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Abstract
Maintaining synaptic integrity and function depends on the continuous removal
and degradation of aged or damaged proteins. Synaptic protein degradation
has received considerable attention in the context of synaptic plasticity and
growing interest in relation to neurodegenerative and other disorders.
Conversely, less attention has been given to constitutive, ongoing synaptic
protein degradation and the roles canonical degradation pathways play in these
processes. Here we briefly review recent progress on this topic and new
experimental approaches which have expedited such progress and highlight
several emerging principles. These include the realization that synaptic
proteins typically have unusually long lifetimes, as might be expected from the
remote locations of most synaptic sites; the possibility that degradation
pathways can change with time from synthesis, cellular context, and
physiological input; and that degradation pathways, other than
ubiquitin-proteasomal-mediated degradation, might play key roles in
constitutive protein degradation at synaptic sites. Finally, we point to the
importance of careful experimental design and sufficiently sensitive techniques
for studying synaptic protein degradation, which bring into account their slow
turnover rates and complex life cycles.
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Introduction
Communication between neurons in the brain is based primarily 
on chemical synapses, minute and complex cellular devices that  
transfer signals from one cell to another through timed neurotrans-
mitter secretion and reception. Synapses are composed of hundreds 
of proteins which have finite lifetimes; consequently, maintaining 
synaptic integrity and function depends on the continuous removal 
and degradation of aged or damaged proteins and their replacement 
with freshly synthesized copies.

How are synaptic proteins degraded? In many respects, this is an ill-
posed question. First, synaptic proteins belong to diverse structural 
and functional classes. Second, they often have complex life cycles, 
during which they move through cellular compartments (e.g. the 
endoplasmic reticulum, the Golgi apparatus, the plasma membrane, 
and vesicular organelles), amid cellular regions (e.g. cell bodies and 
remote axonal/dendritic sites), between synaptic and extrasynap-
tic sites, and between multi-molecular complexes and free pools. 
The manner by which synaptic proteins are degraded is thus likely 
to vary not only between different molecules but also between 
different contexts and locations (e.g.1; see also2). Furthermore,  
synaptic protein degradation can be affected by physiological  
signals (e.g. activity levels) or altered by pathological processes. 
In the former context, the effects of physiological signals on syn-
aptic protein degradation have been mainly studied in relation to 
synaptic plasticity (reviewed in2–10). In the latter context, neuronal 
protein degradation has been studied mainly in relation to neuro-
degenerative conditions such as Alzheimer’s (e.g.11,12), Parkinson’s  
(e.g.13), and Huntington’s disease14 as well as other neurologi-
cal diseases10 (see also5,15–20 for additional reviews). Somewhat  
surprisingly, much less attention has been given to constitutive, 
ongoing synaptic protein degradation. Here we wish to focus 
mainly on this topic and to highlight emerging principles based on 
recent progress and new experimental approaches.

Synaptic protein lifetimes
A first step toward understanding the manners by which synaptic 
proteins are degraded is to have a good grasp of their lifetimes: 
protein synthesis21, processing, and, in particular, trafficking to (and 
from) remote synapses (e.g.22–24) takes time which can amount to 
many hours or days. Lifetimes thus provide important clues to the 
life cycle of synaptic proteins25. For example, if the lifetime of a 
presynaptic protein is in the order of a few hours, this would imply 
local synthesis and degradation, simply because of the incompat-
ibility of such short lifetimes with processing and trafficking rates 
(reviewed in26). Similarly, comparisons of the lifetimes of related 
proteins (e.g. synaptic vesicle proteins) can hint at whether these 
are degraded in bulk (for instance, through degradation of entire 
synaptic vesicles) or, alternatively, processed separately27.

