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Brain-Computer Interface (BCI) is a rapidly developing technology that aims to support individuals suffering from various
disabilities and, ultimately, improve everyday quality of life. Sensorimotor rhythm-based BCIs have demonstrated remarkable
results in controlling virtual or physical external devices but they still face a number of challenges and limitations. Main challenges
include multiple degrees-of-freedom control, accuracy, and robustness. In this work, we develop a multiclass BCI decoding
algorithm that uses electroencephalography (EEG) source imaging, a technique that maps scalp potentials to cortical activations,
to compensate for low spatial resolution of EEG. Spatial features were extracted using Common Spatial Pattern (CSP) filters in the
cortical source space from a number of selected Regions of Interest (ROIs). Classification was performed through an ensemble
model, based on individual ROI classification models. The evaluation was performed on the BCI Competition IV dataset 2a, which
features 4 motor imagery classes from 9 participants. Our results revealed a mean accuracy increase of 5.6% with respect to the
conventional application method of CSP on sensors. Neuroanatomical constraints and prior neurophysiological knowledge play
an important role in developing source space-based BCI algorithms. Feature selection and classifier characteristics of our

implementation will be explored to raise performance to current state-of-the-art.

1. Introduction

Brain-Computer Interface (BCI) is emerging as a promising
rehabilitation technology, that aims to establish a connection
between brain activity and external devices. Recent advances
in invasive BCIs have demonstrated the feasibility of per-
forming complex motor tasks using brain signals by people
with disability such as severe spinal cord injury and
quadriplegia [1]. As invasive BCIs use intracranial electrodes
to measure electrical activity of the cerebral cortex, either
implanted or directly lying on the cortical surface such as
electrocorticography (ECoG), their usage is limited due to
ethical, medical, and physiological issues [2]. These limi-
tations are not present with noninvasive BCIs, and the most

widely used noninvasive modality, electroencephalography
(EEG), uses electrodes over the scalp to measure inferred
cerebral cortical activity.

A variety of brain signal types and features have been
used to decode user intent in noninvasive EEG-based BCls,
such as visual evoked potential (VEP), P300 response, slow
cortical potentials (SCP), and sensorimotor rhythm (SMR),
to name but a few [3]. SMR or mu () rhythm, typically
measured at the alpha band of 8-13 Hz over the scalp area
overlying the sensorimotor cortex, can be modulated during
motor execution or motor imagery (MI) tasks, and the BCIs
decoding this type of signal are referred to as SMR-BCls.
Motor imagery displays similar patterns of brain activation
and communication to motor execution [4, 5] while research
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and development in the domain of SMR-BClIs has brought
some remarkable applications ranging from the accurate
control of a cursor in 2-D space [6], control of a quad-copter
in 3D space [7], control a robotic arm for reach and grasp
tasks [8], and control of a wheelchair [9] proving the po-
tential of this technology.

Nonetheless, noninvasive BCIs also feature a number of
limitations with regards to reliability, speed, and accuracy
and have many challenges to overcome to meet both re-
search and casual everyday use needs. Key features for the
success of SMR-BCIs involve the classification accuracy,
performance robustness, and asynchronous and intuitive
control that requires the decoding of multiple motor im-
agery tasks. Control of an external complex device with
multiple degrees of freedom, such as a robotic arm or an
artificial limb, can be better achieved by utilizing motor
imagery classes that are related to the intended end effector
movement [10, 11], making control more intuitive and thus
requiring less time for training.

