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Abstract: Here, we examined the skin microbiome of two groups of healthy volunteers living on the
Mediterranean coast with different exposures to sun radiation. One group, exposed to the sun in the
summer, was compared with a group covered with clothing throughout the year. The seasonal effects
on the skin microbiome of three body sites were determined before and after summer. Surprisingly,
at the phyla level, there were no significant differences in microbiome diversity between the groups.
Furthermore, within each group, there were no significant seasonal differences in high-abundance
species at any of the sampling sites. These results suggest that the skin microbiome, developed
over years, remains stable even after several months of exposure to summer weather, direct sunlight
and humidity. However, in the group exposed to the sun during the summer months, there were
significant differences in low-abundance species in sun-exposed areas of the skin (the inner and
outer arm). These subtle changes in low-abundance species are interesting, and their effect on skin
physiology should be studied further.

Keywords: skin microbiome; sun radiation; human microbiome

1. Introduction

Human skin is regularly subjected to environmental influences that cause stress. Ex-
cessive sun exposure is one of the major environmental factors which contribute to skin
damage, as solar radiation can cause DNA damage and long-term effects. Consequently,
the skin utilizes several endogenous mechanisms in order to deal with this threat. Some of
the known mechanisms include increasing epidermal thickness, DNA repair mechanisms
(NER and BER), apoptosis, antioxidant production, enzyme production and skin pigmen-
tation. The skin microbiome may well be an additional protective mechanism, and it is
reasonable to assume that the relationship between microbiomes and photoprotection is
more complex than previously assumed. The symbiotic microorganisms in the skin [1] oc-
cupy a variety of skin niches and may act as protective agents against the invasion of more
pathogenic or harmful organisms, supporting the barrier activity of the skin both physically
and immunologically [2]. According to recent studies, skin microbes regulate gene expres-
sion in the skin [3] and influence its immune response [4]. Thus, Propionibacterium acnes,
Staphylococcus epidermis, Staphylococcus aureus, Corynebacterium diphtheria, Corynebacterium
jeikeium and Pseudomonas aeruginosa, which are part of the skin microbiome, are assumed to
contribute to the health of the skin. For example, S. epidermidis, isolated from healthy skin,
produces a number of antimicrobial compounds that inhibit the formation of biofilms by
pathogenic bacteria [5,6]. The microbiome receives and is affected by the same exposure
to solar radiation as the skin [7]. The size of the bacteria prevents them from developing
efficient photoprotection against solar radiation [8], and their genetic material comprises a
significant portion of their cellular volume [9], making bacteria among the most vulnerable
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to photodamage. Indeed, field studies on marine bacteria have demonstrated a decrease in
total bacterial abundance, amino acid uptake [10], exoenzymatic activity [11] and oxygen
consumption [12].

Here, we examined the impact of direct exposure to sun irradiation on the skin
microbiome of healthy volunteers from two groups living in the same geographic area
(Mediterranean coast). We examined the skin microbiome on three body sites (the cheek,
inner arm and outer arm) before and after summer in a sun-exposed group (lifeguards)
compared with a sun-protected population (ultraorthodox). As the group of sun-protected
volunteers constituted of people who wore heavy clothes year-round, the data obtained in
this study provided additional information on the effect of lifestyle on the skin microbiome.

2. Materials and Methods
2.1. Study Population

Two groups of healthy male volunteers of approximately the same age were studied:
lifeguards exposed to high levels of solar radiation over the years and ultraorthodox
sun-protected all year-round by heavy clothing.

Both groups were exposed to the same characteristics of summer weather, including
sun radiation, humidity and high temperature. One group was composed of lifeguards,
exposed yearly to direct sunlight and seawater throughout summer. The second group
consisted of ultraorthodox, who wore long sleeves and were protected from direct sunlight
at all times.

In total, 122 samples were collected for microbiome analysis, consisting of 66 samples
of male lifeguards (36 before and 30 after summer) and 56 samples of ultraorthodox males
(30 before and 26 after summer). For mycobiome analysis, 116 samples were collected,
consisting of 62 samples of lifeguards (34 before and 28 after summer) and 54 samples of
the ultraorthodox (28 before and 26 after summer). The data are summarized in Table 1.

Table 1. Summary of the samples collected.

