) all 112 sites are used
in one topology, (2) the sites are separated into two equal areas by longitude, and (3) the
sites are separated into four equal areas by longitude.

Methodology Design: In Figure 2, the solution approach was proposed. Data were
first collected from deployed sensors. However, some data loss may have occurred due to
network processing, causing missing values in the obtained data. For example, in 2019,
the temperature data for Tennant Creek, NT, has six days of missing data; and 18 days of
missing data for Bridgetown, WA. Overall, there are 1% of missing data. These missing
values were determined through interpolation. The intact data were then input into the four
proposed solution models: Pearson correlation coefficients (PCC) and linear regression,
XGBoost, referencing capability ranking (RCR), and x coefficient ranking (xCR). Finally,
the Lagrangian Relaxation (LR) model was used to determine gaps between the objective
cost and the theoretical minimum for each model.

Obtaining physically 
measured data at every 

location

Preprocessing missing 
data Building models

Retrieving sensor 
distribution results from 

the models

Getting measurements and 
estimating those not 

deployed

Deploying the sensors 
based on the distribution 

results

Figure 2. Flowchart of proposed solution approach.

http://www.bom.gov.au/climate/data/acorn-sat/
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3.2. Problem Formulation

In the proposed mathematical formulation, D is the set of evaluation data obtained
before applying the model. The data in D are the ground truth of whether a sensor is
installed at each location (i.e., all measured temperature values of all locations for all
time zones). The main notations used in this study are presented in Tables 2 and 3. The
decision variables express the experimental outcome and indicate the sensor distribution
and corresponding parameters.

Table 2. Notations of Given Parameters.

Notation Description

D Index set of evaluation data, where D = {1, 2, . . . , k, . . . , |D|}
V Index set of locations, where V = {1, 2, . . . , i, . . . , j, . . . , |V|}
Ci Installation cost of sensor i, where i ∈ V
Hki Measurement is taken at location i in dataset k, where i ∈ V, k ∈ D
Ψ Tolerance on the average estimation error
Wi Weight is associated with location i, where i ∈ V (0 ≤Wi ≤ 1 and ∑i∈V Wi = 1)

Table 3. Notations of Decision Variables.

Notation Description

xi Binary variable, 1 if sensor i is installed, and 0 otherwise
pji Weighting factor is set from sensor j to estimate measurement at location i, where i, j ∈ V
Πji Maximum weighting factor for sensor j to estimate measurement at location i, where i, j ∈ V
mki Measurement is estimated for location i using dataset k, where i ∈ V, k ∈ D
eki Estimation error is calculated at location i using dataset k, where i ∈ V, k ∈ D
Zki Maximum estimation error calculated at location i using dataset k, where i ∈ V, k ∈ D
T Average estimation error (T = ∑k∈D ∑i∈V

Wieki
|V||D| )

The objective function of cost minimization is expressed by Equation (1). The total
cost of deployment is the sum of the cost of the installed sensors. Variables i and j specify
the locations of sensor nodes and xi is Boolean and indicates whether a sensor is installed
at location i.

The mathematical model is based on the convection of heat energy and the conduction
of radiation between points. Consequently, each temperature value is related to the other.
By determining the relevance of the temperature of each location at each time, we can
estimate temperatures at locations without sensors using the accurate measurements of the
surrounding. We denote the estimated temperature at location i in dataset k to be m. Each
solution model identifies m in different ways as discussed in Section 4. A universal method
of calculating error is used in each method (Equation (3)). The overall error threshold of
the system is expressed by Equation (4).

