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critically ill children
Katherine E. M. Hoops1* , James C. Fackler1, Anne King2, Elizabeth Colantuoni3, Aaron M. Milstone2 and
Charlotte Woods-Hill4

Abstract

Background: Clinical intuition and nonanalytic reasoning play a major role in clinical hypothesis generation;
however, clinicians’ intuition about whether a critically ill child is bacteremic has not been explored. We
endeavored to assess pediatric critical care clinicians’ ability to predict bacteremia and to evaluate what affected the
accuracy of those predictions.

Methods: We conducted a retrospective review of clinicians’ responses to a sepsis screening tool (“Early Sepsis
Detection Tool” or “ESDT”) over 6 months. The ESDT was completed during the initial evaluation of a possible sepsis
episode. If a culture was ordered, they were asked to predict if the culture would be positive or negative. Culture
results were compared to predictions for each episode as well as vital signs and laboratory data from the preceding
24 h.

Results: From January to July 2017, 266 ESDTs were completed. Of the 135 blood culture episodes, 15% of cultures
were positive. Clinicians correctly predicted patients with bacteremia in 82% of cases, but the positive predictive
value was just 28% as there was a tendency to overestimate the presence of bacteremia. The negative predictive
value was 96%. The presence of bandemia, thrombocytopenia, and abnormal CRP were associated with increased
likelihood of correct positive prediction.

Conclusions: Clinicians are accurate in predicting critically ill children whose blood cultures, obtained for
symptoms of sepsis, will be negative. Clinicians frequently overestimate the presence of bacteremia. The
combination of evidence-based practice guidelines and bedside judgment should be leveraged to optimize
diagnosis of bacteremia.
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Background
Machine learning and artificial intelligence are now
commonly applied to large datasets to predict myriad
conditions [1]. These mathematical techniques promise
to identify data patterns correlating to a particular
physiologic syndrome or disease earlier than can even
expert clinicians. We have previously shown that senior
clinicians see more complete patterns than do junior cli-
nicians [2]. Some have suggested in some circumstances
the math is better than clinicians [3].
Expert intuition fundamentally relies on patterns that

humans see that cannot (yet) be fully deconstructed, pa-
rameterized, computed and supported [4, 5]. Whether
heuristics or intuition is more important depends on the
situation; rarely should either be considered a better ap-
proach. Given the problem of human (even experts)
biases, reliance on math and heuristics is appealing.
Sepsis due to bacterial bloodstream infections in chil-

dren offers a particularly interesting domain in which to
explore the role of clinical intuition in detecting pres-
ence of disease. This condition offers a unique challenge
to clinicians: its significant prevalence, morbidity, and
mortality demand rapid and accurate diagnosis, but its
non-specific signs and symptoms, and its overlap with
many non-infectious conditions, present real limitations
to our diagnostic accuracy [6, 7]. A wealth of machine
learning and electronic medical record-based algorithms
have attempted to optimize early recognition of sepsis,
yet clinicians’ intuition about whether a critically ill child
is bacteremic has not been well explored [8–10]. The lit-
erature supports that clinical intuition and nonanalytic
reasoning play a major role in hypothesis generation for
providers of all experience levels, from novices in famil-
iar scenarios to experts identifying patterns and creating
differential diagnoses [2, 11, 12]. One recent study dem-
onstrated that certain features of wellness (such as age
appropriate verbalization and playfulness) were highly
reassuring to a majority of experienced clinicians evalu-
ating children for sepsis [13]. We do not believe that
predictive analytics can, or should [14], fully supersede
the contributions of a clinician in making an accurate
diagnosis, but data exploring this is quite limited.
A cornerstone of clinical evaluation for suspected bac-

terial sepsis is a blood culture. Ordering a blood culture
is, fundamentally, a hypothesis-driven action: a culture is
ordered when a clinician believes their patient may have
a bacterial bloodstream infection, and testing is indicated
to confirm or exclude an infection. Unfortunately, little
data and few guidelines exist to aid clinicians in deter-
mining appropriate versus inappropriate indications for
ordering blood cultures, despite blood cultures being
used frequently in pediatric intensive care units (PICU),
emergency departments, and clinics [15–18]. Blood cul-
tures have an overall yield of only a 5–15% and up to a

