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Aleksandra Kotkowska 6, Małgorzata Misiewicz 6, Piotr Smolewski 1, Konrad Stawiski 4 , Wojciech Fendler 4,
Janusz Szemraj 7 and Tadeusz Robak 6,*

����������
�������

Citation: Robak, P.; Jarych, D.;

Mikulski, D.; Dróżdż, I.; Węgłowska,
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Simple Summary: The mRNA expression of nine previously described genes that may affect resistance
to multiple myeloma (MM), viz., ABCB1, CXCR4, MAF, MARCKS, POMP, PSMB5, RPL5, TXN, and
XBP1, was compared between bortezomib-refractory and bortezomib-sensitive patients. RPL5 was the
only gene to be significantly down-regulated in MM patients compared with non-MM individuals,
while POMP was significantly up-regulated in the bortezomib-refractory patients. Multivariate
analysis found the best independent predictors of progression-free survival to be high PSMB5 and
CXCR expression and autologous stem cell transplantation, and that high expression of POMP and
RPL5 were associated with shorter survival.

Abstract: Proteasome inhibitors, like bortezomib, play a key role in the treatment of multiple
myeloma (MM); however, most patients eventually relapse and eventually show multiple drug
resistance, and the molecular mechanisms of this resistance remain unclear. The aim of our study is to
assess the expression of previously described genes that may influence the resistance to bortezomib
treatment at the mRNA level (ABCB1, CXCR4, MAF, MARCKS, POMP, PSMB5, RPL5, TXN, and
XBP1) and prognosis of MM patients. mRNA expression was determined in 73 MM patients treated
with bortezomib-based regimens (30 bortzomib-sensitive and 43 bortezomib-refractory patients)
and 11 healthy controls. RPL5 was significantly down-regulated in multiple myeloma patients as
compared with healthy controls. Moreover, POMP was significantly up-regulated in MM patients
refractory to bortezomib-based treatment. In multivariate analysis, high expression of PSMB5 and
CXCR and autologous stem cell transplantation were independent predictors of progression-free
survival, and high expression of POMP and RPL5 was associated with shorter overall survival.

Keywords: bortezomib; CXCR4; gene expression; multiple myeloma; POMP; PSMB5; refractory;
RPL5; TXN; XBP1
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1. Introduction

Multiple myeloma (MM, plasma cell myeloma) is a hematological malignancy charac-
terized by the accumulation of malignant plasma cells (PC) in the bone marrow (BM), often
resulting in bone lesions, hypercalcemia, infections, anemia, and production of monoclonal
immunoglobulin [1]. The disease occurs mainly in older patients and accounts for 15% of
all hematologic malignancies, with an annual incidence of 4.5–6 cases per 100,000 [2], with
an estimated 32,270 new cases and 12,830 deaths in the United States in 2020 [3]. Protea-
some inhibitors (PI) play a key role in the treatment of MM [4–6]. Three PIs, bortezomib,
carfilzomib, and ixazomib, are currently approved for the treatment of MM and several
others are undergoing clinical trials [7].

Bortezomib is the first-in-class selective and reversible inhibitor of the 26S proteasome.
It demonstrates antiproliferative and antitumor activity, and its use has been a breakthrough
in treating MM in the past 15 years [5]. It is a boronic acid-based compound, which inhibits
β5 chymotrypsin-like (CT-L) and to a lesser extent, β1 caspase-like (C-L) of the proteasome;
it has been approved for treatment both in front-line and in relapsed/refractory patients [7].
However, the development of resistance and side effects can limit its use in MM [8]. Most
patients show resistance to bortezomib after several courses of treatment and most of them
demonstrate multiple drug resistance. In addition, approximately 20% of patients exhibit
primary resistance, which determines lack of response to treatment [8,9].

Although resistance to PIs appears to be acquired through a number of different
mechanisms, genetic abnormalities play a key role for most anti-myeloma drugs [8,10–12].
Single-point mutations and modification of gene expression in neoplastic cells refractory
to PI have been reported in previous studies [11,13–16]. Several genes associated with
bortezomib resistance have been identified in MM cells, including POMP, XBP1, PSMB5,
MARCKS, ABCB1, CXCR4, MAF, TXN, TJP1, RPL5, CDK5, and CYP1A1 [16–23]; how-
ever, these genes have been examined individually, and usually only using commercially
available MM cell lines. The aim of our study was to evaluate the prognostic value of
nine previously described genes that may affect the prognosis in patients with a clinically
detected loss of response to bortezomib treatment: ABCB1, CXCR4, MAF, MARCKS, POMP,
PSMB5, RPL5, TXN, and XBP1. A better understanding of the genetic disorders involved
in MM drug resistance can improve the prognosis and prognostication, and assist the
development of new therapeutic options to improve the treatment of this disease.

2. Results

The demographic, clinical, and laboratory characteristics of the MM patients enrolled
for the study are presented in Table 1. Overall, 30 of the 73 patients were bortezomib
sensitive, while the other 43 were refractory. No statistically significant differences were
observed between bortezomib-sensitive and bortezomib-refractory MM patients with
regard to bone involvement at diagnosis (p = 0.96), calcium > 2.75 mmol/L at diagnosis
(p = 0.89), creatinine > 2 mg/dL at diagnosis (p = 0.31) or Hb < 10 g/dL at diagnosis (p = 0.73)
and ISS (p = 0.86). The only statistically significant difference was observed in predominant
paraprotein level (p = 0.02). In addition, light chain disease (LCD) was more common
(36.7%) among the sensitive group than the refractory group (9.3%).