Microbiome

Outer Arm Inner Arm Cheek

Lifeguards 10 10 10 After Summer
13 11 12 Before Summer

Ultraorthodox
8 9 9 After Summer

11 11 10 Before Summer

Mycobiome

Outer Arm Inner Arm Cheek

Lifeguards 9 9 10 After Summer
11 11 12 Before Summer

Ultraorthodox
8 9 9 After Summer
8 10 10 Before Summer

2.2. Sampling

Three skin sites were sampled: the inner forearm, dorsal forearm and cheek. The first
sampling was conducted before the summer and enabled the comparison of microbiome
diversity following years of exposure to solar radiation versus skin protected by heavy
clothing. This microbiome population was called the “baseline”.

The second sampling was conducted at the end of the summer. This study provided
data on the effect of the sun and summer conditions on the skin microbiome.

Noninvasive swabs (FLOQSwab hgDNAfree appl, 2502CS01, Copan, Brescia, Italy)
were used to collect skin microbes. The swabs were soaked in sterile phosphate-buffered
solution with pH 7.2 and 0.1% polysorbate 80 (extraction fluid) before they were rubbed
against the skin for 30 s. After sampling, the swabs were immediately cooled and frozen.
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Sample collection was approved by the Laniado Hospital Helsinki committee and all
subjects provided informed consent.

2.3. DNA Extraction and PCR Amplification

Total microbial DNA was isolated from the skin swab samples according to the
HMP (Human Microbiome Project) guidelines, using the DNeasy PowerSoil Kit (QIAGEN,
Hilden, Germany, 12888).

Bacterial PCR amplification of the 16S rRNA gene was carried out with universal
prokaryotic primers containing 5′-end common sequences (CS1-341F 5′-CACTGACGACA
TGGTTCTACANNNNCCTACGGGAGGCAGCAG and CS2-806R 5′-TACGGTAGCA
GAGACTTGGTCTGGACTACHVGGGTWTCTAAT). Thirty PCR cycles (95 ◦C for 15 s,
53 ◦C for 15 s, 72 ◦C for 15 s) were conducted using the PCR Mastermix KAPA2G Fast™
(KAPA Biosystems, Wilmington, MA, USA) and successful amplification was verified with
agarose gel electrophoresis. For fungal analysis, the ITS2 region of the rDNA operon
was amplified using primers 3271-ITS2F: GTGARTCATCGAATCTTT and 3271-ITS2R:
GATATGCTTAAGTTCAGCGGGT, adapted from [13,14].

For sequencing, Illumina adaptors and sample-specific barcodes (San Diego, CA, USA)
were added in a 2nd 8-cycle PCR, which targeted the CS1/CS2 common linkers, performed
at the sDNA Services (DNAS) facility within the Research Resources Center (RRC) at the
University of Illinois in Chicago (UIC). Library products were purified using AMPure
beads, quantified, pooled and paired-end sequenced (2 × 250) using the Illumina MiSeq
platform [15].

Sequencing depth ranged from 1474 to 34,000 sequences per sample. The data were
rarefied to 1400 seqs/sample to ensure data evenness.

2.4. Data Analysis

Raw data were demultiplexed and trimmed of adaptors at the sequencing center. A
custom R script was then used to remove sequencing primers and trim readthrough events
(common in ITS sequencing due to the variable length of the ITS region). The DADA2 R
package [16] was then used for quality control, inference of exact sequences, detection and
removal of chimeric sequences and taxonomic assignment against Silva database version
132 (for 16S) or UNITE ITS database versions 02.02.2019 (for ITS). Data were ratified to an
even depth of 1400 seq/sample [17,18].

Principle coordinate analysis (PcoA) and analysis of similarity (ANOSIM) were con-
ducted in R using the vegan package [19].

The LefSe [20] algorithm was applied to identify which bacterial taxa contributed to
the differences between the two groups.

3. Results
3.1. The Microbiomes of Lifeguards and Ultraorthodox Males Are Broadly Similar

The purpose of the study was to examine the effect of summer exposures, including
strong solar radiation, on the microbiome and mycobiome of two groups of people living
along the Mediterranean coast.