50% false positive rate [7–9]. Blood cultures are clearly
indicated for patients with signs or symptoms of sepsis,
but indiscriminate use of blood cultures can lead to
avoidable false positive results, unnecessary antibiotics,
increased lengths of stay, and increased costs [10].
We implemented a quality improvement program to

improve early sepsis detection and reduce unnecessary
blood culture use in our pediatric intensive care unit. In
this program, we assessed pediatric critical care clini-
cians’ a priori ability to correctly predict blood culture
results for children being evaluated for sepsis; i.e. exam-
ining clinician intuition specifically related to the pres-
ence of bloodstream infection. We then sought to
identify factors associated with the clinician’s prediction
of whether a blood culture was positive or negative. Our
ultimate goal is to augment sepsis prediction algorithms
and data-driven decision support tools with clinical intu-
ition, an innovative approach that may both facilitate
continued appropriate use of diagnostic tools like blood
cultures, while encouraging important efforts to
minimize unnecessary testing. The first step in this ap-
proach is, therefore, to investigate this clinical intuition
and determine how accurate PICU clinicians may be in
predicting presence or absence of bacteremia.

Methods
Since 2014, the 36-bed multidisciplinary PICU in our
academic tertiary care center has implemented a quality
improvement program to improve early recognition of
sepsis while also reducing the unnecessary use of blood
cultures [19]. In the context of judicious blood culture
use, a novel sepsis screening tool (“Early Sepsis Detec-
tion Tool” or “ESDT”) was created to provide decision
support to clinicians about symptoms, risk factors, and
evaluation for bacterial sepsis (Supplement A). The
ESDT enumerated signs of sepsis (e.g., fever, rigors,
hypotension, poor perfusion, metabolic acidosis,
leukocytosis) and risk factors for sepsis (e.g., immune
compromise, presence of a central venous catheter) as
well as signs of focal infections (e.g., isolated respiratory
symptoms, dysuria, wound erythema) and noninfectious
sources of fever (e.g., surgery within 24 h, narcotic with-
drawal). It also included definitions of sepsis and septic
shock. This project was acknowledged by the Johns
Hopkins Medicine Institutional Review Board as quality
improvement.
For a six-month period, from January through July of

2017, an ESDT was completed by clinicians during the
initial phase of evaluation of a possible sepsis episode.
Clinicians were prompted to complete an ESDT when a
patient was febrile, hypothermic, or had evidence of poor
perfusion. These prompts came from usual unit clinical
workflow (i.e., bedside nurses or routine electronic med-
ical record flowsheet data made clinicians aware of
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concerning symptoms or changes in patient status, such
as fever, hypothermia, or change in perfusion). No auto-
mated single parameter alarm or multi-parameter alerts
were in place; however, a daily assessment of the inci-
dence of fever, hypothermia, and blood culture orders
among PICU patients was conducted, and the clinicians
caring for those patients were also contacted directly by
project personnel (KH) to ensure compliance completing
the ESDT. The child’s clinicians including the bedside
nurse, resident or nurse practitioner, fellow, and/or at-
tending together indicated on the ESDT form what risk
factors for sepsis were present and whether a blood cul-
ture was ordered. The clinical team was of variable com-
position depending on time of day and individual
availability; no effort was made to alter the routine
workflows. In our institution, attending physicians and
fellows rotate weekly, and frontline providers and nurses
often rotate daily or every few days in their care for a
given patient. No identifying information was collected
from the clinicians, so it is unknown precisely how many
unique clinicians are represented in this sample. If a cul-
ture was ordered, the clinicians (bedside nurse, frontline
provider, fellow, and attending) were each asked to indi-
vidually predict if the culture would be positive or nega-
tive at the time that the order was placed and write the
predictions on a single ESDT form.
We compared each provider’s prediction to the “gold

standard” (the blood culture result) and calculated

sensitivity, specificity, positive predictive value, and
negative predictive value and corresponding 95% confi-
dence intervals for each clinician type and for clinicians
in aggregate. Fisher’s exact tests were used to assess for
significant differences among the clinician groups with
respect to sensitivity, specificity, positive predictive
value, and negative predictive value.
We constructed logistic regression models to describe

the association between clinical variables including blood
pressure, lactemia, and bandemia (see Fig. 1 for a
complete list of the clinical variables) and a clinician’s
prediction of culture results. We then separately con-
structed additional models to evaluate the association
between clinical variables and the accuracy or correct-
ness of those clinical predictions. Predictions were con-
sidered correct if a clinician predicted that a given
culture would be positive and that blood culture did
grow bacteria or yeast or if a clinician predicted that a
blood culture would be negative and that blood culture
had no growth on its final report. All providers were as-
sumed to have been aware of these data at the time
blood cultures were ordered both because the clinical
variables we examined were routinely verbalized on
rounds in our unit as part of a rounding script and be-
cause a chart review is routinely performed when cul-
tures are ordered. Continuous variables were
transformed to binary code (normal or abnormal) to re-
flect clinically relevant thresholds such as standard