Unfortunately, estimates of synaptic protein lifetimes, even for the 
same proteins, vary substantially. Older studies based on radiolabe-
ling methods indicated that presynaptic proteins can be degraded  
at remarkably slow rates, exhibiting half-lives of many days and 
even weeks, e.g.28,29 (see also26), as might be expected from known 
trafficking rates and the extraordinary lengths of some axons.  
Conversely, other studies indicated that the lifetimes of some syn-
aptic proteins, mainly postsynaptic (e.g.30) but also presynaptic31, 

might be much shorter, with half-lives in the order of several hours, 
with yet other studies reporting intermediate values (reviewed in2).

Recent studies, based on metabolic labeling methods combined 
with mass spectroscopy (MS) and on newly developed fluorescent 
reporters, are starting to provide realistic estimates and hints as to 
the source of some discrepancies. In one such study32, rat cortical  
neurons grown in culture for 2 weeks were exposed to amino 
acids containing stable heavy isotopes of carbon and nitrogen; by 
resolving the incorporation and loss rates of labeled and unlabeled 
amino acids, respectively, degradation rates for many hundreds of  
neuronal and synaptic proteins were estimated. This study suggested 
that half-lives of synaptic proteins in these preparations are in the 
order of 2 to 5 days, with some synaptic proteins exhibiting even 
longer half-lives (findings verified and extended in a subsequent 
study33). Somewhat unexpectedly, metabolic turnover rates of pre-
synaptic and postsynaptic proteins were not significantly different, 
nor did these differ substantially from proteins for which mRNAs 
are consistently found in dendrites. Using the mean synaptic  
protein half-life value obtained in the former study (4.14 days), the  
authors estimated that, on average, ~0.7% of the synaptic protein 
content in neurons is replaced every hour (for details, see32).

Interestingly, an earlier analysis of proteome dynamics by means 
of organism-wide isotopic labeling and MS27 suggests that, in the 
adult brain, degradation rates are even slower; in fact, comparing  
half-life estimates for 467 proteins and 90 synaptic proteins 
resolved in both data sets suggests that half-lives in the adult mouse 
brain are, on average, ~2.7-fold longer, ranging from ~1.5 days to  
~48 days for these 90 synaptic proteins (average ≈12 days, with 
presynaptic proteins exhibiting a trend for longer half-lives).  
Comparable lifetimes for some synaptic proteins were also reported 
in a subsequent organism-wide isotopic labeling study34.

Half-life estimates provided in these studies were, in some cases, 
very different from estimates based on traditional pulse-chase  
labeling with radioactive substrates (such as 35S cysteine or methio-
nine). It is important to note, however, that labeling periods in  
traditional pulse-chase experiments tend to be relatively short  
(20 to 60 minutes, e.g.35–38; see2 for a more comprehensive list-
ing), running the risk of biasing estimates towards protein pools with 
fast turnover rates. In this regard, a recent metabolic labeling/MS  
study shows compellingly that for a substantial number of pro-
teins, a disproportionally large amount of newly synthesized  
protein is degraded within hours of its synthesis39. Here stable  
isotope labeling was combined with biorthogonal amino acid  
labeling40 to identify newly synthesized proteins (see also41). It was 
found that >10% (possibly more) of proteins expressed by two 
different cell lines exhibited non-exponential degradation kinet-
ics, i.e. rapid degradation during the first hours of their lives, fol-
lowed by much slower degradation thereafter. This recent study 
joins prior studies (e.g.42,43) pointing to rapid degradation of sub-
stantial numbers of newly synthesized protein copies owing to a 
variety of reasons: failure to fold properly (e.g.44–46, reviewed in47), 
superstoichiometric synthesis, and subsequent failure to integrate 
into appropriate complexes (the “stabilized binding complex” 
model48—see also43—or as regulatory steps in determining cellu-
lar contents of key proteins49,50). If these findings apply to synaptic 
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proteins (which tend to assemble into multimolecular complexes), 
this would reinforce the notion that questions on synaptic protein 
degradation must be refined to consider their status in terms of  
life cycle stage and cellular location.