The microbiome samples of each group were analyzed, and the mean relative abun-
dances were calculated, focusing on phyla with >1% relative abundance. The results shown
in Figure 1 indicate that there were minor differences between lifeguards and ultraorthodox
at the phylum level, both in terms of the microbiome and mycobiome (Figure 1). Proteobac-
teria and Firmicutes were the most dominant bacterial phyla in both groups, followed
by Actinobacteria. In the mycobiome analysis, Malasseziomycetes were the most domi-
nant class in both groups, followed by Dothideomycetes and Saccharomycetes. Similar
microbial/mycobial prevalences across the other body sites were observed for both subject
groups, with the cheek showing enrichment in Firmicutes and Malasseziomycetes, and a
reduction in Proteobacteria and Dothideomycetes, as compared to the arm.
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Figure 1. An analysis of OTU abundance by phylum. A comparison of the microbiomes and mycobiome
of the two groups—mean relative abundance (>1%), at least 10% of reads in at least one sample.

The bacterial and fungal microbiomes of each group, before and after summer, were
compared, focusing on phyla with >1% relative abundance (Figure 2). No major seasonal
effects were observed in any study groups based on the Wilcoxon signed ranks test.

Figure 2. Seasonal comparison of mean relative abundance in microbiomes between lifeguards and
ultraorthodox (>1%). (A) microbiome; (B) mycobiome.

Within the mycobiome (fungal microbiome), Malasseziomycetes were the most dominant
phylum both before and after summer, followed by Dothideomycetes and Saccharomycetes.
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3.2. Microbial Diversity Is Maintained after the Summer Season in Both Lifeguards
and Ultraorthodox

The microbiomes of the two groups were of similar diversity (Figure 3), measured
with the Shannon index, which considers both richness (the number of taxonomic groups)
and evenness (the distribution of abundances within the groups), across all sampled body
sites. Following the summer exposures, there were no changes in the Shannon diversity
that reached statistical significance in either group, with the exception of a slight increase
in fungal diversity in the inner arm samples from the ultraorthodox group (Kruskal–Wallis
test, p = 0.04).

Figure 3. Alpha diversity of skin microbiome across body sites and subject groups, before and after
summer. Boxplots depict medians, with lower and upper bounds showing 1st and 3rd quartiles,
respectively; outliers shown as points.

3.3. The Microbial Composition of the Lifeguards’ Changes Following Summer

To explore in-depth seasonal changes occurring in each group, genus-level data were
transformed into distance matrices using either Jaccard or Bray–Curtis similarity indices,
and principal coordinate analysis (PcoA) coupled with ANOSIM significance testing was
then applied. The Bray–Curtis coefficient incorporates both the presence and abundance of
taxa, thus, giving a greater weight to species with high abundance, while the Jaccard index
is based exclusively on the presence/absence of genera, thereby giving similar weight to
highly abundant and rare taxa.

When comparing the groups in terms of their microbiome composition at the genus
level in the three skin sites before summer, no statistically significant differences were
observed using either the Jaccard or Bray–Curtis indices of similarity with the ANOSIM
test (for the principle coordinate analysis, see Table 2). Before summer, the only statistically
significant difference was observed at the cheek site using the Jaccard index (p = 0.021).

However, following summer exposures, significant differences in microbial compo-
sition between lifeguards and ultraorthodox could be detected in all three sampling sites
when using the Jaccard, but not Bray–Curtis, similarity index (Table 2, Figure 4). In accor-
dance with this, using the Jaccard index, we also detected a weak but significant seasonal
bacterial difference in the microbiome (bacterial) within the lifeguard group (p = 0.001,
R = 0.13). In contrast, there was no significant seasonal difference in the microbiome within
the ultraorthodox group (Table 3).
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Table 2. Beta diversity analysis of the microbiome of the lifeguards versus ultraorthodox before
and after summer. Between-group dissimilarities were calculated using Jaccard and Bray–Curtis
distances. Bold indicates significant difference.

Beta Diversity—Lifeguards vs. Ultraorthodox
Before Summer After Summer

Bray–Curtis Jaccard Bray–Curtis Jaccard
p Value R p Value R p Value R p Value R

Cheek 0.119 0.07 0.021 0.17 0.133 0.08 0.005 0.23
Outer Arm 0.669 0.04 0.738 0.05 0.089 0.11 0.039 0.14
Inner Arm 0.4 0 0.32 0.02 0.085 0.11 0.039 0.14

Figure 4. Beta diversity analysis of the microbiome of lifeguards versus ultraorthodox before and after
summer. PcoAs of Jaccard distance matrices are shown. Blue—ultraorthodox; orange—lifeguards.

Table 3. Seasonal effects on the microbiome and mycobiome. Microbiome and mycobiome dissim-
ilarities were calculated for each group using Jaccard and Bray–Curtis distances. Bold indicates
significant difference.