Fig. 1 Clinical Variables. Clinical data collected from the 24 h prior to a blood culture being obtained and the threshold beyond which a value
was called abnormal in subsequent analyses. Abbreviations: Temp temperature; INR International normalized ratio
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definitions for fever or hypothermia or in accordance
with sepsis guidelines. We used robust standard error
calculations to account for multiple observations per pa-
tient and lack of independence among the observations.
Because only a minority of patients (in the case of
fibrinogen, only 10) had coagulation studies drawn in
the 24 h before the ESDT was completed, these variables
were excluded. We were unable to evaluate
hypoglycemia as an exposure as none of the patients
with hypoglycemia were predicted to have positive blood
cultures. Data were analyzed using Stata 14.2 and Vas-
sarStats.net.

Results
Between January and July of 2017, we collected ESDTs
from 266 possible sepsis episodes, roughly half of which
included a blood culture order (135/266). There were
131 cases in which an ESDT was completed but a cul-
ture was not ordered. Not all provider types completed
the ESDT form for each of the 266 possible sepsis epi-
sodes, so for the 135 ESDTs with blood cultures col-
lected, a total of 398 predictions were recorded (84
nursing encounters, 85 front line provider encounters,
141 fellow encounters, and 88 attending encounters), as
detailed in Table 1. Of the 135 blood cultures sent at the
time of ESDT completion, 20 were positive (15%). None
were believed to be contaminants.
Of the 398 predictions, clinicians’ predictions were

correct 71% of the time (282/398). Overall, clinicians
demonstrated a 69% specificity (i.e. clinicians predicted a
negative blood culture when the blood culture was ul-
timately negative 241/348 times). The negative predictive
value (i.e. the proportion of negative predictions which
are in fact negative cultures) was high at 96% (241/250

negative predictions). Clinicians correctly predicted
bacteremia in 82% of positive blood cultures (41/50 cul-
tures) (i.e. sensitivity), however, given the relatively low
prevalence of positive cultures, the probability of a blood
culture being positive for bacteria if predicted to be posi-
tive was 28% (41/148 positive predictions) (i.e. positive
predictive value) (Table 1). Out of 266 possible sepsis
episodes, there were 6 patients for whom one or more
clinicians predicted a negative culture, but that patient
in fact subsequently had bacteremia. Alternatively, there
were 107 times (27% of all predictions) in which a clin-
ician predicted a positive culture in a patient who did
not have bacteremia. When comparing the predictions
of individual clinician types, no difference reached statis-
tical significance.
Next, we examined whether available clinical and la-

boratory data at the time of blood culture collection was
associated with clinician predictions. These data were
analyzed to examine the relationship between the clin-
ical variables present in the 24 h preceding blood culture
orders, and the provider predictions for each culture, in
order to determine which variables were associated with
higher likelihood of a positive prediction. Based on sim-
ple logistic regression comparing provider prediction to
the presence or absence of a certain clinical variable, the
presence of bandemia (Odds Ratio OR: 4.44, p < 0.001),
an abnormal CRP (OR: 8.73, p = 0.001), and lactemia
(OR: 4.19, p = 0.011) were associated with a higher likeli-
hood of predicting that a culture would be positive
(Table 2).
On further analysis, we constructed a logistic regres-

sion model for the accuracy of providers’ predictions in
order to determine which variables were associated with
higher likelihood of a correct prediction (either correctly

Table 1 Clinician predictions

Provider Predictions Blood Culture Result Sensitivity
(95% CI)

Specificity
(95% CI)

Positive
Predictive
Value (95% CI)

Negative
Predictive
Value (95% CI)

Positive (n) Negative (n)

Overall Prediction of Culture Result Positive (n) 41 107 82% (0.68,0.91) 69% (0.64, 0.74) 28% (0.21, 0.36) 96% (0.93, 0.98)