Moreover, intrinsic drawbacks of EEG include low
signal-to-noise ratio (SNR), low spatial resolution, and
imprecise and indirect measuring of brain activity mainly
attributed to the volume conduction effect. This effect de-
scribes the spread of the brain’s electrical field while it is
transmitted from the source space through the cerebrospinal
fluid, skull, and scalp to reach the scalp surface where the
electrodes lay, known as the sensor space [12]. To reduce the
volume conduction effect and study the brain activity on the
cortex, source imaging techniques are commonly used that
map the scalp potentials measured by EEG sensors to
cortical activations on the cortical mantle [13, 14]. Low SNR
led the researches to search for spatial filters that extract the
EEG components that reflect user intention. In this context,
Common Spatial Pattern (CSP) method was proposed to
extract spatial features of event related de/synchronization
during motor imagery [15]. CSP filters are spatial filters
designed to maximize the power difference on their outputs
given different EEG classes [15]. CSP filters are considered as
an effective way to discriminate classes and are one of the
most popular feature extraction methods in the BCI field
[16], which also have multiple extensions [17-20]. Re-
markable classification results have already been reported by
studies that implemented the CSP algorithm or its variants
[21, 22].

In the current study, we describe the development of
a BCI algorithm, aiming to decode multiple (4) MI tasks. In
order to overcome the issues associated with low spatial
resolution, we use source imaging and extract features in the
cortical source space from selected Regions of Interest
(ROIs), using Common Spatial Pattern filters. Finally, the
classification is performed with an ensemble classification
model that synergistically uses the classification models of
selected ROIs, in order to increase classification accuracy.

2. Materials and Methods

2.1. BCI Competition Dataset. The BCI Competition IV 2a
dataset was used to develop and test the BCI decoding
algorithm. The dataset contains recordings from 9 healthy
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FIGURE 1: Diagram of a trial and timings during a session of the BCI
Competition IV 2a dataset.

subjects that perform 4 motor imagery tasks, right arm, left
arm, feet, and tongue [23]. The data of a subject consist of 2
sessions, one intended for training and the other for
evaluation. Each session is comprised of 72 trials for each
MI task, 288 trials in total, recorded with 22 EEG channels
and 3 monopolar electrooculogram (EOG) channels (with
left mastoid serving as reference). In our study, only data
from the training session are used.

At the beginning of each trial (£=05s), a white cross on
black background appeared, and after 2 s, an arrow oriented
right, left up, or down informed the subject to perform the
corresponding MI task (Figure 1). The arrow appeared for
1.255, and the subject was asked to keep on performing the
MI task until the white cross disappeared (t=65).

2.2. Signal Preprocessing. Signal analysis was performed
solely on the EEG electrodes, and the EOG channels were
excluded. Average reference was used, and the data were
band-pass filtered at 7-15 Hz using a zero-phase FIR filter
in order to capture the event related desynchronization
and synchronization (ERD/ERS) activity [24]. Subse-
quently, data were down-sampled at 100 Hz and epoched
for 500 msec after the visual cue with epoch duration of
3000 msec. Data were visually inspected for bad channels
but none was excluded. All preprocessing was performed
using a custom Fieldtrip script [25].

2.3. Inverse Problem Solution. EEG source imaging was
deployed to mitigate low spatial resolution and low SNR
caused by volume conduction. EEG source imaging maps
sensor activity to brain neural current distribution at fixed
positions over the cortex. The source activity is defined in
terms of current dipoles, at a grid of vertices on the MNI
cortical surface template, that model electrical activity of
neuronal groups firing synchronously [26, 27]. The esti-
mation of the sources from the EEG recordings constitutes
the solution for the inverse problem, while the forward
problem is described by the following equation (assuming
zero noise) [27]:

M = GD, (1)

where M is the N x T matrix of the EEG data, G is the lead-
field matrix (also referred as gain matrix) that maps the
source data to sensor data (N.x Ny), and D is the dipole
current density (Ny x T). Ny is the number of current di-
poles, N_ is the number of EEG channels, and T is the
number of measurements. Solving the forward problem
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FIGURE 2: Regions of Interest (ROISs) at the cortical level: (a) midline surface, left hemisphere, (b) top view, both hemispheres, and (c) lateral
view, right hemisphere. 1: SAC, 2: S1F, 3: S1H, 4: S2, 5: CMA, 6: M1F, 7: M1H, 8: MIL, 9: SMA, 10: pSMA, 11: PMd, 12: PMv [36].

consists of computing the lead-field matrix, referred to as
head or forward model, that models how current flows from
the sources through different head compartments (scalp,
skull, and cortex) to the scalp surface.