Twelve patients had received at least one prior therapy before bortezomib-based
regimen initiation and 11 of them had become refractory to bortezomib. It was found that
41 patients displayed IgG paraprotein, 17 demonstrated IgA, and 15 had LCD. Most of
the patients (79.5%) had received a bortezomib, cyclophosphamide, and dexamethasone
(VCD) regimen, six (8.2%) VMP (bortezomib, melphalan, and prednisone), four (5.5%)
VTD (bortezomib, thalidomide, and dexamethasone), another four VD (bortezomib and
dexamethasone), and one received IsaVRd (isatuximab, lenalidomide, bortezomib, and
dexamethasone). Cytogenetics data were available for 41 patients (56.1%). Amp (1q) was
the most common abnormality (53.7%), followed by IGH rearrangements (46.3%), t(4;14)
(22.0%), and del(13q) (19.5%).



Cancers 2021, 13, 951 3 of 17

Table 1. The characteristics of the MM patients treated with bortezomib-based therapy and healthy donors. Data are
presented as frequency, percentage (%) unless otherwise specified.

Variable MM Total Refractory Sensitive Healthy Donors p

Number of patients 73 43 30 11 -

Gender (%)
N (%)

M: 43 (58.9)
F: 30 (41.1)

M: 25 (58.1)
F: 18 (41.9)

M: 18(60.0)
F: 12(40.0)

M: 5 (45.5)
F: 6 (54.5) 0.69

Age + SD (range) 61.9 ± 10.8
(38.2–83.7)

62.2 ± 11.5
(38.2–83.7)

61.3 ± 9.7
(39.8–81.6)

63.0 ± 6.2
(52.6–74.4) 0.73

Bortezomib regimen: - - - -

0.18

VCD 58 (79.5) 32 (74.4) 26 (86.7) -

VMP 6 (8.2) 5 (11.6) 1 (3.3) -

VTD 4 (5.5) 2 (4.7) 2 (6.7) -

VD 4 (5.5) 4 (9.3) 0 -

IsaVRD 1 (1.4) 0 1 (6.7) -

Paraprotein–N (%) - - - -

0.02
IgG 41 (56.2) 28 (65.1) 13 (43.3)

IgA 17 (23.3) 11 (25.6) 6 (20.0) -

LCD 15 (20.5) 4 (9.3) 11 (36.7) -

Prior treatment 12 (16.4) 11 (25.6) 1 (3.3) - 0.01

Bone involvement at diagnosis 40 (54.8) 23 (53.5) 17 (56.6) - 0.96

Calcium > 2.75 mmol/L at diagnosis 12 (16.4) 7 (16.3) 5 (16.7) - 0.89

HB < 10g/dL at diagnosis 26 (35.6) 14 (32.6) 12 (40.0) - 0.73

Creatinine > 2 mg/dL at diagnosis 10 (13.7) 4 (9.3) 6 (20.0) - 0.31

International Staging System (ISS) at diagnosis
I: 22 (30.1)
II: 17 (23.3)
III:32(43.8)

I: 14 (32.6)
II: 10 (23.3)
III: 18(41.9)

I: 8 (26.7)
II: 7 (23.3)

III: 14(46.7)
- 0.86

CRP > 5 mg/L 33 (45.2) 16 (37.2) 17 (56.7) - 0.06

Beta2-microglobuline increased (>3mg/L) 51 (69.9) 31 (72.1) 20 (66.7) - 0.36

LDH > 240U/L 9 (12.3) 5 (11.6) 4 (13.3) - 0.85

Cytogenetics (%) N = 41 N = 24 N = 17

-

t(4;14) 9 (22.0) 7 (29.2) 2 (11.8) 0.26

t(14;16) 0 0 0 -

t(14;20) 0 0 0 -

del(17p) 6 (14.6) 4 (16.7) 2 (11.8) 1.00

amp(1q) 22 (53.7) 12 (50.0) 10 (58.8) 0.75

del(13q) 8 (19.5) 2 (8.3) 6 (35.3) 0.61

t(11; 14) 1 (2.4) 1 (4.2) 0

del(1p) 2 (4.9) 1 (4.2) 1 (5.9) 1.00

IGH rearrangements 19 (46.3) 12 (50.0) 7 (41.2) 0.71

Abbreviations: CRP—c-reactive protein; IGH—immunoglobulin heavy chain; LCD—light chain disease; IsaVRD—isatuximab, lenalido-
mide, bortezomib, dexamethasone; LDH—lactate dehydrogenase; MM—multiple myeloma; VCD—bortezomib, cyclophosphamide,
dexamethasone; VD—bortezomib and dexamethasone: VMP—bortezomib, melphalan and prednisone; VTD—bortezomib, thalidomide,
dexamethasone.
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A flowchart depicting the number of patients in all stages of the study, and giving
reasons for exclusion, is presented in Figure 1. The expression of nine mRNAs (ABCB1,
CXCR4, MAF, MARCKS, POMP, PSMB5, RPL5, TXN, and XBP1) was determined in all
73 MM patients treated with bortezomib-based regimens and the 11 non-MM controls. Dif-
ferential expression analysis indicated that RPL5 was significantly down-regulated in MM
patients compared with controls (Table 2, Figure 2A). Moreover, POMP was significantly
up-regulated in bortezomib-refractory MM patients (Table 3, Figure 2B). No statistically
significant differences were found between the groups with regard to the expression of
selected mRNAs and the quality of response to treatment (Tables S1 and S2).
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Table 2. mRNA expression in multiple myeloma patients and healthy donors. The higher ∆Ct value
represents the lower expression of gene at mRNA level.