Synaptic protein degradation rates are also starting to provide clues 
regarding a lingering question: do synaptic vesicles maintain their 
complement of molecular constituents throughout multiple exocy-
tosis and endocytosis cycles, or are they continuously reformed and 
their contents mixed? If the former, lifetimes of synaptic vesicle 
proteins might be expected to be rather similar. This does not seem 
to be the case, however, as lifetimes of synaptic vesicle proteins 
vary widely32,51. Rather, the heterogeneity in degradation rates 
would seem to suggest that synaptic vesicle proteins are probably 
intermixed and sorted for degradation in ways that are at least partly 
independent of each other, as described later on. The possibility 
remains, however, that such differences could stem, at least in part, 
from the existence of distinct vesicle pools with distinct protein 
compositions.

Although metabolic labeling techniques coupled to MS can provide 
rich information on protein degradation rates and pathways, these 
techniques are strongly biased toward relatively abundant proteins; 
consequently, the applicability of their conclusions to less abun-
dant proteins remains unclear (but see48). Moreover, their resolving 
power in terms of life cycle stage and cellular location is limited, 
even when fractionation techniques are used during preparative 
steps. A very different approach, based on cellular imaging and  
fluorescent reporters, was recently shown to allow high spatial and 
temporal resolution measurements of specific synaptic proteins52,53. 
The fluorescent reporters developed for this purpose (time- 
specific tag for the age measurement of proteins [TimeSTAMP]54) 
are cleverly designed constructs containing a viral protease flanked 
by cognate protease sites and two “halves” of split yellow fluores-
cent protein (YFP). By default, the protease excises itself, resulting 
in non-fluorescent protein fragments which are rapidly degraded. 
Applying a cell-permeant protease inhibitor, however, prevents 
excision and allows stable complementation of the flanking  
regions into functional YFP. Fusing these constructs, known as  
TimeSTAMP:YFP (TS:YFP) to target proteins allows for the 
visualization of newly synthesized copies of these proteins or, by 
removing the inhibitor, the visualization of their degradation. This 
technique has been used to measure degradation rates of neuroli-
gin-352 as well as protein kinase Mζ (PKMζ) and PKCλ in somata 
and dendritic spines53. It should be noted, however, that this method 
reports degradation rates of fusion proteins expressed via non-native 
promoters, which might differ from those of native proteins. Thus, 
for example, the half-life of neuroligin-3:TS:YFP was estimated  
as 24 hours52 as compared to stable isotope labeling-based  
estimates for native neuroligin-3 of 6632 and 6333 hours.

A new method that overcomes some of these limitations was 
recently described55. This method, based on a combination of 
biorthogonal amino acid labeling/puromycylation, specific antibod-
ies, and a proximity ligation assay, provides a sensitive means for 
visualizing and measuring the synthesis and degradation rates of 
endogenous synaptic proteins in situ. So far, the method has been 
used to measure the degradation rates of the neurotrophin receptor 

TrkB and the presynaptic active zone protein Bassoon, revealing 
degradation rates that are comparable with previously published 
rates32. Unfortunately, the method requires fixation and is thus 
unsuitable for live imaging. Furthermore, the small fields of view 
typical of imaging approaches pose difficulties in separating bona 
fide degradation from trafficking of labeled proteins out of imaged 
regions. Yet, given that this difficulty can be resolved by whole  
neuron imaging (e.g.56), this new method shows great promise.

In summary, while there is still much to learn on synaptic protein  
lifetimes, it would seem safe to say that the lifetimes of many  
synaptic proteins are relatively long (days) and compatible with 
constraints imposed by distances of synaptic sites from central  
protein synthesis (and degradation) systems.