Solution models were primarily evaluated by minimizing eki in Equation (3). The
LR method was used to iteratively achieve the primal feasible outcome, i.e., the lowest
deployment cost. The objective function of the primal problem is presented in Equation
Integer Programming (IP) subject to constraints (2)∼(7).

min ∑
i∈V

Cixi ∀i ∈ V (1)

s.t.

mki = ∑
j∈V

pji Hkjxj ∀k ∈ D, ∀i, j ∈ V, j 6= i (2)

eki = (mki − Hki)
2 ∀k ∈ D, ∀i ∈ V (3)

T = ∑
k∈D

∑
i∈V

Wieki
|D||V| ≤ Ψ (4)

ε ≤ pji ≤ Πji ∀i, j ∈ V (5)
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xi ∈ {ε, 1} ∀i ∈ V (6)

0 ≤ eki ≤ Zki ∀k ∈ D, ∀i ∈ V. (7)

4. Solution Approach
4.1. Lagrangian Relaxation-Based Method

Lagrangian relaxation-based solution approach was widely studied in the 1970s.
The LR problem can be established by removing the complex constraints and appending
them after identifying the objective function with weights. The weights are Lagrangian
multipliers and symbolize penalties when constraints are broken [29]. In this paper, the
objective is to obtain the solution to the primal problem. The algorithm is followed by
the procedures of the Lagrangian relaxation-based approach shown in Figure 3. Based
on the mathematical formulation, the LR problem can be solved by disintegration to
several independent subproblems. The LR problem is divided into five subproblems to
find minima. Each subproblem is optimally solved using a divide-and-conquer approach.
If a minimization problem is considered, the solution of the LR approach is the lower
bounds [30]. The lower bounds are improved by adjusting the multipliers set between the
LR and the dual problems. After obtaining a solution of the dual problem, its feasibility
must be further checked or adjusted by the proposed and self-designed heuristics, such as
RCR, xCR, or xGBoost (parallel model selections) for obtaining the primal feasible solution.
A solution is feasible if it satisfies all constraints of the primal problem. The answer is
marked if there is a feasible solution determined by a feasible check. Finally, the gap
between the lower bounds and the feasible solutions is calculated for the entire process.
The calculations are iteratively repeated until the termination conditions are satisfied.

4.1.1. Step 1: Reformulation for Relaxation

Complicated constraints are relaxed to obtain a primal optimization problem and
feasible solution regions are extended to simplify the primal problem. The primal prob-
lem is then transformed into an LR problem associated with Lagrangian multipliers. In
accordance with the decomposition of decision variables, pjixj, we introduce an auxiliary
variable, sji to reformulate the constraint equation (Equation (2)) by replacing pjixj with sji
to form the constraint Equations (8)–(10).

log sji = log pji + log xj ∀i, j ∈ V, j 6= i (8)

mki = ∑
j∈V

Hkjsji ∀k ∈ D, ∀i, j ∈ V, j 6= i (9)

ε ≤ sji ∀i, j ∈ V, j 6= i (10)

4.1.2. Steps 2 and 3: Decomposition and Solution of Subproblems

We then relax the reformed mathematical model. The constraint Equations (3), (4),
(8), and (9) were relaxed by introducing the Lagrange multipliers µ1

ki, µ2, µ3
ki, and µ4

ki.
Consequently, the original problem is transformed into the LR problem as the objective
function in Equation (11) subject to constraints (5), (6), (7), and (10).

min ZLR = ∑
i∈V

Cixi (11)

+ ∑
k∈D

∑
i∈V

µ1
ki[eki − (mki − Hki)

2]

+ µ2[ ∑
k∈D

∑
i∈V

(
Wieki
|V| )−Ψ]

+ ∑
k∈D

∑
i,j∈V,j 6=i

µ3
ki[log pji + log xj − log sji]

+ ∑
k∈D

∑
i∈V

µ4
ki[ ∑

j∈V,j 6=i
Hkjsji −mki]
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s.t. (5), (6), (7), and (10).

The LR problem is then decomposed into five subproblems. The objective of this step
is to reach a minimum ZLR. Thus, each subproblem is solved individually. Each minimum
is obtained by algorithms for the five subproblems determining sji, xi, pji, eki, and mki are
presented as follows.

• Subproblem 1 (related to sji)

min ∑
k∈D

∑
i,j∈V,i 6=j

(−µ3
ki log sji + µ4

ki Hkjsji) (12)

s.t. ε ≤ sji ≤ Πji ∀i, j ∈ V, i 6= j.

