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Hyperactivation of Nrf2 in early tubular
development induces nephrogenic diabetes
insipidus
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NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic

stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal

hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal

Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with

low osmolality and bilateral hydronephrosis. This phenotype is caused by defects in water

reabsorption that are the result of reduced aquaporin 2 levels in the kidney. Renal tubular

deletion of Keap1 promotes nephrogenic diabetes insipidus features, confirming that

Nrf2 activation in developing tubular cells causes a water reabsorption defect. These findings

suggest that Nrf2 activity should be tightly controlled during development in order to

maintain renal homeostasis. In addition, tissue-specific ablation of Nrf2 in Keap1-null mice

might create useful animal models to uncover novel physiological functions of Nrf2.
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A
ccumulating lines of evidence support the notion that
oxidative and electrophilic stresses form the molecular
basis for many diseases, including cancer, diabetes and

inflammation1. Our bodies are equipped with a number of
defense systems that can protect us from these damaging insults.
In addition to the natural induction of cytoprotective systems,
activation of these defense systems using small-molecule chemical
inducers is considered to be an effective strategy for the treatment
and/or prevention of disease. To this end, appropriate model
animal systems that allow us to evaluate the physiological
consequences of an increase in the expression of cytoprotective
systems are urgently required.

Transcription factor Nrf2 (NF-E2-related factor-2) is essential
for the oxidative and electrophilic stress responses of animals1.
Downstream target genes of Nrf2 include enzymes that act in the
antioxidant and detoxification pathways, which regulate the
cellular adaptation to oxidative and xenobiotic stresses2. The Nrf2
gene knockout mouse clearly demonstrates that Nrf2 plays an
important role in the response to oxidative and electrophilic
stresses3,4. Under homeostatic and stress-free conditions, cellular
Nrf2 abundance is maintained at a very low level as the ubiquitin
E3 ligase complex composed of Keap1 and Cullin 3 (Cul3)
specifically promotes the ubiquitination and proteasomal
degradation of Nrf2 (refs 5,6). Notably, Keap1 acts as a sensor
for electrophilic and oxidative stresses by using reactive cysteine
residues within the protein2,7. Exposure to electrophiles
or reactive oxygen species (ROS) hampers Keap1 activity,
reducing Nrf2 ubiquitination and leading to the stabilization
and nuclear translocation/accumulation of Nrf2 (ref. 2).
Subsequently, the expression of a battery of Nrf2 target genes is
induced for cytoprotection against these insults. Thus cellular
Nrf2 activation results from the repression of Keap1-mediated
Nrf2 degradation1,2.

In order to investigate the function of Nrf2 in mammals,
we generated Keap1-null mice in which Nrf2 is constitutively
activated, and Nrf2 target genes are upregulated throughout the
whole body8. However, Keap1-null mice are juvenile lethal due to
hyperkeratosis in the upper digestive tract, which leads to the
obstruction of the oesophagus and death by starvation.
Importantly, the lethality of the Keap1-null mice is cancelled by
simultaneous deletion of the Nrf2 gene8, indicating that the
Keap1-null phenotype is a consequence of the constitutive
activation of Nrf2. Knockdown of the Keap1 gene due to
floxation of the Keap1 locus with loxP sites leads to the
constitutive accumulation of Nrf2 throughout the body without
lethality9. However, in this case, Nrf2 activation is weaker than
that of the Keap1-null mice due to the partial retention of Keap1
expression9. Tissue-specific disruption of the Keap1 gene using
the Cre-loxP system has been used to investigate the physiological
effects of full activation of Nrf2 by the complete deletion of Keap1
(refs 9–12). However, there are limitations in the availability of
mouse lines expressing the Cre recombinase in a tissue-specific
manner.