Canonical degradation pathways and synaptic 
protein degradation
The ubiquitin-proteasome system
Where canonical protein degradation pathways are concerned, 
synaptic protein degradation via the ubiquitin-proteasome system 
(UPS) has undoubtedly received the most attention. Indeed, a sig-
nificant number of synaptic proteins have been shown to undergo 
ubiquitination and/or degradation in a ubiquitination-dependent 
manner (e.g.31,37,49,57–67). Moreover, pharmacological suppression 
of proteasomal activity has been shown to affect global and/or  
synaptic levels of synaptic proteins30,49,50,57,68,69 (reviewed 
in2,5,70–72). Yet the interpretation of such findings is not always 
straightforward. First, it often remains unknown at what point  
during a synaptic protein’s life cycle ubiquitination-dependent deg-
radation occurs, a matter that cannot be ignored given the central 
role of UPS-mediated degradation in quality-control processes 
(see below). Second, ubiquitination does not necessarily imply 
degradation, as ubiquitination can act as a signal for other down-
stream events or as an effector of protein function without affecting  
synaptic protein levels73–75 (see also76). Third, under physiological 
conditions, ubiquitination is continuously countered by deubiquiti-
nating enzymes; thus, ubiquitination cannot be taken as unequivo-
cal evidence for imminent proteasomal-based degradation77,78. 
Fourth, ubiquitination can also mark proteins for lysosomal deg-
radation or autophagy (see below). Finally, many of these findings 
are based, at least in part, on pharmacological agents that inhibit 
proteasomal activity; proteasome inhibition, however, can lead to 
unexpected results, including suppressed synthesis of most pro-
teins and enhanced synthesis of others (e.g.1,33,79–85). Unfortunately, 
methods typically used for studying the effects of proteasomal 
inhibition (e.g. Western blots and quantitative immunohistochem-
istry) are incapable of separating effects on protein degradation 
from effects on protein synthesis, as they report total protein  
quantities. In part, this problem can be bypassed by pharmaco-
logically inhibiting protein synthesis; this manipulation, however, 
severely limits experiment duration and has been shown to affect 
protein degradation pathways (e.g.86). Pulse-chase experiments 
based on radioactive amino acids are better in this respect but, as 
mentioned above, are not well suited for studying the degradation 
of long-lived proteins because of the conflicting requirements for 
long labeling periods and low concentrations of unlabeled amino 
acids, and the compromised availability of essential amino acids 
this entails.
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In a recent study33, metabolic labeling with stable isotopes was 
used to specifically measure the degree to which proteasomal inhi-
bition slowed the degradation of hundreds of proteins expressed 
by cultured rat cortical neurons using an approach that overcame 
most of the aforementioned limitations. Somewhat surprisingly, 
highly effective proteasomal inhibitors did not slow the degrada-
tion of most identified proteins (1,530, including 176 synaptic 
proteins in total). In other words, apart from relatively small sets 
of neuronal and synaptic proteins, degradation of most identi-
fied proteins continued at normal rates, even when proteasome- 
mediated degradation was effectively inhibited. This analysis,  
however, also illustrated the inherent limitations of probing synaptic 
protein degradation through catabolic inhibition (Figure 1). Given 
the slow degradation rates of many synaptic proteins, short peri-
ods of catabolic inhibition might barely affect protein abundance.  
As an example, consider a protein with a half-life of 7 days (such  
as the postsynaptic density [PSD] protein ProSAP1/Shank232). 
Here, inhibiting its catabolism for 4, 10, or 24 hours would be 
expected to increase its abundance by merely ~1.6%, 4%, and 9%, 
respectively. Thus, without prior knowledge of the half-lives of the 
proteins of interest, as well as a good appreciation of measurement 
sensitivity, results of such experiments remain inconclusive. In the 
aforementioned study33, known half-lives for identified proteins 
were used to calculate the expected impact of catabolic inhibi-
tion, and these values were compared with experimental measure-
ments and constrained by calibrations of measurement sensitivity.  
This analysis allowed the authors to conclude that proteaso-
mal inhibitors did not slow the degradation of many, if not most  
synaptic proteins, although findings remained inconclusive for 
some synaptic proteins whose particularly long half-lives (>5 days) 
precluded sufficiently accurate measurements.