Microbiome Mycobiome
Bray–Curtis Jaccard Bray–Curtis Jaccard

p Value R p Value R p Value R p Value R

Lifeguards 0.07 0.03 0.001 0.13 0.341 0.01 0.323 0.01
Ultraorthodox 0.107 0.03 0.399 0 0.397 0 0.061 0.03

A site-specific analysis within the lifeguard group revealed that seasonal differences
in the microbiome were being driven by the microbial communities of the outer and inner
arm, which were the sites exposed to the sun in this population, often not protected by a
hat or sunscreen (Table 4, Figure 5). In contrast, no significant seasonal differences were
found in the mycobiomes of either site.
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Table 4. Seasonal effect on skin microbiome of several body sites of lifeguards. Beta diversity analysis
was performed for each body site before and after summer. Between-season dissimilarities were
calculated using Jaccard and Bray–Curtis distances. Bold indicates significant differences.

Bray–Curtis Jaccard
p Value R p Value R

Cheek 0.595 0.08 0.215 0.05
Outer Arm 0.495 0.01 0.044 0.12
Inner Arm 0.209 0.04 0.058 0.12

Figure 5. Seasonal differences of lifeguard’s skin microbiome across several body sites. PcoAs of
Jaccard distance matrices are shown. Orange—after the summer; blue—before the summer. The
percentage of variance is shown for each axis; ANOSIM p and R values were calculated for each facet
and are shown in Table 4.

3.4. Specific Taxa Driving Seasonal Differences in the Lifeguards’ Microbiome

We next attempted to uncover which specific taxa drove the seasonal differences
within the lifeguard group using LEfSe (linear discriminant analysis effect Size). Only
2–3% of the microbiome population was affected by seasonal changes, while 97% remained
stable (Figure 6). Environmental bacteria, such as Planctomycetes, Cryomorphaceae, SAR
86, etc., drove most of the differences between the seasons. When these were excluded
from the comparison, there were a few known human-associated taxa left that showed a
difference between the seasons, e.g., Streptococcaceae [21] and Cyanobacteria [22], which
were present only after summer.
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Figure 6. Microbial taxa driving seasonal differences in skin microbiome of lifeguards. Discriminating
taxa were identified with LefSe; taxa with prevalence <0.25 were excluded from the analysis.

4. Discussion

Here, we examined the fungal and bacterial skin microbiomes of two groups of
individuals who live along the Mediterranean coast but have very different lifestyles. The
first group consisted of lifeguards, an occupation with excessive exposure to sun radiation
during summer over the years. The second group consisted of ultraorthodox Jews, who
wear long-sleeved clothes throughout the year and, therefore, the exposure of their arms to
the sun is minimal. Samples were taken from three body sites—the cheek, inner arm and
outer arm.

Although very different in lifestyle, the skin microbiome (at the phylum level) of the
two groups was broadly similar, showing a certain level of conservation of the human
skin microbiome. Accordingly, an analysis of the skin microbiomes of the two groups at
the start of the study indicated no statistically significant differences at the phylum levels
in their bacterial or fungal microbiomes. Proteobacteria, Firmictus, and Actinobacteria
composed over 85% of the bacterial population on the skin, while Malasseziomycetes,
Dothideomycetes, and Saccharomyxetes accounted for over 65% of the fungal population.
Thus, differences in lifestyle were not sufficient to generate phylum level differences
between those groups.

Previous experiments comparing the microbiomes of groups with different lifestyles
demonstrated differences in the skin microbiome community structure [23]. However, the
comparison was between Pakistani and Chinese students, so the differences may very well
reflect the genetic variation between the groups. Indeed, additional studies [24] showed that
the microbial composition of Chinese people was different from that of other ethnic groups. In
our study, all the volunteers were of the same ethnic group but differed in lifestyle. Therefore,
we conclude that lifestyle had a minimal effect on the basic microbiome composition.

A study by Burns et al. followed the skin microbiome 24 h after a single exposure
to UVB and UVA. This study also indicated that there was no significant change in the
microbiome, except for an increase in the relative abundance of Cyanobacteria [18]. We
studied the accumulated effects of daily exposure to sun radiation over several months, and
even after long exposure, there were no significant changes in the highly abundant phyla.
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There were seasonal changes observed in the microbiome after the summer, but they were
probably not primarily due to sun exposure, as they also occurred in the ultraorthodox.