Subproblem 1 is a minimization problem. It consists of continuous variable and
logarithm, extremum will be found when differential equals zero or the boundaries of
the decision variable, Sji. Algorithm 1 shows the pseudo-code of Subproblem 1. First,
we calculate the partial differential of the objective function by Sji. Let the product is

equal to zero to determine the value of µ3
ki

µ4
ki Hkj

. Secondly, the validity of the extremum

must be checked. Setting the Sji equal to ε, µ3
ki

µ4
ki Hkj

, or Πji such that the objective value

of (Sub 1) is minimum, correspondingly.

Algorithm 1 Subproblem 1

Input: Given parameters H and Lagrangian multipliers µ3, µ4.
Output: Decision variable s.
Initialize: sji ← 0, ∀i, j ∈ V, i 6= j
for k = 0 to (|D| − 1) do

for j = 0 to (|V| − 1) do
if i = j then

continue
end if
if ε ≤ µ3

ki
µ4

ki Hkj
≤ Πji then

sji ← ε, µ3
ki

µ4
ki Hkj

, or Πji such that −µ3
ki log sji + µ4

ki Hkjsji has minimum.

else
sji ← ε or Πji such that −µ3

ki log sji + µ4
ki Hkjsji has minimum.

end if
end for

end for

• Subproblem 2 (related to xi)

min ∑
i,j∈V,i 6=j

(Cixi + ∑
k∈D

µ3
ki log xj) (13)

s.t. xi ∈ {ε, 1} ∀i ∈ V.

Subproblem 2 is further decomposed into |V| independent minimization problems.
For a location i, the decision variable xi is examined for two values which are ε or 1,
such that Cixi + µsum log xi has minimum, respectively. The pseudo-code is shown in
Algorithm 2.
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Algorithm 2 Subproblem 2

Input: Given parameters C and Lagrangian multiplier µ3.
Output: Decision variable x.
Initialize: xi ← 0, ∀i ∈ V
for i = 0 to (|V| − 1) do

µsum ← 0
for k = 0 to (|D| − 1) do

for j = 0 to (|V| − 1) do
if j = i then

continue
else

µsum ← µsum + µ3
kj

end if
end for

end for
xi ← ε or 1 such that Cixi + µsum log xi has minimum.

end for

• Subproblem 3 (related to pji)

min ∑
k∈D

∑
i,j∈V,i 6=j

µ3
ki log pji (14)

s.t. ε ≤ pji ≤ Πji ∀i, j ∈ V, i 6= j.

Subproblem 3 is also a minimization problem consisting continuous variable and
logarithm. Since (Sub 3) is a logarithmic equation, the minimum of such equation lies
at either one of the boundaries of pji. Therefore, Algorithm 3 simply checks either ε or
Πji has the minimum value. Algorithm 3 shows the pseudo-code of Subproblem 3.

Algorithm 3 Subproblem 3

Input: Given Lagrangian multiplier µ3.
Output: Decision variable p.
Initialize: pji ← 0, ∀i, j ∈ V, i 6= j
for k = 0 to (|D| − 1) do

for i = 0 to (|V| − 1) do
for j = 0 to (|V| − 1) do

if j = i then
continue

else
pji ← ε or Πji such that µ3

ki log pji has minimum.
end if

end for
end for

end for

• Subproblem 4 (related to eki)

min ∑
k∈D

∑
i∈V

(µ1
ki + µ2 Wi

|V| )eki (15)

s.t. 0 ≤ eki ≤ max(Hki)−min(Hki) ∀k ∈ D, ∀i ∈ V.
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Subproblem 4 aims at deriving the right eki such that (µ1
ki + µ2 Wi

|V| )eki has minimum.

Since µ1
ki + µ2 Wi

|V| is given, eki can be determined by checking whether µ1
ki + µ2 Wi

|V| is
negative. Algorithm 4 shows the pseudo-code of Subproblem 4.

Algorithm 4 Subproblem 4

Input: Given parameters W and Lagrangian multipliers µ1, µ2.
Output: Decision variable e.
Initialize: eki ← 0, ∀k ∈ D, ∀i ∈ V
for k = 0 to (|D| − 1) do

for i = 0 to (|V| − 1) do

if µ1
ki +

µ2Wi
|V| ≥ 0 then

eki ← 0
else

eki ← (max(Hki)−min(Hki))
2

end if
end for

end for

• Subproblem 5 (related to mki)

min ∑
k∈D

∑
i∈V

[−µ1
kim

2
ki + (2µ1

ki Hki − µ4
ki)mki] (16)

s.t. min(Hki) ≤ mki ≤ max(Hki) ∀k ∈ D, ∀i ∈ V.