mRNA
∆Ct MM
(N = 73)

mean ± SD

∆ Ct Healthy Donors (N = 11)
Mean ±SD FC p-Value FWER

ABCB1 7.55 ± 0.99 7.12 ± 0.74 0.74 0.1075 0.6451
CXCR4 3.83 ± 0.82 3.56 ± 0.21 0.82 0.0209 0.1669
MAF 7.75 ± 1.08 7.20 ± 0.85 0.68 0.0737 0.5159

MARCKS 5.99 ± 0.83 5.63 ± 0.90 0.78 0.2346 1.0000
POMP 5.17 ± 0.67 5.12 ± 0.39 0.97 0.7541 1.0000
PSMB5 6.96 ± 0.78 6.80 ± 0.59 0.90 0.4341 1.0000
RPL5 2.73 ± 0.81 2.02 ± 0.46 0.61 0.0004 0.0033
TXN 3.43 ± 0.74 3.69 ± 0.66 1.20 0.2508 1.0000
XBP1 3.26 ± 0.92 3.21 ± 0.66 0.96 0.8036 1.0000

Abbreviations: MM—multiple myeloma; FC—fold change; FWER—family-wise error rate.

To provide a unified assessment of the prognostic impact of selected mRNA ex-
pression level at diagnosis, twelve patients who had received prior treatment before the
bortezomib-based regimen were excluded from the outcome analysis. In the course of
multiple myeloma, the duration of response decreases consistently with each successive
regimen [24]. In this way, previous treatment itself is a factor that severely impacts PFS.
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Data on PFS was available in 11/12 previously treated patients, and the impact of this
factor is presented in Figure S1. In contrast, in the previously treated group, no statistically
significant differences were observed in mRNA expression (Table S3); however, in order to
increase the statistical power of the analysis, this group was not excluded from differential
expression analyses.
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Table 3. mRNA expression in MM patients sensitive and refractory to bortezomib-based chemother-
apy. The higher ∆Ct value represents the lower expression of gene at mRNA level.

mRNA ∆Ct Refractory (N = 43)
Mean ± SD

∆Ct Sensitive (N = 30)
Mean ± SD FC p-Value FWER

ABCB1 7.58 ± 1.02 7.50 ± 0.98 0.95 0.7384 1.0000
CXCR4 3.75 ± 0.70 3.95 ± 0.96 1.15 0.3438 1.0000
MAF 7.70 ± 1.12 7.82 ± 1.03 1.09 0.6516 1.0000

MARCKS 5.79 ± 0.70 6.27 ± 0.92 1.40 0.0190 0.1522
POMP 4.94 ± 0.57 5.48 ± 0.67 1.45 0.0007 0.0062
PSMB5 6.84 ± 0.70 7.12 ± 0.87 1.22 0.1421 0.8523
RPL5 2.69 ± 0.87 2.78 ± 0.75 1.06 0.6622 1.0000
TXN 3.35 ± 0.72 3.55 ± 0.77 1.15 0.2676 1.0000
XBP1 3.08 ± 0.84 3.51 ± 0.97 1.35 0.0537 0.3759

Abbreviations: MM—multiple myeloma; FC – fold change; FWER—family-wise error rate.

Overall, data on progression free survival (PFS) were available for 49 patients and
data on overall survival (OS) for 56 patients. The median PFS was 14.4 months and the
median OS was 29.0 months. Univariate Cox proportional hazards regression analysis was
conducted to determine the prognostic value of the quantified mRNA expression; the results
indicated that in MM patients, higher expression of CXCR4, MARCKS, POMP, PSMB5,
TXN, and XBP1 was significantly correlated with shorter PFS (Table 4, Figure 3). Univariate
analysis found higher expression of POMP and RPL5 to be associated with shorter OS in
MM patients (Figure 4). In addition, the only clinical variable that was related to PFS and OS
was the use of autologous stem cell transplantation (ASCT) during the treatment schedule
(Figure 5).

The PFS analyses included 12 cases of missing data. Therefore, to check its robustness,
we repeated the univariate Cox regressions, including seven of the missing cases for which
OS time was known. The analysis yielded similar hazard ratios and p-values as before, and
the previously significant mRNAs maintained their significance (Table S4).
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To further investigate the prognostic factors, multivariate analyses were carried out
using Cox’s proportional hazards regression model with a stepwise selection procedure.
As ASCT was the only significant clinical variable in our univariate analyses with proven
prognostic significance, it was entered as covariate in the multivariable model. The results
found high expression of PSMB5 and CXCR and the presence of ASCT to be the best
independent predictors of PFS (Table 5). Multivariate analysis of OS found high expression
of POMP and RPL5 to be associated with shorter survival.