To generate a viable mouse model harbouring systemic full
activation of Nrf2, we decided to rescue the lethality of the global
Keap1-knockout mouse using Keratin5-Cre mice (K5-Cre),
which express Cre recombinase in squamous epithelium under
regulation of the Keratin5 promoter13. The squamous epithelium-
specific disruption of the Keap1 gene using K5-Cre mice
recapitulates the lethality of Keap1-null mice9, indicating that
Nrf2 accumulation in the squamous epithelium is responsible for
the lethality of systemic Keap1-null mice. In contrast, a squamous
epithelium-specific Nrf2 deficiency in the context of systemic
Keap1-deficient mice (Keap1� /� ::Nrf2Flox/Flox::K5-Cre, referred
to as Nrf2-deficient in oesophagus and Keap1-null mice, NEKO)
corrects the hyperkeratosis of the oesophagus and subsequent

lethality, while full activation of Nrf2 is observed in most tissues,
with the exception of the oesophagus and skin. Through the
analysis of NEKO mice, we found a novel phenotype in the
kidney, which is attributed to the full activation of Nrf2 by
complete deletion of Keap1.

Results
Oesophageal Nrf2 deletion rescues Keap1-null mouse lethality.
To remove Nrf2 expression in the oesophagus of systemic
Keap1-null mice, we utilized K5-Cre13, which expresses the Cre
recombinase in squamous epithelium, and generated Keap1� /� ::
Nrf2Flox/Flox::K5-Cre (NEKO) mice. As expected, Nqo1 and Gclc,
prototypical Nrf2 target genes2, were upregulated in most
tissues of Keap1� /� ::Nrf2Flox/Flox mice, whereas Nqo1 and Gclc
induction was reduced in the oesophagus and skin but not in the
other tissues in NEKO mice (Fig. 1a and Supplementary Fig. 1).
Consistent with the Nqo1 and Gclc expression, the hyperkeratosis
of the oesophagus and forestomach observed in Keap1� /� ::
Nrf2Flox/Flox mice was rescued in NEKO mice (Fig. 1b–e and
Supplementary Fig. 2a–c). These observations indicate that
NEKO mice display constitutive activation of Nrf2 in most
tissues except the squamous epithelium. In good agreement with
the improvement of hyperkeratosis, the juvenile lethality of
Keap1� /� ::Nrf2Flox/Flox mice was rescued. However, NEKO mice
displayed significantly poor survival compared with control
mice (Fig. 1f). In addition, NEKO mice showed growth
retardation (Fig. 1g), although blood glucose level was normal
(Supplementary Fig. 3). As these phenotypes have not been
observed in mice with systemic double deficiency of Keap1 and
Nrf2 genes8, we surmise that the poorer survival and growth
retardation are caused by Nrf2 activation in tissues other than the
squamous epithelium.

NEKO mice display polyuria with low osmolality. We found
that NEKO mice display a significant increase in urine volume
(Fig. 2a,b). The polyuria was not observed in Keap1� /� ::Nrf2� /�

mice (Fig. 2c), indicating that this is an Nrf2-dependent
phenotype. In addition, knockdown of Keap1, which causes mild
activation of Nrf2 due to a reduction in the expression of Keap1
throughout the whole body9, also did not cause polyuria (Fig. 2d).
These observations indicate that the polyuria phenotype requires
the complete loss-of-Keap1 activity and full activation of Nrf2.
Consistent with the light coloured urine of NEKO mice, the urine
osmolality was drastically decreased (Fig. 2e) and intake of
drinking water was increased (Fig. 2f), without an effect on food
consumption (Fig. 2g). These results indicate that NEKO mice
suffer from excessive thirst and the excretion of a large amount
of dilute urine, suggesting that NEKO mice cannot make
concentrated urine.