Subproblem 5 is a quadratic equation of mki, so the minimum could be found by its
differential. The boundary of mki lies between min(Hki) and max(Hki). Algorithm 5

first checks whether the differential 2Hkiµ
1
ki−µ4

ki
2µ1

ki
lies within the boundary. If so, the mki

should be either min(Hki), max(Hki), or 2Hkiµ
1
ki−µ4

ki
2µ1

ki
. Otherwise, the minimum happens

at the one of boundaries, so mki should be either min(Hki) or max(Hki). Algorithm 5
shows the pseudo-code of Subproblem 5.

Algorithm 5 Subproblem 5

Input: Given parameters H and Lagrangian multipliers µ1, µ4.
Output: Decision variable m.
Initialize: mki ← 0, ∀k ∈ D, ∀i ∈ V
for k = 0 to (|D| − 1) do

for i = 0 to (|V| − 1) do

if min(Hki) ≤
2Hkiµ

1
ki−µ4

ki
2µ1

ki
≤max(Hki) then

mki ← min(Hki),
2Hkiµ

1
ki−µ4

ki
2µ1

ki
, or max(Hki) such that µ1

ki(−m2
ki + 2mki Hki) −

µ4
kimki has minimum.

else
mki ← min(Hki) or max(Hki) such that µ1

ki(−m2
ki + 2mki Hki)− µ4

kimki has min-
imum.

end if
end for

end for

4.1.3. Steps 4 and 5: Dual Problem and Subgradient Method

The LR problem can be solved optimally if all subproblems are solved optimally using
the divide-and-conquer approach. The optimal value of the LR problem, denoted as ZLR,
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is an LB of ZIP. Hence, to derive the LB, we must adjust the Lagrangian multipliers to
identify those with the greatest values by solving the dual problem shown in (17).

maxZD = ZLR(µ
1
ki, µ2, µ3

ki, µ4
ki) (17)

s.t. µ1
ki, µ3

ki, µ4
ki ∈ R, µ2 ≥ 0 ∀k ∈ D, ∀i ∈ V.

The subgradient method proposed by Held and Karp [31,32] is a commonly used
approach for solving the dual problem due to the simplicity of its programming. First, we
let vector m be a subgradient of the dual problem. Over n iterations of the subgradient
method, the multiplier vector is updated by Equation (18).

µn+1 = µn + tnmn (18)

tn = λn
[ZIP − ZD(µn)]

||mn||2
(19)

The step size tn is defined in Equation (19). According to the work of Held et al. [33],
λn is a scalar. Usually, it is set to two and halved if ZD(µn) cannot increase within a
certain number of iterations. The procedures of LR method and the subgradient method
are presented in Figure 3. It is the way to find the tightest lower bound of the dual
problem iteratively.

4.1.4. Step 6: Obtaining the Primal Feasible Solutions

A set of decision variables was extracted after the five subproblems were solved.
However, due to the relaxation of multiple complex constraints, the solution may not be
feasible (as mentioned in Section 4.1). Therefore, we designed heuristic methods to tune
decision variables to achieve feasibility. The two proposed methods were RCR and xCR.

• Referencing Capability Ranking (RCR)
The primary goal of this study was to accurately estimate temperature measurement
at locations without sensors. Equation (2) describes the estimation model; where
mki can be calculated by a linear combination of the data series Hkj and coefficients
pji. Thus, the problem is reduced to deriving an optimal series of pji such that eki in
Equation (3) is minimized.

mki = ∑
j∈V

pji Hkjxj, ∀k ∈ D, i, j ∈ V, j 6= i. (2)