Table 4. Univariate Cox regression analyses for progression-free survival and overall survival.

Variables

PFS OS

Coefficient p-Value HR
95% CI

Coefficient p-Value HR
95% CI

Lower Upper Lower Upper

ABCB1 expression (high vs. low) −0.248 0.2716 0.609 0.252 1.474 −0.226 0.2950 0.637 0.273 1.482

CXCR4 expression (high vs. low) 0.571 0.0327 3.134 1.099 8.940 0.272 0.2865 1.722 0.634 4.679

MAF expression (high vs. low) 0.261 0.1348 1.685 0.850 3.336 0.390 0.2968 2.183 0.504 9.464

MARCKS expression (high vs. low) 0.594 0.0018 3.281 1.559 6.907 −0.343 0.1115 0.504 0.217 1.172

POMP expression (high vs. low) 0.409 0.0236 2.266 1.116 4.601 0.573 0.0108 3.144 1.303 7.585

PSMB5 expression (high vs. low) 0.476 0.0088 2.591 1.271 5.280 0.348 0.1497 2.004 0.778 5.158

RPL5 expression (high vs. low) −0.137 0.4206 0.760 0.389 1.483 0.641 0.0035 3.607 1.526 8.524

TXN expression (high vs. low) 0.394 0.0290 2.198 1.084 4.456 0.298 0.1683 1.813 0.778 4.228

XBP1 expression (high vs. low) 0.479 0.0099 2.605 1.259 5.389 0.270 0.2091 1.715 0.739 3.981

Age 0.006 0.7070 1.006 0.975 1.038 0.037 0.1281 1.038 0.989 1.089

ASCT
No Reference Reference
Yes −0.487 0.0089 0.378 0.182 0.783 −0.624 0.0157 0.287 0.104 0.790

Bone involvement at diagnosis
No Reference Reference
Yes 0.303 0.1043 1.832 0.882 3.805 0.309 0.1932 1.856 0.731 4.709

Calcium > 2.75 mmol/L at diagnosis
No Reference Reference
Yes 0.374 0.0929 2.112 0.883 5.052 −0.089 0.7501 0.837 0.281 2.495

CRP >5 mg/L
No Reference Reference
Yes 0.101 0.6100 1.224 0.563 2.663 −0.461 0.0637 0.398 0.150 1.054

HB < 10 g/dL at diagnosis
No Reference Reference
Yes 0.092 0.6243 1.202 0.576 2.505 0.009 0.9698 1.018 0.409 2.530

ISS I Reference Reference
ISS II −0.682 0.0590 0.375 0.124 1.134 0.030 0.9389 1.828 0.460 7.267
ISS III 0.383 0.1594 1.089 0.509 2.326 0.544 0.0684 3.056 1.035 9.021

Creatinine > 2 mg/dL at diagnosis
No Reference Reference
Yes −0.396 0.1952 0.453 0.136 1.502 −0.253 0.4984 0.603 0.140 2.606

LDH >240U/L
No Reference Reference
Yes 0.188 0.4221 1.457 0.581 3.651 0.411 0.1526 2.277 0.737 7.032

Gender
F Reference 0.1008 0.564 0.284 1.118 Reference
M −0.287 0.352 0.1583 2.022 0.760 5.376

Abbreviations: ASCT—autologous stem cell transplantation; CRP- c-reactive protein; CXCR-4—C-X-C chemokine receptor type 4; FWER—
family-wise error rate: HB—hemoglobin; ISS—International scoring system; LDH—lactate dehydrogenase; MM—multiple myeloma;
OS—overall survival; PFS—progression free survival.
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Table 5. Final multivariate Cox regression analyses for PFS and OS of MM patients.

Variables

PFS

Coefficient p-Value HR
95% CI

Lower Upper

PSMB5 expression (high vs. low) 0.386 0.0451 2.164 1.017 4.603
CXCR expression (high vs. low) 0.748 0.0073 4.465 1.496 13.320

ASCT
No Reference
Yes −0.612 0.0024 0.294 0.133 0.649

Variables OS

POMP expression (high vs. low) 0.523 0.0258 2.849 1.135 7.148
RPL5 expression (high vs. low) 0.664 0.0026 3.777 1.591 8.963

Abbreviations: ASCT—autologous stem cell transplantation; HR—hazard ratio; MM—multiple myeloma; OS—
overall survival; PFS—progression free survival.

We repeated our analyses with mRNA expression as a continuous variable (Table S5).
In the univariate analyses, PSMB5 and CXCR4 lost their significance. In the next step,
multivariate proportional hazard regression was performed with a stepwise selection
procedure (Model 2, Table S6). An approach based on dichotomized variables yielded a
model with a better fit to the data and with a lower AIC value.