Polyuria in NEKO mice is not due to a neurological defect.
Water reabsorption is regulated by the antidiuretic hormone,
vasopressin (AVP), which is produced in the hypothalamus14.
Therefore, to clarify whether polyuria in NEKO mice is provoked
by a neurological defect, we examined AVP production in NEKO
mice. However, the plasma AVP level and Avp gene expression in
the hypothalamus of NEKO mice were relatively elevated rather
than decreased when compared with those of control mice
(Fig. 3a,b). In addition, neuron-specific Keap1 knockout mice
(Keap1Flox/Flox::Nestin-Cre, Keap1-NKO) did not display polyuria
(Fig. 3c). These results indicate that it is unlikely that a
neurological defect of AVP production causes the defect in
making concentrated urine in NEKO mice.
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Reduction of AQP2 protein level in the kidney of NEKO mice.
It is well established that aquaporin 2 (AQP2) is a water channel
responsible for the reabsorption of water in the kidney15,16.
Therefore, we next examined the AQP2 protein level in the
kidney of NEKO mice (Fig. 3d,e). To our surprise, we found that
AQP2 protein, especially its glycosylated form (Fig. 3d, open
arrowhead), was significantly decreased in the kidney of NEKO
mice (Fig. 3e), suggesting that apical membrane trafficking and
shedding of AQP2 could be stimulated. In contrast, the Aqp2
mRNA level was unchanged in the kidney of NEKO mice
(Fig. 3f), indicating that the reduction in the AQP2 protein level is
caused by a post-transcriptional event. Reduced protein level of
AQP2, but not SLC34A1, a marker for proximal convoluted
tubules, was observed as early as 10 days of age (Supplementary
Fig. 4a), while the Avp mRNA level was not changed substantially
in the hypothalamus of NEKO mice at 10 days of age
(Supplementary Fig. 4b). These observations indicate that
AQP2 reduction in the kidney precedes the increase in AVP,
suggesting that the increase in AVP is a compensatory response
secondary to the reduction of AQP2.

Showing very good agreement with the western blotting
analysis, immunostaining of AQP2 in the kidney showed weaker

signals in the cytoplasm of collecting ducts in NEKO mice
(Fig. 3h) compared with those in the control mice (Fig. 3g). AQP2
accumulation in the apical membrane of the collecting duct
was observed in NEKO mice (Fig. 3h, inset), suggesting that
compensatory translocation of AQP2 to the luminal membrane
and excretion of AQP2 to the urine is enhanced, and/or AQP2 is
degraded inside the cells. The weaker signals and apical
translocation of AQP2 were observed in NEKO mice even at
10 days of age (Supplementary Fig. 5a,b). Of note, the expression
levels of AQP4, another water channel expressed in collecting
ducts, and NCC, a distal convoluted tubule marker, were not
affected in NEKO mice (Supplementary Fig. 5c–f). These results
indicate that the water reabsorption defect in NEKO mice is
caused by a reduction in the AQP2 protein level in the kidney,
leading to a decrease in the ability of the kidney to concentrate
urine by removing water.

Renal pelvis pressure due to polyuria in NEKO mice. Missense
mutations in the AQP2 gene are frequently found in congenital
nephrogenic diabetes insipidus (NDI) patients17. Consistently,
mutations that lead to loss-of-AQP2 function in mice recapitulate
NDI and result in hydronephrosis18,19. Therefore, we looked at
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Figure 1 | Generation of a mouse model that lacks Keap1 throughout the whole body and Nrf2 in the squamous epithelium. (a) Relative Nqo1 gene

expression level compared with Hprt expression in the oesophagus, skin, liver, lung, kidney and heart of mice at 10 days of age. Data are the means±s.e.

(n¼4). (*Po0.05 compared with Keap1� /� ::Nrf2Flox/Flox, unpaired t-test) (b–e) Representative images of haematoxylin and eosin staining of transverse

sections of the oesophagus from mice at 10 days of age (n¼ 3). Scale bar, 100mm. (f) Survival curve for control (n¼ 56), Keap1� /� ::Nrf2Flox/Flox (n¼ 29)

and NEKO (n¼42) mice. (g) Growth curve for control (n¼ 15), NEKO (n¼ 10) and Keap1� /� ::Nrf2Flox/Flox (n¼ 16) mice. Data are the means±s.e.
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the kidney of NEKO mice at 8 weeks of age or later and found
bilateral hydronephrosis characterized by an enlarged pelvic space
(Fig. 4a,b and Supplementary Fig. 6a). The dilation of the renal
pelvis was not observed at 10 days (Fig. 4c,d) or 4 weeks of age
(Supplementary Fig. 6b). As increases in urine volume are already
observed at 4 weeks of age (Fig. 4e), these observations suggest
that polyuria occurs before the structural change in the kidney.