Although these findings might seem surprising at first, they are in 
good agreement with prior large-scale studies carried out in human 
colon cancer77, HeLa87, human Jurkat78, and osteosarcoma cells1. 
In all of these studies, practically no changes in the abundance 
of thousands of proteins were observed following 5–8 hours of  
proteasomal inhibition, in spite of dramatic changes in protein  
ubiquitination77,87.

A possible complication in the interpretation of these studies relates 
to the consistent observation that prolonged proteasomal inhibi-
tion induces proteotoxic stress, driven by the buildup of unfolded/ 
misfolded proteins88,89. This stress, in turn, triggers cellular 
responses, such as the unfolded protein response (UPR), which 
leads to a generalized shutdown of protein synthesis (reviewed 
in47). Interestingly, the synthesis of synaptic proteins appears to 
be particularly sensitive to this response33 (see also90 for a recent 
review on relationships between the UPR and neurodegenera-
tion), further confounding interpretations based on total protein  
abundance  measurement in proteasomal inhibition experiments.

What is now clear beyond doubt is the crucial role the UPS plays 
in rapidly degrading newly synthesized, misfolded47, excess, 
or superstoichiometric proteins39. It is thus possible that UPS- 
mediated degradation of some synaptic proteins occurs primarily 
during the earliest phases of their life cycle, namely immediately 
after synthesis and initial processing (see above). In fact, for both  
γ-Aminobutyric acid (GABA)

A
49 and GABA

B
 receptors50, this was 

proposed to serve as an important regulatory step. Conversely, UPS-
mediated degradation might play a secondary role once the proteins 
are localized within synapses, at least under baseline conditions. In 
agreement with this possibility, it was suggested that some recently 
synthesized, particularly large, proteins are degraded rapidly after 
their synthesis in a UPS-dependent manner and at rates unexpected 
from their known lifetimes33. Along these lines, a recent electron 
cryotomography study suggests that in the absence of proteotoxic 
stress, only 20% of 26S proteasomes in cultured hippocampal  
neurons are actively engaged in substrate processing, which might 
be taken as evidence for their importance in handling excess or  
misfolded proteins91.

This proposition does not negate the importance of locally acting,  
activity-regulated, UPS-mediated synaptic protein degradation2–8. 
Thus, for example, a series of studies has demonstrated and char-
acterized the redistribution of proteasomes to dendritic spines  
following synaptic stimulation or activation of postsynaptic  
N-methyl-D-aspartate (NMDA)-type glutamate receptors92–96. 
Along these lines, NMDA receptor activation was shown to drive 
PSD remodeling through UPS-mediated degradation of PSD-95 (a 
major postsynaptic scaffolding protein68). Similarly, an activity-
inducible kinase (serum-inducible kinase) was shown to mark UPS-
mediated degradation of another PSD protein (spine-associated  
Rap GTPase-activating protein), leading to subsequent synapse 
loss97. Interestingly, the degradation of this kinase was also found 
to be UPS mediated. Changes in activity levels were also shown 
to drive UPS-mediated degradation of the postsynaptic scaffolding 
protein GKAP/SAPAP66, although, in this case, the actual degra-
dation of synaptic GKAP seems to occur only after transporting 
it away from synapses to centralized locations. Interestingly, local 
proteasomal activity also seems to play important roles at very 
early stages of synapse formation, namely during the extension of 
nascent dendritic spine precursors98. On the presynaptic side, UPS-
mediated degradation was implicated in activity-dependent changes 
in global and synaptic levels of Rim and Munc-1399 and in global 
levels of Bassoon and liprin-α69. Intriguingly, the large presynap-
tic active zone proteins Bassoon and Piccolo have been shown to 
locally suppress the ubiquitination and degradation of multiple 
presynaptic proteins, possibly by directly regulating the activity of 
the E3 ligase Siah1100 (see also75).