3. Discussion

The study comprehensively determined the mRNA expression of nine genes that may
affect resistance in 73 MM patients treated with bortezomib-based regimens and 11 healthy
volunteers: ABCB1, CXCR4, MAF, MARCKS, POMP, PSMB5, RPL5, TXN, and XBP1. The
genes were selected on the basis of previous laboratory and clinical studies investigating
the bortezomib resistance in MM patients [17–21,25]. For the present study, it was decided
to evaluate the gene expression using whole-blood samples, as this is an easier procedure
to perform in clinical practice than preliminary PC isolation. However, standardization of
mRNA expression profiling after cytometric isolation of specific population of cells may
be technically challenging because of the variability of material quality, cell number, and
other factors important at this experimental scale (cell cycle, mutation profile, clonicity etc.).
Moreover, designing a model based only on a selected population of cells could downplay
the interactions between the cells and the immune system, as well as other unforeseeable
effects. Restricting the analysis to a cell subset would therefore potentially result in a
potentially, very accurate test if cells are isolated correctly, but not sufficiently robust to
use in different settings, with different technical tools and in varying clinical scenarios.
Although a functional analysis of how these genes change their activity within cells during
different phases of treatment would be an exciting study to perform, it would likely require
a different experimental model, cell cultures, and in-depth mechanistic evaluations far
exceeding the scope of this survival-oriented analysis. A similar method but based only on
leukocytes in peripheral blood, not whole blood, was recently used by Watanabe et al. in
evaluating the novel biomarkers to predict bortezomib response in MM patients [26].

According to the differential expression analysis, RPL5 gene was the only gene that
was significantly down-regulated in MM patients compared to the normal individuals;
however, higher RPL5 expression correlated with shorter survival in MM patients. RPL5
has also been found to be deleted in 20–40% of MM patients, and it is the only recurrently
mutated ribosomal protein gene in MM [27,28].

In addition, RPL5 mRNA expression level was proposed as a clinical biomarker for
response to bortezomib in MM patients; Hofman et al. [28] reported significantly lower
RPL5 mRNA expression in patients with MM who initially responded to bortezomib and
then relapsed, and both newly diagnosed and relapsed patients with low RPL5 expression
had better PFS when bortezomib was used in their treatment. In addition, they reported an
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association between low RPL5 mRNA levels and initial response to bortezomib in relapsed
MM patients. RPL5 expression has also been associated with shorter survival in newly
diagnosed patients [28].

In our study, POMP gene was significantly up-regulated in MM patients refractory
to bortezomib-based treatment in comparison with bortezomib-sensitive patients. Higher
expression of POMP was found to be associated with shorter survival: POMP protein
expression is essential for the biogenesis of proteasome de novo and its increased expression
facilitates acquired resistance to PI [16]. An increase in POMP protein expression has also
been noted in V10R, RPMI 8226, OPM-2, ANBL-6, and KAS-6/1 MM cells resistant to
bortezomib [16,29]. Similarly to the present study, POMP protein suppression via shRNAs
restored cell sensitivity, while over-expression favored resistance.

A protein-binding site for a suppressive factor, NRF2, has also been identified in the
promoter region of the POMP protein. Although its increased expression should increase
sensitivity to bortezomib, expression of POMP has been found to be increased in resistant
cells, together with increased levels of POMP protein. The activation of both proteins
varies according to cell line, and POMP appeared to have a greater effect on bortezomib
sensitivity in the KAS-6/1 than OPM-2 line [30].

In the MM patients in the present study, univariate Cox proportional hazards re-
gression analysis found the expression of six of the nine studies genes, viz. PSMB5,
CXCR4, MARCKS, POMP, TXN, and XBP1, to significantly correlate with PFS. In addition,
the multivariate analysis found high expression of PSMB5, CXCR, and ASCT to be the
best independent predictors of PFS. Proteasome subunit β type 5 (PSMB5) is the target
for bortezomib and other PI inhibitors that harbor chymotrypsin-like proteolytic activ-
ity [31]. Bortezomib occupies the PSMB5 substrate-binding pocket, interfering with the
catalytic N-terminal threonine residue. Apart from β5 point mutations, the most frequent
change observed in the bortezomib-resistant cell lines was overexpression of the β5 sub-
unit [21,32–34]. A recent study by Barrio et al. identified somatic PSMB5 substitutions in an
MM patient treated with bortezomib, suggesting that resistance acquired through PSMB5
point mutations is clinically relevant [21]. Recently, in KMS-18 and KMS-27 MM cells, the
PSMB5 gene was found to harbor novel bortezomib resistance alleles which determine
response to second-generation proteasome inhibitors in MM [35]. In addition, PSMB5
deletion resensitized drug-resistant, PSMB5-mutated cell lines to bortezomib, suggesting
that PSMB5 mutation plays a role in drug resistance [36].

Our findings indicated that higher CXCR4 expression correlated with shorter PFS.
CXCR4 is a pleiotropic chemokine receptor which acts through its ligand (CXCL12) and
influences proliferation, invasion, dissemination, and drug resistance in MM [37,38]. The
current therapeutic focus is on disrupting the interaction of MM cells with their protective
tumor microenvironment, in which the CXCR4 axis plays an essential role [39]. In contrast
to our present study, reduced expression of CXCR4, a single biomarker in the Bcl-XL/Myc
model system, has indicated poorer outcomes in MM patients treated with bortezomib [40].
In addition, low CXCR4 expression was associated with a worse outcome than high CXCR4
expression, and correlated with increased MM severity and aggressiveness in patients
treated with bortezomib, either alone or in combination with other agents [18,40].