Negative (n) 9 241

RN Prediction of Culture Result Positive (n) 9 29 90% (0.54,0.99) 61% (0.49, 0.72) 24% (0.12, 0.41) 98% (0.87, 0.99)

Negative (n) 1 45

FLP Prediction of Culture Result Positive (n) 6 26 86% (0.42, 0.99) 67% (0.55, 0.77) 19% (0.08, 0.37) 98% (0.89, 0.99)

Negative (n) 1 52

Fellow Prediction of Culture Result Positive (n) 17 30 81% (0.57, 0.94) 75% (0.66, 0.82) 36% (0.23, 0.52) 96% (0.89, 0.99)

Negative (n) 4 90

Attending Prediction of Culture Result Positive (n) 9 22 75% (0.43, 0.93) 71% (0.59, 0.81) 29% (0.15, 0.48) 95% (0.84, 0.99)

Negative (n) 3 54

Blood culture results compared to clinician prediction and characteristics of clinician prediction, separated by provider type. This table illustrates a series of classic
“2 × 2” tables to calculate test characteristics sensitivity, specificity, positive and negative predictive values. For example, among RNs, the sensitivity was 90% or 9
of 10 positive cultures were correctly predicted to be positive. Abbreviations: RN registered nurse, FLP front line provider (in our unit, a resident or nurse
practitioner), n number of observations, CI confidence interval
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predicted to be positive or correctly predicted to be
negative).
Providers were more likely to correctly predict that a

culture will be positive in the presence of
thrombocytopenia (OR 21.6, 95% CI 1.88 to 247.7, p =
0.014). Because there were neither incorrect negative
predictions among patients with bandemia or lactemia
nor correct positive predictions among patients without
bandemia or abnormal CRP, we were unable to assess
an odds ratio for each subgroup; however, as an aggre-
gate, the presence of bandemia and abnormal CRP were
associated with more accurate prediction of positive cul-
tures (p = 0.003 for bandemia, p = 0.018 for abnormal
CRP overall) (Supplement B).
Subsequently, we further analyzed the negative predic-

tions to assess for variables affecting the accuracy of
negative prediction that might have been lost in the ag-
gregate analysis (shown in Table 3). Some of the vari-
ables were omitted from the analysis due to an absence
of incorrect negative predictions (predicting a negative
culture in a patient who was bacteremic). None of the
variables were associated with the accuracy of negative
prediction.

Discussion
Despite a growing body of evidence demonstrating the
importance of early detection and treatment of bacterial
sepsis, comparatively little work has been done to under-
stand what influences clinician decision making related
to evaluation for bacteremia. Although blood cultures
are perceived as low-risk tests, excessive diagnostic test-
ing is increasingly recognized as a component of medical
overuse that can harm patients [20–22]. Prioritizing the
de-adoption of unnecessary clinical practices is now rec-
ognized by professional societies and governments as an
integral component to the delivery of high-value care
[23–26]. For blood cultures in particular, patient harm
may result from false positive results, unnecessary anti-
biotics, increased lengths of stay, and increased costs
[17]. In recognition of this fact, a better understanding
of the complex decision-making process clinicians em-
ploy in their diagnostic approach to possible bacteremia
is urgently needed.
Our data reveals that pediatric critical care clinician

predictions of blood culture results are accurate with a
strong sensitivity (> 80%), a robust negative predictive
value (96%), and a failure to predict bacteremia in only

Table 2 Comparison of clinical variables to predictions

Clinical variables Predict negative blood culture (n) Predict positive blood culture (n) OR (95% CI) p-value