The Montreal Neurological Institute (MNI) Colin 27
MRI generic template [28] was used as the default subject
anatomy to compute a three-compartment (scalp, skull, and
cortex) head model with symmetric boundary element
method (BEM) using OpenMEEG [29]. Default Brainstorm
Colin 27 cortex was down-sampled using iso2mesh [30] to
5023 vertices, and the relative conductivity values of
Scalp/Skull/Brain was assumed to be 1:1/15:1, with 0} ,;, =
Ogcalp = 0.33 S/m and oy = 0.0042 §/m [31]. All 5023 di-
poles are assumed constrained to the cortical surface with an
orientation perpendicular to the surface, based on the as-
sumption that EEG primary signal sources are local groups
of pyramidal neurons firing synchronously, located on the
cortex and arranged perpendicular to its surface [26, 31].

Given the lead-field matrix, the inverse EEG problem
consists of finding the dipole current density D in (1). This is
a highly underdetermined problem since the number of
dipoles (sources) is at the order of thousands and the
number of EEG channels is at most at the order of hundreds,
which in practice means that different current distributions
(brain activity) can lead to exact EEG sensor values. Among
different methods for solving the inverse problem, here it
was solved with the weighted minimum norm estimate
(WMNE) method using the Brainstorm toolbox [32-34].
Sensor noise covariance matrix, required for the compu-
tation of the solution, was calculated on the resting state
period at the start of the session.

2.4. Regions of Interest. Cortical Regions of Interest (ROIs)
were defined on the sensorimotor cortex to reduce the
dimension of the source data derived from the inverse
problem solution, having anatomical constraints and aiming
at extracting valuable information related to MI tasks [11, 35].
24 ROIs were defined based on neuroanatomical landmarks
and Broadman areas and are depicted in Figure 2. Defined

ROIs include bilaterally presupplementary motor area
(pSMA), supplementary motor area (SMA), cingulate motor
area (CMA), dorsal premotor cortex (PMd) and ventral
premotor cortex (Pmv), primary foot motor area (MIF),
primary hand motor area (M1H) and primary lip motor area
(M1L), primary foot somatosensory area (S1F), primary hand
somatosensory area (S1H), secondary somatosensory area
(S2), and somatosensory association cortex (SAC). During
ROI analysis, source times-series that lay only on the defined
ROIs on the mantle are analyzed, excluding from analysis all
the other sources.

2.5. Feature Extraction. Feature extraction was performed at
the source level, on ROIs data in particular. Common Spatial
Pattern (CSP) filters are one of the most used feature ex-
traction methods in BCI domain [16]. Assuming data of two
classes, for example, the motor imagery of right and left, CSP
algorithm calculates spatial filters that maximize the ratio of
variance of data stemming from the two classes. Conse-
quently, the extracted signals are optimally discriminating
two different EEG classes while they are revealing spatial
patterns of different classes [15, 17]. The spatially filtered
signal S of an EEG trial is given by

S=WM, (2)

where M is a N_ x T matrix representing the EEG mea-
surement of data for the given trial and W is L x N matrix
referred as CSP projection, whose rows are the spatial filters
designed to output signals whose ratio of variances are
maximally discriminating input data of two different
classes.

Original CSP algorithm has been developed for two class
problems, though there exist multiclass extensions [17, 37].
Since the classification problem of this work is multiclass,
a multiclass extension of CSP was deployed using the One-
vs-Rest scheme, with L = 8 filters, the last and the first ei-
genvectors of each class were selected [15]. CSP filters were
calculated during training phase, on the mean covariance
matrices of the data conditioned to the four classes.
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F1GURrE 3: Outline of the implemented decoding algorithm. EEG sensor time series are transformed to current dipole time series. Data from
the Regions of Interest (ROIs) are spatially filtered by ROI-CSP filters, to extract features to be classified by independent ROI classification
models. Predicted class is the most voted class of the ROI classification models. On the classification model scheme, the predicted class is the
outcome of an inference mechanism (majority vote). The inference mechanism takes as input the predicted class from the individual ROI

classification models.