The univariate Cox proportional hazards regression analysis found that the higher
expression of MARCKS, TXN, and XBP1 significantly correlated with shorter PFS in MM
patients. Another marker of PI resistance is MARCKS. This protein is important in cell adhe-
sion and metastatic spread [41] and is involved in resistance to apoptosis in prostate cancer
cells [16]. Its expression is significantly elevated in many types of cancer [42]. Micallef
et al. reported overexpression of MARCKS in nine of 18 (50%) studied MM cell lines [43];
in addition, in line with our present findings, Yang et al. reported increased MARCKS ex-
pression in bortezomib-refractory MM patients, as well as increased bortezomib sensitivity
in bortezomib-resistant MM cells following inhibition of MARCKS phosphorylation [44].
Similar effects were achieved in an MM xenograft model [45].
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A key role in bortezomib resistance is played by the increased expression of pro-
teasomes and proteins involved in providing protection from oxidative stress, such as
thioredoxin (TXN) [46]. Our findings indicate that higher expression of TXN correlates
with shorter PFS. Previous studies have also found TXN to be overexpressed in primary
myeloma cells isolated from bortezomib-resistant MM patients, and that overexpression
of TXN correlated with poor overall survival in patients with MM [46]. In bortezomib-
resistant myeloma cell lines, TXN inhibition overcomes adaptive bortezomib resistance [47].
In addition, higher TXN1 expression levels were found to correlate with myeloma cell sur-
vival and growth, and to protect MM cells against increased intrinsic oxidative stress [48].
Moreover, inhibition of TXN1 leads to apoptosis in drug-resistant MM.

Another gene whose high expression significantly correlated with shorter PFS in MM
patients is XBP1, coding for X-box-binding protein 1. The XBP1 protein is an important tran-
scription factor necessary for differentiation of B cells into plasma cells, being responsible
for the final maturation of plasmablasts to plasmocytes and the induction of immunoglobu-
lin secretion [49]. XBP1 is also a particularly important regulator in the UPR mechanism. It
is spliced into two isoforms. One isoform, XBPs1s, activates the genes necessary to reduce
ER stress and UPR activation after penetration into the cell nucleus. XBP1 may have a
significant impact on resistance to bortezomib in MM cells. Low expression of XBPS1
has been associated with a lack of sensitivity to PI treatment [50]. Two point mutations
in the XBP1 gene have been identified to date [49,51]: the first, XBP1-L167I, is located
within the splice site of the XBP1 gene, and has been shown to prevent the XBP1 mRNA
splicing process needed to form the active XBP1s protein, while the second, XBP1s-P326R,
is located within the transactivation domain of the XBP1s molecule and has no effect on
the splicing process. Cells displaying one of the described mutations lose their sensitivity
to bortezomib, inducing disease resistance [52].

In conclusion, our results suggest that high expression of PSMB5 and CXCR may
serve as predictors of PFS in MM patients treated with bortezomib-based regimens. In
addition, high expression of POMP and RPL5 can be useful to predict shorter survival of
these patients. However, further studies are needed to determine the role of these factors
in effective strategy for improving anti-myeloma therapy.

4. Materials and Methods
4.1. Patients

The patients were recruited prospectively in our institution (Department of Hematol-
ogy, Copernicus Memorial Hospital, Lodz, Poland) as a part of a planned marker study.
The main exclusion criterion was using bortezomib-based therapy prior to the study. The
main inclusion criteria were diagnosis of multiple myeloma according to International
Myeloma Working Group (IMWG) criteria and planned treatment with a bortezomib-based
regimen [53]. A total of 73 MM patients (43 men and 30 women) treated were included. The
mean age of the group was 61.9 ± 10.8 years (range: 38.2 to 83.7 years). Their demographic,
clinical, and laboratory details are shown in Table 1. All of the patients received bortezomib
treatment as first-line treatment or in progression after previous therapy. The participants
were classified as either bortezomib-sensitive or bortezomib-refractory, as previously re-
ported, according to their response to bortezomib-based therapy [12,54]. Response to
treatment and relapse/progression events were classified according to the IMWG [55,56].

The bortezomib-sensitive patients demonstrated CR, VGPR, or PR lasting longer than
six months following discontinuation of bortezomib-based therapies [56–58]. In total, 30 pa-
tients were bortezomib refractory and 43 were bortezomib sensitive with no progression for
at least six months of treatment discontinuation. The control group consisted of 11 healthy
volunteers (six women and five men; mean age 61.9 ± 10.8 years; range: 38.2–83.7 years).
The study was conducted according to good clinical and laboratory practice. The ex-
perimental protocol was conducted in accordance with the Declaration of Helsinki. All
procedures were approved by the local ethical committee (The Ethical Committee of the
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Medical University of Lodz, No RNN/103/16/KE). Informed consent was obtained from
all subjects involved in the study.

4.2. Blood Collection

Peripheral blood was collected in PAXgene Blood RNA Tubes (Qiagen, Germantown,
MD, USA) from 73 multiple myeloma patients and 11 healthy volunteers and stored frozen
at −80 ◦C. Venous blood samples were collected from MM patients, before treatment
with bortezomib-based regimens, most commonly on the first day of the bortezomib
administration. In previously treated MM patients, blood was collected at the time of
progression, during the qualification process for commencement of a new therapy line.