To derive pji, we apply the steepest gradient descent method. The steepest gradient
descent method, also known as the gradient method, was first described by Cauchy
in 1847. Other analytic methods have been inspired by the method or derived from its
deformation; the gradient method is thus fundamental to optimization methods. The
method requires minimal work and few storage variables, and has low initial point
requirements. However, it converges slowly, is inefficient, and sometimes is unable
to yield an optimal solution. The goal of nonlinear programming is the numerical
optimization of nonlinear functions. The theory and methods of nonlinear program-
ming are used in military, economic, management, production process automation,
engineering design and product optimization design applications. Nonlinear pro-
gramming methods were used to calculate the optimal set of the coefficient pji in
Equation (2). The objective function for gradient descent is Equation (20). In each LR
iteration, the xi of each subproblems is used to optimize the corresponding pji. After
several rounds of gradient descent, if the overall error of estimated measurements
using optimized pji satisfies the average error threshold Ψ the set xi is considered
feasible and the total cost is recorded. However, if Ψ is not satisfied, locations for
deployed sensors are added to reduce the overall error. The addition is based on the



Sensors 2021, 21, 7121 12 of 21

ranking of fi of each location i; fi is the “referencing ability” of location i for other
locations as presented in Equation (21).

min ∑
k∈D

∑
i∈V

(mki − Hki)
2 (20)

fi =
∑j∈V pji

Ci
, ∀i ∈ V. (21)

• x Coefficient Ranking (xCR)
xCR is similar to RCR. In this strategy, Equation (2) was also applied to estimate mki
given xi by the LR procedure in each iteration. Moreover, steepest gradient descent
was used to determine pji to minimize objective error (Equation (20)). If, after several
rounds of gradient descent, if the overall estimated measurement error does not satisfy
the average error threshold Ψ, locations are added to mitigate the error based on the
ranking of the coefficients of xi in the LR objective formulation until a feasible set of
xi is produced.

Primal Problem Formulation 
(Find minimum)

Lagrangian Relaxation Problem 
Formulation (Find minimum)

Subproblem 1

Subproblem 2

Subproblem 3

Subproblem 4

⋮

Subproblem n

① Relax constraints

② Decomposition

③ Optimal Solving

Parallel Processing

④ Subgradient Method
(Adjust Multiplier)

⑤ Updated 
Parameters 
Iteratively

⑥ Obtaining Primal 
Feasible Solution

Dual Problem Formulation 
(Find maximum)

Start
End

Parallel Model Selection: 
Referencing Capability Ranking,

xi Coefficient Ranking

Primal Feasible 
Solution

Yes

No

Figure 3. Procedures of the Lagrangian relaxation-based approach.

In summary, to achieve a feasible solution set xi and its objective value (Equation (1)),
xi from Algorithm 1 is first used to calculate the optimized set of pji. Then, the average
error of estimation T is compared with the threshold Ψ. If the threshold is satisfied, the set
xi is considered feasible. Otherwise, some i in xi are changed from zero to one (i.e., sensors
are installed) based on either the RCR or xCR method to mitigate error. This process is
illustrated in Figure 4.
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Figure 4. Procedures of the Lagrangian relaxation-based method for obtaining feasible solutions.

4.2. Pearson Correlation Coefficients and Linear Regression Methods

The PCC model begins with determining its coefficients:

cji =
cov(Hki, Hkj)

σHki σHkj

(22)

−1 ≤ cji ≤ 1 (23)

∀i, j ∈ V.

The value of cji is the Pearson correlation coefficient. The term cov in Equation (22)
refers to the covariance between Hki and Hkj where the data at location i, j ∈ V are all
included in the dataset D. The term σ is the standard deviation of variables Hki and Hkj;
the data at location i, j ∈ V are all included in the dataset D. Each pair of data at location
i and j in dataset D have the same value regardless the order of i and j. If i and j are the
same in the equation, the value of cji is 1, indicating identical data pairs. If the value of cji
is between ±0.5 and ±1.0, the correlation is considered strong. The values of cji between
±0.3 and ±0.49 indicate moderate correlation. Values of cji lower than ±0.29 indicate weak
correlation between i and j. Negative cji implies that the data are negatively correlated.
Thus, pairs with greater |cji| have stronger correlations.