In this work, CSP filters were applied to the source data,
and they were calculated on every ROI current dipole time-
series. Assuming D, the current dipole times-series of ROI,,
that resulted from the solution of the inverse problem (1),
and W the CSP filter computed on the data of ROl the
output of the ROI-CSP filters is

Z=W,D,. (3)

The feature vector of ROI,, Vror, € RL is extracted from
CSP filters output, and each of its components, v,, p=1, ...,
L, is given as

=8 SE var(Z)
i=1 i

) eR,pell, L], (4)
where ZP is the p row of the matrix Z, that is, the output
signal of the pth CSP filter output. Repeating this procedure
for each selected ROI results to Q feature vectors of L=8
elements, where Q is the number of selected ROIs.

2.6. Classification. An ensemble classification model was
used for the prediction of the MI task [38], illustrated in
Figure 3. It is supported that an ensemble method using
multiple independent classification models can increase the

classification performance [39, 40]. An independent clas-
sification model was built for each of the selected ROIs, and
the final classification outcome was selected by an inference
(fusion) mechanism. K-nearest neighbors (kNN), Naive
Bayes, Decision Tree, and Linear Discriminant Analysis
(LDA) classifier were tested with LDA having superior
performance as it is demonstrated in the Results section.
The ROI classification model was based on LDA, and the
inference mechanism was the majority vote of the selected
ROI classification models. The selected ROIs were the Q
most accurate ROIs according to a selection procedure that
is presented in the next section.

2.7. ROI Selection. The defined ROIs extend all over the
motor cortex, while the cortical activity related to the
performed motor imagery tasks is derived only from a subset
of the defined ROIs. ROIs were selected based on their
classification model accuracy. In order to select the most
accurate ROIs, 10-fold cross-validation using the LDA
classifier was performed on ROI level, and this was repeated
10 times to ensure more robust results (in every run, CSP
filters are calculated on different data). The Q=8 most
accurate ROIs were selected. The number is based on
parametric analysis results of the inference mechanism
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FiGure 4: Classification accuracy of kNN, LDA, Naive Bayesian,
and Decision Tree classifiers across all subject data.

accuracy. Parametric analysis was run for different subjects,
and the number of selected ROIs was set to Q=38.

The performance of the classification scheme on the
source space was further compared to the performance on
the sensor space using the same setting (10-fold cross-
validation of the LDA classification repeated 10 times).
For the sensor space, the CSP filters are computed on the
preprocessed EEG data. Moreover, to better assess the de-
veloped method, performance in terms of Cohen’s kappa
statistic, a useful metric for multiclass prediction problems,
was compared to the winner of BCI Competition IV of
dataset 2a [23, 33]. The winner of the competition deploys
CSP on multiple frequency bands (FBCSP) as feature ex-
traction method, Mutual Information-based Best Individual
Feature (MIBIF) algorithm for feature selection, and Naive
Bayesian Parzen Window (NBPW) classifier [21, 41].

3. Results and Discussion

3.1. Classification Accuracy. Four different classifiers were
tested to select the classifier to make the predictions. LDA,
kNN, Naive Bayesian, and Decision Tree were tested by
performing 10-fold cross-validation, 10 times on all subjects.
LDA had superior performance with the highest prediction
accuracy among all subjects, with mean accuracy 54.1%.
Naive Bayesian was second with 46.9%, followed by Decision
Tree and kNN with 45.5% and 44.5%, respectively (Figure 4).