While local, activity-regulated UPS-mediated degradation of cer-
tain synaptic proteins seems to be functionally important, this 
form of degradation does not generalize to many other synaptic  
proteins2,5,30,66,69,99. Moreover, the degree to which such local proc-
esses affect synaptic protein contents under basal conditions appears 
to be quite modest. For example, in spontaneously active primary 
cultures of mouse and rat cortical neurons, pharmacologically sup-
pressing proteasomal function for 10–24 hour did not increase 
synaptic levels of PSD-95 and PSD-93 (24 hours66), Munc13-1  
(10 hours101), PSD-95, Shank3/ProSAP2, SV2A, Synapsin I, or 
Bassoon (10–24 hours33) and only slightly increased synaptic Rim 
levels33 (incidentally, the half-life of Rim1 was estimated here to 
be ~3 days, which is more compatible with the spatiotemporal 
constraints discussed above as compared to a prior estimate of  
0.7 hours31). Finally, as mentioned above, suppression of protea-
somal activity did not significantly slow constitutive degradation  
rates of most synaptic proteins33. It is thus possible that local,  
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Figure 1. Measuring the effects of catabolic inhibitors on synaptic protein degradation is challenged by the slow turnover rates of 
most synaptic proteins. A) In a typical experiment, total protein content is measured (by Western blots, for example) following exposures to 
a pharmacological inhibitor (e.g. MG-132) of a degradation pathway (e.g. the ubiquitin-proteasome system [UPS]) for increasing durations. 
B) The fold-change is then plotted as a function of time, giving rise to plots such as that shown here. C) In the most simple view of synaptic 
protein metabolism, 1) protein synthesis occurs at a constant rate, 2) protein degradation occurs as a first-order reaction with a rate 
coefficient of 

1/2

1

1.44
≈

⋅t  where t½ is the half-life of the protein of interest, 3) at steady state, the rate of protein synthesis is equal to the rate of 
protein degradation, resulting in constant protein concentrations, and 4) a pharmacological catabolic pathway inhibitor strongly reduces the 
degradation rate coefficient but does not affect the rate of protein synthesis. D) Under these assumptions, expected fold-changes in protein 
levels are shown for five proteins with increasingly longer half-lives. Note the minuscule changes for proteins with half-lives of 3 days or longer. 
The inhibitor is assumed to reduce the degradation rate coefficient by a factor of 20 (greater reductions do not significantly change these 
results). E) The expected fold-change in total protein content as a function of protein half-life is shown for three inhibition durations (4, 10, 
or 24 hours). The shaded region represents the half-lives of the majority of synaptic proteins for which half-life estimates were obtained in a 
prior study32. Note that even after inhibiting the catabolic pathway of interest for 24 hours, and even when assuming that protein synthesis 
rates are not reduced, expected changes in total synaptic protein amounts are very modest, raising a requirement for highly sensitive and 
accurate quantification methods and demonstrating the importance of prior knowledge regarding turnover rates for correctly interpreting 
results in such experiments.

Page 6 of 12

F1000Research 2017, 6(F1000 Faculty Rev):675 Last updated: 15 MAY 2017



activity-regulated UPS-mediated degradation mainly serves to 
shape synaptic properties in spatially and temporally constrained 
manners25, with the constitutive degradation of most synaptically 
residing proteins relegated to other pathways.