Indeed, a higher magnification view of kidney histology of
NEKO mice at 8 weeks of age showed dilation of the collecting
ducts (Fig. 4g, open arrowheads) compared with those of
littermate control mice (Fig. 4f), indicating elevated pressure in
the kidney. Histology also revealed that, while most glomeruli
appeared normal, mildly damaged glomeruli and infiltration of
inflammatory cells were observed in the NEKO mouse kidney
(Fig. 4h,i), although the plasma creatinine level was normal
(Supplementary Fig. 6c). A slight increase in the plasma level of
blood urea nitrogen, an indicator of kidney function, was
observed in NEKO mice (Fig. 4j). These results suggest that mild
kidney damage is likely a consequence of polyuria.

To test the alternative possibility that obstruction of the ureter
causes hydronephrosis in NEKO mice, we infused a dye into the
kidney pyelocaliceal space. The dye was successfully introduced
from the pelvis to the bladder in the control (Fig. 4k) and NEKO
(Fig. 4l) mice, and macroscopic observation suggested that there
was no ureteral obstruction or dilatation in NEKO mice
(Fig. 4m). These observations indicate that NEKO mice first
develop NDI, and the resultant increase in urine volume
overwhelms the capacity of the ureter to transfer urine from
the kidney to the bladder, thereby causing induction of
hydronephrosis in the absence of an anatomical obstruction.

Impaired response to dehydration and AVP. To further
verify the NDI in NEKO mice, we examined their response to
dehydration. Blood levels of sodium, potassium and chloride in
NEKO mice were significantly increased during dehydration,
while those of control mice were unchanged (Fig. 5a–c). In
addition, urinary osmolality of NEKO mice was lower than that
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of control mice even under dehydration (Fig. 5d). These results
thus indicate that NEKO mice cannot make concentrated urine in
response to dehydration.

To further verify whether the response to AVP is impaired in
NEKO mice, we administered mice with desmopressin (dDAVP),
a synthetic AVP analogue. We found that dDAVP rapidly
increased urine osmolality in control mice but not in NEKO mice
(Fig. 5e). This result demonstrates that the response to AVP is
impaired in NEKO mice.

There remains the alternative possibility that the AVP–AQP2
system in collecting ducts cannot work properly due to a defect in
diluting luminal fluid in the ascending limb of the loop of Henle
as in the case of Bartter’s syndrome. To address this question,
we measured urine osmolality of NEKO mice after water loading.
Normally, upon challenge with excess water, AVP secretion is
stopped and the kidney makes dilute urine to excrete the water.
Indeed, we found that urine osmolality of NEKO mice after water
loading was lower than that of the plasma (o300 mOsm kg� 1

H2O, Supplementary Fig. 7), indicating that the diluting function
is not compromised in NEKO mice. Accordingly, we conclude
that polyuria in NEKO mice is due to reduced expression of
AQP2 in the collecting duct.

Nephrogenic diabetes insipidus in NEKO mice. To examine in
which cells Keap1 deletion activates Nrf2, we carried out
immunostaining for NQO1, which is a prototypical Nrf2 target
gene2. We found marked induction of NQO1 expression in the
kidney (Supplementary Fig. 8a,b). Higher magnification analysis
showed a strong signal for NQO1 in the cortical tubules
and collecting ducts but not in the glomeruli (Supplementary
Fig. 8c–f). These observations support our contention that Keap1
regulates Nrf2 activity mainly in the renal tubular cells.