The source method of classification achieved consistently
higher accuracy rates across all subjects (43.7% to 74.5%),
when compared to the sensor method (37.7% to 73.4%), as
illustrated in Figure 5 and displayed in Table 1 below.
Comparison of the developed method’s performance to the
winner of BCI Competition IV of dataset 2a in terms of
Cohen’s kappa statistic [42, 43] (multiclass prediction) is
presented in Table 2.
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FiGure 5: Classification accuracy of the developed source method
and the equivalent traditional sensor approach, on the BCI
Competition IV, 2a dataset.

Classification sensitivity and specificity, also referred to
as true positive and true negative rate respectively, between
the source and sensor method are demonstrated in
Tables 3-6. Among the subjects, the source method has
mean 11.1% higher true positive rate for the left arm, 5.2%
higher for right arm, and 3.3% and 1.9% better rate for foot
and tongue imagery, respectively. The mean differences of
sensor to source true negative rate metric are low for all
classes, —1.2%, 1.9%, 2.9%, and 3.6% for left, right arm, foot,
and tongue imagery, respectively.

3.2. Selected ROIs. The ROI selection procedure was per-
formed for all the subjects, exhibiting interesting inter-
subject properties. As illustrated in Figure 6, the symmetrical
left and right S1H, M1L, M1H, and CMA ROIs were the,
Q= 8, most selected among all the subjects, with the left and
right S1H, and left M1L, M1H, and CMA being selected for
all 9 subjects. For the subjects A02T, A06T, A09T the
pMd_R, SAC_L, and S2_R were selected instead of M1L_R,
MIH_R, and CMA_R, respectively, with still 7 out of 8
selected ROIs being on the most frequent ones. Most fre-
quently selected ROIs are illustrated on Figure 7 on the
cortical mantle model.

3.3. Discussion. Noninvasive BCI systems emerge as
a promising and safe solution for rehabilitation purposes
in contrast with invasive BCIs that are associated to health
risks and ethical issues [44], but their commercial use is
still hindered by low performance and instability. Despite
a number of already demonstrated SMR-BCI applications
[8, 9, 45], noninvasive BClIs still suffer from low SNR. In
our work, we investigate the use of source imaging and
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TaBLE 1: 10 x 10-fold cross-validation performance in terms of mean classification accuracy (%) of the developed source method and the

equivalent sensor method.

Subject AOIT A02T A03T A04T A05T A06T AQ7T AO08T A09T Mean
Sensor 61.0 45.8 68.2 39.4 38.0 37.7 56.3 67.3 73.4 541
Source 62.4 51.3 70.9 46.3 47.6 43.7 67.2 71.9 74.5 59.7

TABLE 2: 10 X 10-fold cross-validation performance in terms of mean Cohen’s kappa value, of the developed method in source and sensor
level, and the method developed by the winner of BCI Competition IV, dataset 2a.

Subject AO01T A02T A03T A04T AO05T A06T A07T A08T A09T Mean
Sensor 0.48 0.27 0.57 0.19 0.17 0.17 0.42 0.56 0.64 0.39
Source 0.50 0.34 0.61 0.30 0.30 0.26 0.56 0.63 0.66 0.46
Winner FBCSP 0.76 0.47 0.83 0.48 0.60 0.34 0.86 0.80 0.78 0.65

TaBLE 3: Sensor method classification sensitivity (true positive rate).

Sensitivity ~ Left (%) Right (%)  Foot (%)  Tongue (%)
AO01T 49.03 70.00 47.92 75.56
A02T 38.75 41.11 61.81 42.22
A03T 80.14 80.83 50.14 60.83
A04T 34.86 37.64 37.92 46.53
A05T 43.33 48.33 25.83 32.08
A06T 35.42 38.33 50.56 27.64
A07T 68.61 57.08 44,03 56.25
A08T 73.47 61.67 65.28 69.31
A09T 81.67 68.89 67.64 78.47
Mean 56.14 55.99 50.12 54.32

TaBLE 4: Sensor method classification specificity (true negative
rate).