Afebrile 120 78

Febrile 130 (52%) 70 (47%) 0.83 (0.356, 1.927) p = 0.662

Normothermia 193 126

Hypothermia 57 (22%) 18 (13%) 0.48 (0.228, 1.027) p = 0.059

Normotension 175 83

Hypotension 67 28% 40 (33%) 1.26 (0.477, 3.322) p = 0.642

Normal WBC count 92 63

Abnormal WBC count 90 (49%) 68 (52%) 1.10 (0.419, 2.904) p = 0.842

No bandemia 81 23

Bandemia 46 (36%) 58 (72%) 4.44 (1.970, 10.009) p < 0.001

Normal Plt count 111 62

Thrombocytopenia 71 (39%) 69 (53%) 1.74 (0.792, 3.821) p = 0.168

Normal CRP 29 3

Abnormal CRP 72 (71%) 65 (96%) 8.73 (2.581, 29.501) p = 0.001

Normal lactate 55 25

Lactemia 21 (28%) 40 (62%) 4.19 (1.383, 12.699) p = 0.011

Normal pH 56 43

Acidosis 83 (60%) 59 (58%) 0.93 (0.421, 2.037) p = 0.848

Normal HCO3 116 78

Low HCO3 23 (17%) 24 (24%) 1.55 (0.468, 5.141) p = 0.472

No base deficit 82 51

Base deficit 61 (43%) 50 (50%) 1.32 (0.519, 3.349) p = 0.562

Results of unadjusted logistic regression analysis comparing clinical variables to provider predictions of culture results. Abbreviations: WBC white blood cell count,
Plt platelet, CRP C-reactive protein, HCO3 serum bicarbonate, CI confidence interval
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4% of cases. This investigation represents the first at-
tempt to quantify the predictive abilities of pediatric crit-
ical care clinicians specifically focusing on the presence
or absence of bacteremia, and it offers several important
insights that warrant further exploration. Given prior
work demonstrating that clinicians require a sensitivity
of nearly 100% to accept sepsis prediction rules [27], in-
tuition and clinical judgement should be insufficient to
predict bacteremia. This highlights the continued need
for rigorous study of prediction models and how they
may best be incorporated into clinical decision-making.
First, approximately 15% of cultures in our study

yielded positive results, which aligns with previous litera-
ture demonstrating a 5–15% positivity rate of blood cul-
tures [6, 7]. When viewed together with the high
negative predictive value of clinician pre-test estimation
of culture results, an important question emerges: why
do clinicians order a test with generally negative results
when they appear to be highly skilled in predicting this
negative result? It is almost certain that a mental model
of bacterial sepsis as a “cannot miss” diagnosis drives
this behavior, and the mortality and morbidity from de-
layed sepsis therapy appears to be the rationale for this

approach. Clinicians often predict a patient is bacteremic
who ultimately has a negative blood culture. In our sam-
ple, of the 348 negative blood cultures, 107 were pre-
dicted to have been positive. It is increasingly accepted
that rapid diagnosis and treatment of sepsis affects out-
comes, and clinical practices have shifted accordingly
[28]. However, the unintended negative consequences of
unnecessary testing for bacteremia (particularly the
false-positive results and the antibiotic initiation that
typically is paired with this testing) must also be a part
of our clinical decision-making process. Exploring what
drives clinicians to accurately predict the absence of
bacteremia may reveal novel and important strategies to
further reduce unnecessary blood cultures and minimize
some of these unintended consequences.
Second, the presence of certain clinical factors was as-

sociated with prediction category (positive or negative)
and prediction accuracy. While limited by sample size
and the overall low prevalence of bacteremia, the pres-
ence of bandemia, thrombocytopenia, and abnormal
CRP were associated with increased likelihood of correct
positive prediction. Prior attempts to determine whether
inflammatory markers such as C-reactive protein or

Table 3 Comparison of clinical variables to correctness of predictions

Clinical variables Correctly predict negative blood culture n (%) Incorrectly predict negative blood culture n (%) OR (95% CI) p-value

Afebrile 114 6

Febrile 127 (61%) 3 (33%) 2.23 (0.60, 8.22) 0.229

Normothermia 189 4

Hypothermia 52 (22%) 5 (56%) 0.22 (0.03, 1.64) 0.139

Normotension 170 5

Hypotension 63 (27%) 4 (44%) 0.46 (0.04, 5.17) 0.532

Normal WBC count 88 4

Abnormal WBC count 85 (49%) 5 (56%) 0.77 (0.09, 6.33) 0.81

No bandemia 81 0

Bandemia 46 (36%) 0

Normal Plt count 103 8

Thrombocytopenia 70 (40%) 1 (11%) 5.44 (0.50, 58.88) 0.164

Normal CRP 28 1

Abnormal CRP 66 (70%) 6 (86%) 0.39 (0.03, 5.83) 0.497

Normal lactate 51 4

Lactemia 21 (29%) 0 (0%)

Normal pH 49 7

Acidosis 81 (62%) 2 (22%) 5.79 (0.72, 46.63) 0.099

Normal HCO3 107 9

Low HCO3 23 (18%) 0 (0%)