4.3. The Analysis of Gene Expression Using Real-Time PCR
4.3.1. Isolation of Total RNA

Frozen blood samples were thawed on ice and total RNA was isolated from 1.5 mL of
blood using the QIAamp RNA Blood Mini Kit (Qiagen) according to the manufacturer’s
protocol. The final elution of total RNA was performed using 50 µL of RNase-free water.
Total RNA quality was determined using the High Sensitivity RNA Screen Tape on a 2200
TapeStation bioanalyzer (Agilent, Santa Clara, CA, USA). The degradation rate of RNA
was determined using RNA integrity number (RIN). Only the samples with RIN > 7 were
further analyzed. The quantity of RNA was measured using NanoVue Plus Spectropho-
tometer (GE Healthcare, Wauwatosa, USA. Directly after isolation, RNA was used for the
reverse transcription process.

4.3.2. Reverse Transcription Reaction

The reverse transcription was performed using the high-capacity cDNA reverse tran-
scription kit (Applied Biosystems, ThermoFisher Scientific, Waltham, MA, USA,) according
to the manufacturer’s protocol. The total volume of reverse transcription mix was 20 µL
per reaction, containing 2 µL RT buffer (10X), 0.8 µL dNTP mixture (100 mM of each
dNTP), 2 µL random primers (10X), 1 µL RNase inhibitor (20 U/µL), 1 µL MultiScribe
Reverse Transcriptase (50 U/µL), and 10 µL RNA template, whereby the reagent mix was
prepared on ice. The thermal profile of the reverse transcription program consisted of
10 min incubation at 25 ◦C, 120 min at 37 ◦C, 5 min reverse transcriptase inactivation at
85 ◦C, and cooling down to 4 ◦C. Total amount of 100 ng of RNA was used as a sample
input per 20 µL of reverse transcription reaction. All reactions were performed in a 96-well
SureCycler 8800 thermal cycler (Agilent, Santa Clara, CA, USA). The resulting cDNA was
stored at −20 ◦C.

4.3.3. Selection of Reference Genes

A reference gene provides the internal control of the reaction and allows to determine
the absolute and reliable value of the studied gene expression using real-time PCR. In order
to normalize the variations in sample input for relative quantitation of gene expression, the
selection of endogenous control genes was performed using the TaqMan™ Array Human
Endogenous Control (Thermo Fisher Scientific, Waltham, MA, USA).

The analysis was performed for six total RNA samples isolated from whole blood of
MM patients, according to the manufacturer’s protocol.

The stability of mRNAs was measured by NormiRazor [59]. This is an integrative
tool which implements existing normalization algorithms (geNorm, NormFinder and
BestKeeper) in a parallel manner. Three reference genes were selected by NormiRazor
and TaqMan™ probes ((Thermo Fisher Scientific, Waltham, MA, USA) ACTB (Assay ID:
Hs99999903_m1), RPLP0 (Assay ID: Hs99999902_m1), MT-ATP6 (Assay ID: Hs02596862_g1)
and their average expression was used as reference.
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4.3.4. Real-Time PCR

The expression of nine genes was analyzed in all samples: ABCB1, CXCR4, MAF,
MARCKS, POMP, PSMB5, RPL5, TXN, and XBP1. The analysis was performed using com-
mercially available ready-to-use TaqMan® Assays (Applied Biosystems- Thermo Fisher Sci-
entific, Waltham, MA, USA). These were preloaded with a probe labeled with 6-FAM™ dye
(emission spectra at ~517 nm) and forward and reverse primers for the amplification of the
following genes: ABCB1 (Assay ID: Hs00184500_m1), CXCR4 (Assay ID: Hs00976734_m1),
MAF (Assay ID: Hs00193519_m1), MARCKS (Assay ID: Hs00158993_m1), POMP (Assay ID:
Hs01106088_m1), PSMB5 (Assay ID: Hs00605652_m1, RPL5 (Assay ID: Hs00851991_u1),
TXN (Hs00828652_m1), XBP1 (Assay ID: Hs00231936_m1).

The PCR mixture consisted of 10 µL of 2X TaqMan™ Genotyping Master Mix (Aplaied
Biosystems-Thermo Fisher Scientific, Waltham, MA, USA), 1 µL of appropriate 20X TaqMan®

Assay, and 1 µL of cDNA template. The mixture was filled up with a distilled, DNase-
and RNase-free water (Gibco, Gaithersburg, MD, USA) to a final volume of 20 µL. The
analysis was carried out using the TOptical thermal cycler (Analytik, Jena, Germany). The
reactions were performed under the following conditions: an initial denaturation step
at 95 ◦C for 10 min, followed by 40 amplification cycles of denaturation (95 ◦C, 15 s), a
single annealing and extension step (60 ◦C for 1 min). Fluorescence signal detection was
performed after each cycle. Gene expression analysis was performed for each sample
in duplicates. Absolute quantification analysis was performed using qPCR Soft 3.1.15.0
(Analytik, Jena, Germany).

4.4. Statistical Analysis
4.4.1. Data Preparation

Data were normalized based on the mean expression of three mRNAs in a given
sample (ACTB, RPLP0, MT-ATP6); this has proved to be the most stable normalization
factor (according to NormiRazor). The normalized Ct values were calculated as:

Normalized ∆Ct = Ct mRNA − (mean Ct of ACTB, RPLP0 and MT-ATP6)
Normalized ∆Ct values for all samples and with class assignments were provided

as Table S7.