The alpha diversity measurements of species diversity before and after the summer
showed only one difference in the mycobiome of the inner hand of the ultraorthodox. This
change could be due to the increased humidity in the inner arm of people wearing long
sleeves on hot summer days. The results were consistent with a study that followed the
skin microbiome over a period of two years in healthy volunteers. This study concluded
that the skin microbiome remained stable, despite exposure to extreme environmental con-
ditions [25]. This stability was maintained, although there were indications that seawater
washed away some of the human microbiome [26].

Beta diversity analysis was used to assess compositional dissimilarities between the
two groups. Two different distance indices were used: Bray–Curtis, which considers
prevalence as well as relative abundance, giving a higher weight to species with higher
relative abundance; and the Jaccard index, which is based only on presence/absence (all
taxa have equal weights, regardless of their relative abundance). The data from all sampling
points were analyzed for each individual according to the sampling time, and the changes
in relative abundance before and after the summer were calculated separately for each of
the two groups. According to the Bray–Curtis index, there was no significant difference
in the microbiome or mycobiome composition in either group before and after summer.
However, using the Jaccard index, we could show a significant change in the microbiomes
of lifeguards after summer. This difference could be seen only in the lifeguards, suggesting
that this microbial change could be traced to seawater exposure, while others may be
due to exposure to sun radiation. The difference could be attributed to a change in the
low-abundance species, as it could only be seen in the Jaccard index, which gives equal
weight to rare species. Thus, it appeared that daily exposure to sun radiation during a
five-month period resulted in a significant change in low-abundance species. The change in
low-abundance species was consistent with findings that indicated that there is a difference
in the sensitivity of bacteria to radiation. It was shown that prolonged and intense exposure
to UV-R is selectively tolerated by some bacteria and fungi, but not by others [27].

The changes of the microbiome following exposure to sun radiation could be observed
only in the inner and outer arm. This finding indicated that the change was due to exposure
to the sun, rather than exposure to other conditions such as sea spray. Unexpected was
the finding that there was no significant difference in the cheek microbiome. One possible
explanation is that the lifeguards protected their face with wide-brimmed hats and sunscreen,
and paid more attention to their facial hygiene, but were less concerned with protecting their
arms. Thus, the lifeguard’s inner and outer arms were exposed to the direct radiation of the
summer sun, leading to changes in the composition of low-abundance species.

In medicine, bacterial–fungal interactions are of great importance. There is evidence
that bacterial factors may influence fungal growth or physiology, and that fungi, in turn,
may influence bacterial behavior and survival. Bacteria and fungi can interact in a variety of
ways, including direct contact between the cells, chemical interactions, such as the secretion
of quorum-sensing molecules, and changes in the host’s response [28]. In this study, we
found that the majority of the microbiome of healthy skin (bacterial and fungal) remained
stable even after insolation. This raised the question into how bacteria and fungi and their
metabolites interact throughout the year, facilitating their ability to adapt to hot, humid
summer climate conditions.

Certain biases are inherent to the NGS of marker genes, used here to infer microbial
composition. These arise from differences in the copy number of ribosomal operons across
species and in primer specificity, as well as from stochastic compositional changes brought
on by multiple PCR cycles. A universal protocol was applied across all samples in this
study to allow for a between-sample comparison. Species-level resolution was difficult to
infer in 16S rRNA-based NGS pipelines, as short (~350 bp) fragments may have had an
equally good match to several species. Additionally, 16S, and more so ITS, databases do
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not yet represent the whole microbial biodiversity of marine environments. Thus, only
3.1% of the ASVs in our data was classified to a single species.

5. Conclusions

The study of the microbiome in health is important for understanding the relationship
between the microbiome and the normal function of the skin. Based on the results of this
study, we found that climatic conditions had a larger impact on the composition of the
human skin microbiome and mycobiome than living habits. Interestingly, two groups of
people with differing lifestyle habits and different sun exposure habits exhibited a broadly
similar microbiome composition.

Based on our results, one may speculate that the seasonal effects on the microbiome,
regardless of whether the living habits of the subjects are associated with high sun exposure
or low sun exposure, are generally tolerable by most members of the skin microbiome that
have evolutionarily adapted to such changes. This could be the reason for the fact that the
majority of the human skin microbiome remained stable even when exposed to sun and
seawater on a daily basis for months. The difference in the low-abundance species was
interesting and should be explored further. In addition, future studies should explore the
secreted metabolome of skin microorganisms across different seasons, and its effects on the
human host.
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