To delineate the contribution of Nrf2 activation in the renal
tubular cells, we utilized the doxycycline (DOX)-inducible Cre
transgenic mouse system and deleted the Keap1 gene specifically
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in the renal tubular cells. We also generated Keap1Flox/Flox::
Pax8-rtTA::tetO-Cre (referred to as Keap1-TKO) mice and
treated the mice with DOX from 4 weeks of age (Fig. 6a,b).
Unexpectedly, the Keap1-TKO mice at 8 weeks of age did not
show polyuria (Fig. 6a) even though Keap1 expression was
negligible and Nqo1 expression was highly induced (Fig. 6b).
However, when Keap1 deletion was induced from the embryonic
stage, by administration of DOX to the pregnant mother, the
Keap1-TKO mice at 8 weeks of age displayed a significant increase
in urine volume (Fig. 6c), despite the fact that the expression of
Keap1 and Nqo1 (Fig. 6d) were comparable to those of the Keap1-
TKO mice treated with DOX from the adult stage (Fig. 6b). In
addition, the Keap1-TKO mice treated with DOX from an
embryonic stage had urine with lower osmolality (Fig. 6e) and
drank more water than control mice (Fig. 6f), indicating that the
Keap1-TKO mice display NDI in a similar way to NEKO mice.
These observations suggest the importance of a narrow

developmental window for Nrf2 activation by Keap1 deletion on
the subsequent increase in urine volume in Keap1-TKO mice.

Consistent with the increase in urine volume, the kidney of the
Keap1-TKO mice showed dilation of the pelvis (Fig. 7a,b) and
tubules (Fig. 7c,d). The level of AQP2 protein, especially its
glycosylated form, was reduced in the Keap1-TKO mice
(Fig. 7e,f), without a corresponding change in the level of the
transcript of the Aqp2 gene (Fig. 7g). The level of AQP2 in the
kidney from Keap1-TKO mice treated with DOX during the adult
stage was not significantly reduced, although there was a slight
decrease in the glycosylated form of AQP2 (Supplementary
Fig. 9). Taken together, these results demonstrate that Nrf2
activation by renal Keap1 deletion during development, but not
during adulthood, leads to a reduction in the level of the AQP2
protein in the kidney, thereby leading to NDI.

We also found reduced levels of haematocrit and haemoglobin
(Supplementary Fig. 10a,b) in NEKO mice, indicating mild
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anaemia in NEKO mice. In addition, the body weight of NEKO
mice was lower than that of control mice (Supplementary
Fig. 10c). These phenotypes of NEKO mice were not recapitulated
in the Keap1-TKO mice. In addition, poor survival of NEKO
mice was also not recapitulated in the Keap1-TKO mice
(Supplementary Fig. 11). These observations indicate that
these phenotypes are independent of renal tubular Nrf2
hyperactivation.

Enhanced secretion of AQP2 protein to the urine of NEKO mice.
As AVP-mediated trafficking of AQP2 to the apical membrane is
known to elicit urinary excretion of AQP2 (ref. 20), we examined
urinary AQP2 protein levels. To our surprise, we found that
AQP2 protein level in the urine of NEKO mice was significantly
increased compared with that of control mice (Fig. 8a,b). As the
glycosylated form of AQP2 protein was strikingly reduced in the
kidneys of the NEKO and Keap1-TKO mice (Figs 3d and 7e),
it seemed plausible that Nrf2 regulates the expression of
glycosylation-related genes that are involved in the trafficking
of AQP2. To address this issue, we carried out microarray
expression analysis of genes in the kidneys of NEKO mice
(Supplementary Fig. 12a,b) and searched for glycosylation-related

genes whose expression is changed in NEKO mice. Among the
genes increased in NEKO mice, we found upregulation of Clec4d
and Clec4n, members of the C-type lectin family. As some
members of the lectin family are involved in subcellular protein
trafficking21, we hypothesized that Clec4d and Clec4n may
enhance the transport of AQP2 to the apical membrane and
thereby enhance urinary excretion of AQP2. Indeed, transcript
levels of Clec4d and Clec4n genes are already increased in the
kidney of NEKO mice at 10 days of age (Fig. 8c), indicating that
upregulation of Clec4d and Clec4n gene expression occurs before
the structural change in the kidney.