No base deficit 74 8

Base deficit 60 (45%) 1 (11%) 6.49 (0.60, 70.65) 0.125

Results of logistic regression analysis comparing clinical variables to correctness of negative provider predictions of culture results. Abbreviations: WBC white blood
cell count, Plt platelet, CRP C-reactive protein, HCO3 serum bicarbonate, n number of observations, CI confidence interval
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procalcitonin, white blood cell count values or percent
of immature neutrophils can reliably distinguish bacter-
ial infection in a pediatric ICU population, have found
mixed results [29]. There are currently no widely ac-
cepted guidelines for how or when to use these bio-
markers or laboratory values in critically ill children.
While our limited data certainly do not support any spe-
cific conclusions about the role of these laboratory tests
in indicating the presence of bacteremia, further explor-
ation of how clinicians utilize these ancillary laboratory
tests when considering diagnostic evaluation for
bacteremia should be performed, with an eye to develop-
ing consensus guidelines that could better standardize
their use.
Prediction of sepsis, death from sepsis, and the utility

of blood cultures has been investigated for decades.
Again, the application of novel machine learning algo-
rithms raises the possibility of finding patterns in the
data before even expert clinicians can make a diagnosis
of sepsis. Rather, our intent was to understand what data
clinicians most use so that solutions joining clinical intu-
ition with machine learning algorithms can most effect-
ively complement the other’s strengths.
Finally, diagnostic stewardship, defined as refining the

use of diagnostic tools in order to improve treatment de-
cisions, is an essential component of our healthcare sys-
tem’s transformation to a high value care model [30].
The ability of diagnostic stewardship to alter down-
stream treatment decisions around antibiotics is begin-
ning to emerge [19, 31]. Study of exactly what drives
clinicians to obtain blood cultures in the pediatric ICU
may demonstrate specific examples of low-risk scenarios
wherein cultures can safely be avoided and inform cre-
ation of generalizable, evidence-based criteria to
standardize how this test is used in critically ill children,
on a large scale. Leveraging these two insights to refine
decision making around blood cultures may not only
optimize diagnosis of bacteremia in the PICU, ensuring
that at-risk children are appropriately tested, but en-
hance antibiotic stewardship efforts as well. This con-
nection warrants further investigation.
Our study must be interpreted in the context of sev-

eral limitations. Because no automated single parameter
alarm or multi-parameter alerts were in place, it is un-
known how many opportunities to complete an ESDT
were missed. Further, predictive ability is influenced by
prevalence of a disease in a population. Here our intent
was to understand the factors clinicians use to confirm
an alert. In settings where the prevalence of sepsis are
lower (e.g. acute care inpatient or emergency depart-
ment) clinicians likely have different risk thresholds. In
our PICU setting, with a program already in place to re-
duce unnecessary blood cultures, the high threshold for
ordering blood cultures may have affected the predictive

ability of clinicians and may limit this study’s
generalizability. In a setting where the threshold for
obtaining blood cultures is lower, the negative predictive
ability may be similar, but the positive predictive ability
may be even lower. We were not able to collect predic-
tions from all types of providers in equal proportions to
allow detection of statistically significant differences in
prediction ability across provider type, nor did we at-
tempt to blind the different clinicians participating in
the assessment to each other’s predictions, which limits
our ability to differentiate among the predictive abilities
of various clinical disciplines. The absolute number of
positive blood cultures was low, limiting our ability to
analyze associations between pre-culture clinical data
and clinician’s predictive accuracy. Finally, it is unknown
to what degree predictions by individuals or groups of
clinicians may have changed over time during the study
period; no feedback on clinicians’ performance was pro-
vided by the study team, but clinicians were likely often
aware of the concordance of their predictions with the
blood culture result.

Conclusions
Pediatric critical care clinicians’ a priori predictions of
blood culture results have a high negative predictive
value in predicting the absence of bacteremia. This find-
ing combined with the low likelihood of blood culture
positivity in this population suggest that continued re-
finement of decision support tools focused on early sep-
sis recognition and diagnosis could transform the use of
blood cultures. Improved decision making about blood
culture ordering may reduce empiric broad-spectrum
antibiotics use in the PICU. Linking diagnostic steward-
ship to treatment stewardship in this manner has as-yet
untapped power as a high value care initiative.
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