TaBLE 5: Source method classification sensitivity (true positive
rate).

Sensitivity ~ Left (%)  Right (%)  Foot (%)  Tongue (%)
A01T 55.97 70.56 52.64 70.69
A02T 49.72 38.33 67.08 50.14
A03T 81.25 81.39 57.92 63.06
A04T 49.44 38.61 48.47 46.53
A05T 71.39 59.17 25.00 37.92
A06T 47.36 44.58 59.03 24.44
A07T 88.47 72.50 45.56 60.56
A08T 77.22 75.14 60.14 76.11
A09T 84.58 70.28 65.00 76.94
Mean 67.27 61.17 53.43 56.27

TaBLE 6: Source method classification specificity (true negative
rate).

Specificity ~ Left (%)  Right (%)  Foot (%)  Tongue (%)
AO1IT 85.28 84.86 88.33 89.03 Specificity ~ Left (%)  Right (%) Foot (%) Tongue (%)
A02T 79.63 80.83 87.64 79.86 AOIT 86.20 85.88 88.80 89.07
AO03T 91.67 93.47 86.76 85.42 A02T 76.90 84.07 88.33 85.79
A04T 78.94 77.31 82.59 80.14 A03T 89.63 93.29 89.63 88.66
AO05T 79.40 80.83 79.03 77.27 A04T 75.46 84.07 84.40 83.75
A06T 80.93 77.96 79.91 78.52 AO5T 79.12 80.37 86.76 84.91
A07T 87.04 85.14 82.50 87.31 AO6T 7815 78.75 82.08 86.16
A08T 94.21 87.55 83.98 90.83 A07T 88.15 89.17 87.69 90.69
A09T 93.47 92.78 86.67 92.64 AOST 93.70 90.51 86.99 91.67
Mean 85.62 84.53 84.16 84.56 A09T 92.27 91.85 88.52 92.96
Mean 84.40 86.44 87.02 88.18

subsequent application of CSP on the source space to com-
pensate for the head volume conduction by mapping scalp
potentials to cortical activations [46]. There are several studies
supporting that BCI algorithms based on source space fea-
tures are superior to the sensor ones [11, 47], an observation
that is confirmed in our study, comparing the classification
results on the sensor and source space. Our BCI algorithm
uses, in particular, sources belonging to select Regions of
Interest (ROIs) on motor cortex for feature extraction and an
ensemble classification model to take advantage of ROI data.

Despite the fact that our algorithm did not reach the
accuracy levels of the wining method of the BCI Compe-
tition, during the ROI selection procedure, common ROIs
emerged among all subjects. The emerged ROIs are ana-
tomically and neurophysiologically related to the MI tasks,
linking the method results with neurological data. Given that

the motor tasks of the competition involved motor imagery
of both arms, tongue, and feet, consistent selection of pri-
mary hand motor areas and primary lip motor area (cortical
representations of hands and face on the primary motor
cortex) seems very promising. Cingulate motor areas are also
considered very important nodes of the sensorimotor net-
work, having been demonstrated to drive the sensorimotor
process [48, 49]. It is our conviction that selected ROIs, as
produced by the developed algorithm, validate our results
since there is a clear neuroanatomical and neurophysio-
logical link between these ROIs and the Motor Imagery tasks
performed in the dataset.

Our method appeared to improve mean accuracy by 5.6%
and by 0.07 Cohen’s kappa value among all subjects, with
respect to sensor method. When our algorithm is compared
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FIGURe 6: Histogram of the selected regions of interest (ROI),
across all subjects.