Because our goal is to minimize the cost of sensor deployments, the temperature
value of locations without installed sensors must be estimated. In PCC, for any measuring
location without a sensor, the measured values of several nearby sensors are required to
estimate a value for the missing sensor through linear regression. The correlation coefficient
obtained through convex combination is a decision variable. Zero indicates no association.
Each location without a sensor is associated with all measured values at locations with
installed sensors.

The estimated measurement value mkj at location j can be obtained from Equation (24)
for location j ∈ V and dataset k ∈ D. Hki is the measurement value physically collected
from sensors. After calculation of the correlation coefficients, the relationships between
each pair i and j are all known. Thus, rankings of the correlation coefficients can indicate
sensor deployment locations. In Equation (24), coefficients aji and bji are obtained from
the training data-sets Hki and Hkj. Hki indicates the independent variable and Hkj is the
dependent variable. After obtaining aji and bji, the testing data Hki can be used to obtain
a predicted value mkj. In short, the measurement at location j is inferred using an actual
measurement at location i. If the correlation coefficient of a selected pair is positive, then
the corresponding aji is also positive. However, if data for the independent variable and
dependent variable is switched, both aji and bji will change. The best solution will have a
lower residual for the result of the equation; that is, the coefficient of determination (R2)
will be higher. Because Equation (24) is a unary linear regression, R2 of the selected pair
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equals the square of the correlation coefficient. Therefore, the correlation coefficient can be
used to determine the value of R2 for a given pair.

mkj = aji Hki + bji (24)

∀k ∈ D, ∀i, j ∈ V, i 6= j

Because the Pearson correlation coefficient is a measurement of the strength of the as-
sociation between two variables, high coefficients for two given nodes have two meanings:

• The node is strongly associated with other nodes; the temperature can thus be accu-
rately estimated by other nodes.

• The node is strongly associated with other nodes; it can be used to estimate tempera-
tures at other nodes.

To decide where to deploy a sensor, the summation of the correlation coefficients for
each site can be ranked to determine each node’s connectivity. Strongly connected nodes
are preferentially installed.

The node with the highest sum of coefficients is first deployed. Then, the temperature
at all other nodes connected to the deployed node can be predicted using linear regression;
deployment of these nodes can be avoided. Next, the node with the second-highest sum of
coefficients is deployed, and nodes strongly connected with this deployed node are not
deployed. This process continues until all strongly connected nodes are deployed or have
been removed. Finally, leftover nodes are deployed because they are not predicted by any
deployed node. The algorithm is presented in Figure 5.

Calculating the Pearson coefficients between every nodes

Predicting temperature at nodes that has strong connection 
with deployed nodes using linear regression

Deploying current highest sum-of-coefficients node that 
has not been deployed

Ranking the sum of coefficients of every nodes and filter 
out strong connection nodes

Are all the strong-
connection nodes 

deployed?

Deploying rest of the nodes that are not deployed yet and 
cannot be predicted using linear regression

No

Yes

Figure 5. Procedures of Pearson correlation coefficient method for sensor deployment.

4.3. Extreme Gradient Boosting Method

Extreme gradient boosting (XGBoost) is a decision-tree-based boosting system that is
well known and widely used in machine learning [34,35]. The system can meet the classify-
ing and regression requirements of our method. Assuming K trees in the classification, F
denotes the space of functions containing all regression trees, fk(xi) is the weight of the ith

sample in the kth tree. The model is formulated by Equation (25):

mki =
K

∑
k=1

fk(xi) , ∀ fk ∈ F (25)
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In the XGBoost model, we split the data 8:2 for the training set and testing set. The
main objective of using XGBoost is to train a model that can estimate the temperature at
sensor-uninstalled locations. In each iteration of LR, the subproblems produce a random
set of xi indicating whether a sensor is installed at location i. XGBoost then trains itself
using this set of xi. After completing training, the model verifies whether the overall error
of estimated measurements is below the average error threshold Ψ. If so, the set xi is
considered feasible and its total cost is recorded. Otherwise, the set xi is discarded and the
model proceeds to the next iteration.