To examine which cells in the kidney express Clec4d and
Clec4n genes, we separated collecting duct cells from the kidney
by biotinylated Dolichos biflorus agglutinin (DBA)/streptavidin
magnetic beads22. We found that expression levels of Clec4d and
Clec4n genes were upregulated in the collecting duct cells isolated
from NEKO mice compared with those isolated from control
mice (Supplementary Fig. 13).

As Clec4d and Clec4n genes are normally expressed in
macrophages23, we examined their expression in bone marrow-
derived macrophages (BMDMs). We found that diethylmaleate
(DEM), an Nrf2-activating chemical, increased the expression
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of these genes in BMDMs in an Nrf2-dependent manner
(Supplementary Fig. 14a,b). To address whether Clec4d and
Clec4n are direct target genes of Nrf2, we searched for Nrf2-
binding sites around the Clec4d and Clec4n gene loci using the

chromatin immunoprecipitation sequence (ChIP-seq) data from
a previous study24 and found multiple binding sites for Nrf2
around the Clec4d and Clec4n gene loci (Supplementary Fig. 14c).
We validated Nrf2 binding to these sites by manual ChIP using
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DEM-treated BMDMs (Supplementary Fig. 14d). These results
suggest that Clec4d and Clec4n genes are direct target genes
of Nrf2.

In spite of the hyperactivation of Nrf2 in renal tubular cells, the
transcript levels of Clec4d and Clec4n genes did not increase in
Keap1-TKO mice treated with DOX from the adult stage
(Fig. 8d). In contrast, an increase in the transcript levels of
Clec4d and Clec4n genes was recapitulated in Keap1-TKO mice
treated with DOX from an embryonic stage (Fig. 8e). Of note, the
increase in expression levels of the Clec4d and Clec4n genes shows
very good correlation to the urinary concentrating defects. These
findings support our contention that Nrf2 hyperactivation in
renal tubular cells during development leads to the upregulation
of Clec4d and Clec4n gene expression and enhanced urinary
excretion of the AQP2 protein, which consequently causes a
reduction in the level of the AQP2 protein in the kidney,
ultimately leading to NDI.

Discussion
In this study, we generated a new mouse model, NEKO, which
has high Nrf2 activity due to Keap1 deletion but without juvenile
lethality and hyperkeratosis of the upper digestive tract.
Surprisingly, through the study of NEKO mice, we found a novel
phenotype, namely, polyuria with low osmolality and consequent
renal structural damage, presumably due to a reduction of the
AQP2 protein in the kidney. The renal phenotypes were
recapitulated by renal tubular-specific Keap1 deletion during
development but not adulthood, indicating that renal activation
of Nrf2 at an early stage is responsible for the polyuria and kidney
damage observed in NEKO mice. The reduction of AQP2 protein
in the kidney is likely due to dysregulation of AQP2 trafficking
provoked by upregulation of Clec4d and Clec4n genes, members
of C-type lectin family, in a developmental stage-specific manner.
These results demonstrate for the first time that Nrf2 activation
during renal development leads to NDI.
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Keap1 tightly represses Nrf2 activity in normal conditions, and
Nrf2 activity is induced by loss of Keap1. Therefore, a Keap1-null
mouse is a desired model in which to investigate the function
of Nrf2. However, due to the juvenile lethality of systemic
Keap1-null mice8, there has been a limitation in the phenotypic
analysis of adult mice9. Generation of NEKO mice in this study
makes it possible to analyse the physiological contribution of
constitutive Nrf2 activation in adult animals as the mice can
survive to adulthood. In this regard, it is interesting to note that