FIGURE 7: Positions of the most commonly selected ROIs among
subjects (right and left M1L, M1H, S1H, and CMA), displayed on
the cortical model.

with the winner of the BCI Competition (FBCSP), the mean
accuracy is considerably lower by 0.19 Cohen's kappa value.
The performance of our algorithm based on kappa value
is considered moderate while that of the winning imple-
mentation is considered substantial [40]. We believe this
difference is attributed to feature selection and classifier used
by the winner. FBCSP generates CSP features in different
frequency bands resulting to multiple features, while feature
selection procedure is a vital component to detect the most
discriminable features [41]. On the other hand, our source-
based algorithm seems to increase the classification accuracy of
subjects with the worst performance, namely the A04, A05, &
AQ6, as it can be illustrated in Figure 5, outperforming sensor

algorithm by a mean accuracy rate of 7.5%. Nevertheless, the
trend identified cannot lead to safe conclusions yet, since we
cannot infer statistical significance of the results, requiring
further investigation on data with larger population of sub-
jects. Moreover, ensemble classification was used, in an effort
to increase classification accuracy, by synergistically deploying
the independent ROI classification models. Majority vote of
ROI classification models was used as final classification
outcome, although a weighted vote taking into account the
ROI-MI task relation could be considered in the future.

3.4. Limitations and Future Steps. In this study, a generic
template three-compartment BEM head model was utilized
to solve the forward problem. Forward problem solution
induces an important error in the source estimation, as has
been explored extensively in previous studies [50, 51]. Main
forward problem error inducing factors are (a) the use of the
MNI template MRI data rather than the subjects’ individual
neuroanatomy and (b) the absence of cerebrospinal fluid
(CSF) in the forward modeling. Template anatomy was used
for all subjects, missing important geometrical information
for every subject, producing a lead-field matrix that trans-
forms the EEG sensor data into a template cortical manifold
different from the real one. CSF compartment has big in-
fluence on both signal topography and magnitude, resulting
in strong signal attenuation for superficial sources on gyral
crowns [52]. This effect is termed to the high increase of
conductivity between the sensors and sources. In a future
effort to address this problems, a 4- or 5-compartment head
model including CSF and skull anisotropy will be used,
modeled with finite elements [53].

There are two main shortcomings in the use of CSP
method that were not dealt in this work. The first is that the
CSP filters are prone to noise and overfitting, and the second
is that the CSP performance is highly dependent on the input
signal frequency band the individual subject BCI performance
is dependable on individual frequency band used [20, 21].
There are many variants of conventional CSP algorithm
designed to overcome the limitations, with popular vari-
ants being the RCSP that tackle noise and overfitting with
regularization and the FBCSP that better capture the indi-
vidual subject multiple frequency band filters feature selec-
tion, respectively, while a newly introduced method combines
aforementioned methods [20, 21, 39].

Future work will focus on better CSP filters extraction
and use feature selection and more sophisticated ensemble
models, in an effort to increase the performance of the al-
gorithm. Since the anatomy used for the forward model is
common among all subjects and the selected ROIs are
common among all subjects, we would like to check the
potential of the algorithm in transfer learning between
subjects. There is a study supporting that transfer learning
between different subjects by means of source space can
achieve higher average single-trial classification accuracy
than with a conventional method [54]. Beyond the BCIC IV
2a dataset that is a common ground for the evaluation
of methods decoding multiple MI, we aim to evaluate
the improved method on dataset we compiled for the



CSI: Brainwave project, containing EEG data of healthy
or subjects with spinal cord injury performing multiple
motor imagery mainly of the upper limbs [36, 55].

4. Conclusions

Source estimation and application of CSP filters at the source
space constitute a promising solution to increasing classifi-
cation accuracy of noninvasive BCIs. Our method has
demonstrated capability in decoding multiple motor imagery
tasks with better accuracy than the equivalent sensor method.
While our implementation still is not superior to the state of
the art of BCI algorithms, feature selection and classifier
characteristics can improve performance. Neuroanatomical
constraints and prior neurophysiological knowledge has been
shown to play an important role in developing source space-
based BCI algorithms. Our results indicate that the selected
ROIs are common among all subjects, which worth further
investigation probably in the context of transfer learning
between different subjects.
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