5. Computational Experiments

We compared different methods and topologies within the system tolerance on the
average estimation error. Ψ is set to temperature 1.5 degrees. The sensors were divided
into one, two, and four equal area clusters by longitude. Because the sensors were not
uniformly distributed, the eastern section contained more sensors; Topology 2_2 had twice
as many sensors as Topology 2_1. Figure 6 depicts the distribution and number of sensors
for each topology.

The experiments were conducted using a computer with an AMD Ryzen 5 5600X
6-Core Processor @3.7 GHz, 32 GB RAM, and under Windows 10 Professional 19041.1165
and Python 3.7.6.
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Figure 6. Sensor distribution in the three distinct topologies.

The experimental parameters are listed in Table 4. Table 5 displays the experimental
outcomes for each optimization method and topology. The table reveals that the XGBoost,
RCR, and xCR methods were more effective in finding minimum deployment costs than the
PCC method was. PCC typically deployed more sensors than other methods. Furthermore,
the performance of XGBoost, RCR, and xCR did not differ substantially.

Table 4. Parameters for Computational Experiments.

Given Parameter Value

Number of evaluation data (|D|) 3650
Number of locations (|V|) 112
Ci 5∼1000
Hki 12.1 ◦C∼47.9 ◦C
Ψ 1.5 ◦C
Wi 0.000182∼0.018169, ∑ Wi = 1
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Table 5. Experimental Outcomes for Each Method and Topol. (Topology).

Cost Topol. 1 Topol.
2_1

Topol.
2_2

Topol.
4_1

Topol.
4_2

Topol.
4_3

Topol.
4_4

(# of Sensors) (112) (28) (84) (20) (8) (33) (51)

XGBoost 6108 3186 2779 2210 3002 3096 1051
(23) (11) (15) (9) (5) (11) (9)

RCR 8264 3732 6272 2157 2035 2288 2820
(30) (10) (25) (7) (3) (9) (16)

xCR 7434 3858 5383 2073 2035 1904 3602
(39) (10) (30) (6) (3) (6) (17)

PCC 26,382 6578 17,673 3149 4349 4994 10,620
(75) (18) (54) (11) (7) (16) (35)

5.1. XGBoost

Figure 7 displays the results of deployment using XGBoost. The distribution of the
sensor nodes was less dense and the sensors were more evenly distributed across the
region compared with the distribution in Figure 6 where sensors are densely situated in
the southeast region. In particular, for Topology 4, sensors were more evenly distributed
than in Topology 1 or Topology 2. The easternmost section (Topology 4_4) included exactly
the same number of sensors as in the westernmost section (Topology 4_1).
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Figure 7. Sensor deployment distribution from XGBoost.

Figure 8 displays the cost reduction for each method compared with the original cost.
The performance of XGBoost is outstanding; costs have been reduced by 80% on average,
compared to the case when all 112 sensors are distributed. Even in the worst case (Topology
4_2) the cost has been reduced by over 40%. Moreover, Figure 8 also reveals that the cost
reduction is primarily from sensor reduction in the eastern region; that is, savings were
greater for Topology 2_2 and Topology 4_4 compared with their western counterparts.

Topology 1 Topology 2_1 Topology 2_2 Topology 4_1 Topology 4_2 Topology 4_3 Topology 4_4
0%

20%

40%

60%

80%

100%

Figure 8. Cost reduction for each topology using XGBoost.
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5.2. RCR

Sensor distributions obtained using LR with the RCR heuristic method of identifying
feasible solutions are displayed in Figure 9. Table 5 reveals that the performance of RCR was
similar to that of XGBoost for both overall cost and number of sensors used. Cost reduction
was also approximately 80% on average. However, the sensor distribution differed between
these two methods. Figure 9 reveals that sensors are still unevenly distributed over the
territory; Topology 2_2 has twice as many sensors as Topology 2_1. Topology 4_4 also had
at least twice as many sensors as Topology 4_1, Topology 4_2, and Topology 4_3.
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Figure 9. Sensor deployment distribution from referencing capability ranking.