Autophagy and lysosomal degradation
An alternative catabolic route, which is receiving increasing atten-
tion in the context of synaptic protein degradation, is autophagy. 
A major form of autophagy is macroautophagy, a primary mecha-
nism used by cells to degrade cytosolic complexes and membra-
nous organelles such as mitochondria. Here, double-membraned 
structures engulf portions of cytoplasm to form autophagosomes, 
which ultimately fuse with lysosomes, where their contents are 
degraded. Mutant mice deficient for autophagy-specific genes in 
the nervous system (e.g.102–105) suffer from progressive neurological 
deficits, accumulation of abnormal cytoplasmic inclusions in neu-
rons, and ultimately neuron loss and premature death. Along these 
lines, macroautophagy has been suggested to play important roles 
in removing cytosolic components and membranous organelles 
from remote axonal regions and targeting them for somatic  
degradation106–108. Similarly, roles for autophagy in presynaptic 
proteostasis, axonal membrane homeostasis (e.g.104,109–113), and 
even degradation of entire synaptic vesicles (“vesiculophagy”)  
have been suggested114. Finally, the active zone protein Bassoon, 
previously shown to locally suppress UPS-mediated synaptic  
protein degradation100 (see above), has recently been shown to  
also control presynaptic autophagy through interactions with Atg5, 
an E3-like ligase essential for autophagy115.

On the postsynaptic side, macroautophagy has been implicated 
in (activity-induced) degradation of a number of synaptic pro-
teins (reviewed in116) such as α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)-receptor subunits117, whereas 
genetic suppression of macroautophagy was shown to lead to an 
excess of excitatory synapses118. Interestingly, macroautophagy 
has been studied mainly in the context of nutrient starvation and 
other forms of stress, but neither starvation nor pharmacological 
inhibition of mammalian target of rapamycin seem to induce overt  
macroautophagy in neurons107 (but see117). This would be con-
gruent with a constitutive role for macroautophagy in synaptic  
proteostasis107 (see also119; reviewed in15), although the flux and 
identities of synaptic proteins or protein complexes degraded in  
this fashion remain largely unknown.

A related degradation pathway is endosomal microautophagy, a 
process through which late endosomes directly engulf cytoplas-
mic material. A recent study suggests that this process may play 
a key role in the degradation of numerous synaptic proteins, at 
least in Drosophila120. In this remarkable study, the chaperone 
Hsc70-4, initially identified by its ability to deform membranes, 
was shown to play a crucial role in microautophagy and degrada-
tion of Comt/NSF, Unc-13, and EndophilinA and the formation of  
multivesicular bodies (MVBs) containing multiple synaptic  
vesicles. Furthermore, a bioinformatic survey of about 170 rat  
synaptic proteins suggested that 53% of these contain at least one 
microautophagy motif. The involvement of Hsc70-4 in this proc-
ess is interesting not only because of its function as a synaptic 
chaperone but also because it is a central player in a third type 

of autophagy known as chaperone-mediated autophagy (CMA), 
in which complexes of Hsc70 and target proteins are selectively 
translocated across the lysosomal membrane and subsequently  
degraded. Although CMA was deemed unlikely in Drosophila120, 
the possibility that CMA as well as microautophagy play impor-
tant roles in mammalian synaptic protein degradation remains  
intriguing16.

Another interesting finding in the aforementioned study concerns 
the fate of synaptic transmembrane proteins. No evidence was 
found for microautophagy-mediated degradation of three such 
proteins (Synaptotagmin1, Syntaxin1A, and the vesicular gluta-
mate transporter Vglut). This, and the observation that synaptic  
transmembrane proteins harbor fewer microautophagy motifs, 
led the authors to suggest that synaptic transmembrane protein  
degradation is mediated by “classical” lysosomal pathways, in 
agreement with prior studies regarding synaptic vesicle-associated 
protein degradation in flies121,122. Here, evidence was provided that 
endosomes served as sorting stations for synaptic vesicle proteins  
endocytosed as part of the synaptic vesicle cycle, sending dys-
functional proteins to lysosomes for degradation. Furthermore, 
the removal of such presumably dysfunctional proteins was 
associated with improved presynaptic functionality, a conclu-
sion later supported by a study on the consequences of impaired 
retrograde transport of presynaptic endosomal cargos123. Target-
ing to lysosomes seems to involve ubiquitination and the forma-
tion of MVBs whose formation depends on the endosomal sorting 
complex required for transport machinery. The universality of this 
presynaptic protein sorting and degradation process is supported 
by a recent study carried out in rat hippocampal neurons51. Intrigu-
ingly, this study suggests that different synaptic vesicle proteins 
are degraded at different rates (SV2, Synaptotagmin1 » VAMP2 
» Synaptophysin, Vglut1) and in manners differentially affected 
by manipulations of network activity levels, arguing against the 
turnover of synaptic vesicles as discrete units (as discussed above) 
and further highlighting the importance of sorting processes  
in the specific regulation of particular synaptic protein  
degradation.