4.4.2. Analysis

Nominal variables were expressed as percentages and analyzed using the Chi-square
test with appropriate corrections if needed: the Yates correction for continuity or Fisher’s
exact test.

For continuous variables, normally distributed data were tested using a two-sided
independent Student’s t-test. Continuous variables were presented as mean ± standard
deviation (SD) or medians with 25% to 75% values according to the data distribution.
Survival analysis was conducted using a Kaplan–Meier estimate with univariate and
multivariate Cox’s proportional hazards models, as well as the log-rank test. Cutoff Finder
was used to determine the optimal cutpoint for gene expression dichotomization based on
the log-rank test minimum p-value approach [60]. A procedure based on stratification of a
continuous biomarker variable into two groups seems appropriate for use in clinics where
most of the decisions are binary. Although such cutoffs are usually based on the mean
or median value of the diagnostic factor, they can also be set based on the distribution of
the variable or by optimizing the correlation with response to a treatment or outcome. A
common problem in biomarker research is overestimating the actual effect when multiple
cutoff points are investigated with no correction for multiple testing. The advantage of
Cutoff Finder is that it determines the robustness of particular cutoff points and estimates
the effect size with confidence intervals [60].

All statistical analyses were conducted using Statistica Version 13.1 (TIBCO, Palo Alto,
CA, USA) and R programming language (version 4.0.2). p values lower than 0.05 were
considered statistically significant. To control the family-wise error rate (FWER), the



Cancers 2021, 13, 951 13 of 17

significant genes were chosen at 5% using Holm’s step-down method. FWER was used to
insure a low probability of any false positives among the differentially expressed mRNA.

5. Conclusions

The present study examined the mRNA expression of nine genes with a possible
influence on bortezomib sensitivity and refractoriness in MM, viz., ABCB1, CXCR4, MAF,
MARCKS, POMP, PSMB5, RPL5, TXN, and XBP1. Of these, RPL5 was down-regulated
in MM patients as compared with the normal individuals. POMP was significantly up-
regulated in MM patients refractory to bortezomib-based treatment. Multivariate analysis
found that high expression of PSMB5 and CXCR and autologous stem cell transplantation
were the best independent predictors of PFS, and that high expression of POMP and RPL5
were associated with shorter survival. The clinical and biological importance of these
findings need further investigation.
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4/13/5/951/s1. Supplementary Table S1: ABCB1, CXCR4, MAF, MARCKS, POMP, PSMB5, RPL5,
TXN, and XBP1 mRNA expression in MM patients with complete remission (CR) to bortezomib-
based chemotherapy and those without. Supplementary Table S2: ABCB1, CXCR4, MAF, MARCKS,
POMP, PSMB5, RPL5, TXN, and XBP1 mRNA expression in MM patients with at least very good
partial response (VGPR), partial response, stable disease, or disease progression (<VGPR) after
bortezomib-based treatment. No difference was found between the two groups. Supplementary
Table S3: mRNA expression in treatment-naive and previously treated MM patients. A higher
∆Ct value represents lower expression of the gene at the mRNA level. Supplementary Table S4:
Univariate Cox regression analyses for progression-free survival with missing data (n = 7) replaced
by overall survival. Supplementary Table S5: Univariate Cox regression analyses for progression-free
survival and overall survival- mRNAs expression as continuous variables. Supplementary Table
S6: Comparison of final Cox regression of multivariate models based on dichotomized variables
(model 1) and continuous variables (model 2). Supplementary Table S7: Normalized ∆Ct of mRNA
expression for all samples and with class assignments. Supplementary Figure S1: Kaplan–Meier plots
for previous treatment and treatment-naïve groups in the univariate analysis for PFS.
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Abbreviations

ABCB1 Adenosine-triphosphate-binding cassette sub-family B member 1
ACTB beta-actin gene
ASCT autologous stem cell transplantation
BM bone marrow
CXCR-4 C-X-C chemokine receptor type 4
DLBCL diffuse large B-cell lymphoma
ECM extracellular matrix
FWER family-wise error rate
IPO8 Importin 8 gene
IsaRVD isatuximab, lenalidomide, bortezomib, dexamethasone
MAF musculoaponeurotic fibrosarcoma
MARCKS myristoylated alanine-rich C-kinase substrate
MM multiple myeloma
MT-ATP6 mitochondrially Encoded ATP Synthase Membrane Subunit 6 gene
NRF2 nuclear factor erythroid 2-related factor 2
NF-κB nuclear factor kappa B
OS overall survival
PC plasma cells
POMP proteasome maturation protein
PFS progression free survival
PI proteasome inhibitor
PSMB5 proteasome subunit β type 5
RPLP0 Ribosomal Protein Lateral Stalk Subunit P0 gene
RPL5 ribosomal protein L5
UPR unfolded protein response
TXN thioredoxin
VCD bortezomib, cyclophosphamide, dexamethasone
VD bortezomib and dexamethasone
VMP bortezomib, melphalan and prednisone.
VTD bortezomib, thalidomide, dexamethasone
TXN thioredoxin
XBP1 X-box binding protein 1
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