5.3. xCR

Sensor distributions obtained using LR with the xCR heuristic method of identifying
feasible solutions are displayed in Figure 10. The performance of xCR was also similar to
that of XGBoost and RCR. However, as revealed by Figure 10, the sensor distribution is
substantially more concentrated in the southeast region compared with those of XGBoost
and RCR. The two overlapping sensors at the most southeastern are of Topology 2_2 and
Topology 4_4 are both in Tasmania at location 42.89◦ S, 147.33◦ E and 42.99◦ S, 147.07◦ E;
the distance between these sensors is only 23.95 km.
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Figure 10. Sensor deployment distribution from x Coefficient Ranking.

5.4. Pearson Correlation and Linear Regression

Table 5 presents the total cost and number of sensors deployed using PCC; the number
of sensors is significantly greater than that of other methods. Figure 11 reveals that the
sensors are again densely situated in the southeast region; few sensors have been eliminated
compared with the distribution in Figure 6. Figure 12 demonstrates that cost reduction
from PCC was only 55% on average across the topologies; this result was substantially
worse than the 80% cost reduction of XGBoost. For example, in Topology 4_2 PCC removes
only one sensor; cost reduction in that region was only 17%.
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Figure 11. Sensor deployment distribution from Pearson correlation coefficients.
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Figure 12. Cost reduction for each topology using Pearson correlation coefficients.

5.5. Extended Application
5.5.1. Lifetime Enhancement

The preceding experiments were conducted under various topologies. However,
some types of sensors require regular reinstallation; these sensors may have fixed lifetimes
or nonrechargeable batteries. In this situation, deploying all sensors first followed by
strategically activating sensors while predicting the measurements of inactive sensors
within an error threshold may be desirable. After the active sensors exceed their lifetimes,
inactive sensors can be strategically activated to predict the data of the previously active
sensors. Maximizing the number of cycles could result in long sensor lifetimes with a fixed
deployment cost.

The optimization model is applicable in this scenario. Because we aim to maximize
the number of cycles, we must minimize the number of sensors in each cycle. Therefore,
we can start from Topology 1, containing all 112 sensor nodes and find an optimal sensor
distribution. Then, we can eliminate sensors which are out of battery and use the remaining
sensors to find a new optimal distribution. This process can continue until all sensors have
been used or the average error exceeds an error threshold.

In this lifetime enhancement experiment, XGBoost was used. The costs of all sensors
were assumed to be identical to identify a minimum number of sensors in each cycle.
Table 6 reveals the result; A maximum of five cycles can be achieved with approximately
20 sensors activated in each cycle without exceeding the error constraint. Thus, a one-time
expenditure of deploying 99 sensors (the remaining 13 sensors were unnecessary) can be
used for five times the lifetime of an individual sensor. The sensor distributions with colors
for each cycle are depicted in Figure 13.

Table 6. Results of Sensor Network Lifetime Enhancement

Cycle 1 2 3 4 5 Remaining

of Active Sensors 20 18 19 21 21 13
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5.5.2. Other Applications

The proposed model can be applied to not only temperature sensors but also humidity
monitoring, air quality sensing, GPS surveillance, landslide detection [22,23,36–39], and
other sensors. The ultimate goal of the model is to reduce deployment costs; the contribu-
tion of this study would be substantial for deployments with high sensing expenditures
for other extreme or critical applications. Additionally, the solution could be used by
deployment practitioners to enhance the lifetimes of sensors within error tolerance.

6. Conclusions

In this work, the goal was to minimize deployment costs for numerous sensors strategi-
cally. We chose the ACORN-SAT dataset to test the model. The dataset includes 112 sensor
locations across Australia in ten years. The mathematical formulation is modeled and
solved by the proposed procedures systematically. XGBoost, PCC, and the LR method
using the heuristic RCR and xCR strategies were proposed and called error-bound satis-
faction to determine the primal feasible solutions. Finally, we demonstrated that XGBoost
and LR using RCR could reduce costs by 80%; thus, the goal was achieved. Furthermore,
we introduced a method of using the model to maximize the lifetime of a sensor network
which is sufficient to meet the requirements for controlling the sensors during operations.
In conclusion, this work combines both theoretical and practical considerations to minimize
the deployment cost of temperature sensors. The proposed solution can be readily applied
to sensor distribution problems in various fields.
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