On the postsynaptic side, considerable evidence suggests that 
AMPA receptors (transmembrane synaptic proteins) are con-
tinuously cycled between the plasma membrane and endosomal  
compartments; interestingly, all four AMPA-receptor subunit 
types (GluA1–4) can undergo activity-dependent ubiquitination, 
which is thought to determine whether internalized AMPA recep-
tors are targeted for lysosomal degradation or recycled back to 
the membrane (reviewed in124; see also125). Multiple studies have  
demonstrated a crucial role for the E3 ligase Nedd4 in this form 
of regulatory ubiquitination63,126–129. Proteasomal inhibitors 
were shown to strongly slow Nedd4 degradation rates33, perhaps  
explaining the prominent effects of proteasomal inhibitors on 
AMPA receptor surface expression130.

In common with AMPA receptors, ubiquitination of GABA
A
 

receptors (more specifically, their γ subunits) seems to determine 
whether internalized GABA

A
 receptors are targeted for lysosomal 

degradation or recycled back to the membrane131. GABA
B
 receptor  

degradation seems to follow a similar route132. Collectively, these 
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and additional findings point to the importance of endosomal 
sorting and lysosomal degradation in the catabolism of synaptic  
transmembrane proteins, in particular synaptic vesicle proteins, 
postsynaptic receptors, and possibly others (e.g.133,134; reviewed  
in70).

Summary
Recent studies, along with the advent of new technologies, have  
provided a plethora of data on synaptic protein degradation. 
Although much of it is undoubtedly confusing, several principles 
seem to be emerging. First, synaptic proteins have unusually long 
lifetimes, as might be expected from the challenging spatiotem-
poral constraints imposed by their remote locations. Second, the 
typically complex synaptic protein life cycle might imply multiple  
degradation routes that change with the protein’s “age” (time  
from synthesis), cellular context, and physiological input. Third, 
despite the importance attributed to UPS-mediated degradation, 
alternative degradation pathways, perhaps ones that are specifi-
cally tailored to degrading large multimolecular complexes, might 
play key roles in ongoing synaptic protein degradation at synaptic 
sites. Finally, reliable experiments in this field call for experimen-
tal design and sensitive techniques that are well matched to the  
inherently slow rates of synaptic protein degradation and their  
complex life cycles.

One last emerging “principle” is that synaptic protein degradation 
might turn out to be immensely complex: first, because canoni-
cal degradation pathways do not act in isolation and often involve 
significant crosstalk (reviewed in135,136); second, because suppress-
ing one degradation pathway (e.g. the proteasome) can, in some 
cases, elevate activity in other pathways (e.g. autophagy;135, but 
see137); and, finally, because of the existence of additional routes 
for synaptic protein degradation which involve calpains138 and  
extracellular acting proteases (e.g. tissue plasminogen activator,  

β-site amyloid precursor protein-cleaving enzyme 1, and matrix 
metalloproteinases; reviewed in139,140 among others141).

Given the life span of neurons and synapses, and the spa-
tiotemporal challenges synapses face, we feel that even before  
considering issues of synaptic plasticity and neurodegenerative 
disorders, principles of constitutive synaptic protein degradation 
represent a fascinating yet poorly understood biological problem. 
Hopefully the plethora of new approaches and tools will help to 
uncover such principles.
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