we have previously generated a Keap1 knockdown line of mice,
which causes constitutive Nrf2 activation but not lethality9. The
polyuria was not observed in this Keap1 knockdown line of mice,
perhaps as a mild increase in Nrf2 may not be enough to provoke
NDI. Thus it is not until NEKO mice were generated that
polyuria and hydronephrosis were identified as a consequence
of constitutive Nrf2 activation by the complete knockout of
Keap1. The murine phenotypes of loss-of-Keap1-mediated Nrf2
hyperactivation, such as oesophageal hyperkeratosis and a urinary
concentrating defect, suggests that Nrf2 regulates not only
cytoprotective genes such as antioxidant and detoxifying genes,
but also other genes involved in cell fate and function for
organismal homeostasis. Importantly, although elevations of
NRF2 levels have been identified in various types of human
cancers22,25, spontaneous tumorigenesis has not been observed in
NEKO mice. These findings indicate that mere hyperactivation of
Nrf2 is not sufficient to cause cancer, but may assist cancer
growth and drug resistance.

The polyuria in NEKO mice is likely caused by a reduction of
AQP2 in the kidney due to the enhanced urinary excretion of
AQP2. Interestingly, urinary exosomal AQP2 has been suggested
to be a useful marker for the diagnosis of renal disease26,27.
As Nrf2 target genes include many antioxidant genes2, one
explanation might be that the elimination of endogenous ROS by
excessive activation of Nrf2 contributes to AQP2 trafficking.
However, as there is no report regarding the relationship between
ROS and AQP2, coupled with the fact that our study indicates
that a development stage-specific Nrf2 target gene is responsible
for the renal phenotype, this suggests that the general induction
of antioxidant genes by Nrf2 is unlikely to be responsible for the
polyuria phenotype.

It is noteworthy that the glycosylated form of AQP2 is
specifically reduced in the kidney, implying that glycosylation of
AQP2 is involved in the mechanism of NDI development.
Glycosylation of AQP2 is not essential for its tetramerization28

but is important for AQP2 cell surface localization29. Although
the involvement of lectins in the process has been suggested30,
it remains unknown which lectin is important for AQP2
trafficking. We found that upregulation of Clec4d and Clec4n in
the kidney is correlated with defects in urinary concentration,
suggesting that Clec4d and Clec4n are strong candidate genes
responsible for transporting AQP2 to the apical membrane of
renal collecting duct cells. Lectins such as galectins21 and
mannose-6 phosphate receptor30 are involved in subcellular
protein trafficking, although to date there has been no report
regarding the trafficking function of Clec4d and Clec4n. Our
findings suggest that regulation of AQP2 trafficking by Clec4d
and Clec4n represents a new molecular mechanism through
which AQP2 and urinary concentration are modulated.

Similar to NEKO mice, dioxin induces hydronephrosis
without anatomical obstruction in the ureter31. The dioxin-
induced hydronephrosis is elicited by elevated production of
prostaglandin E2 (PGE2)31, which is an electrophilic inducer
of Nrf2 (ref. 32). It is interesting to note that the development of
hydronephrosis is induced by exposure to dioxin in the neonatal
stage but not during adulthood33. This developmental
stage-specific effect of dioxin (or window to dioxin) appears to
be similar to our observation that Keap1-TKO mice develop
hydronephrosis after DOX treatment during development but not
in adulthood. These similarities imply that dioxin-induced
hydronephrosis may be explained by the constitutive activation
of Nrf2 by chronic elevation of PGE2 in the developing kidney.
This suggests that chronic exposure to Nrf2-activating chemicals,
including environmental pollutants, prostaglandins and oxidative
stresses, during kidney development may cause NDI and
hydronephrosis.
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It is interesting to note that Bartter’s syndrome, another model
for polyuria, is caused by rare inherited defects in the thick
ascending limb of Henle’s loop34. We found in this study that the
diluting function of the ascending limb of Henle’s loop is intact in
NEKO mice, indicating that polyuria in NEKO mice is distinct
from that of Bartter’s syndrome. Nonetheless, inhibiting PGE2

with indomethacin is clinically useful and widely used for
Bartter’s syndrome35. This suggests that PGE2 production might
contribute to the development of polyuria via dual mechanisms
that impair the function of the counter current system in the
ascending limb of Henle’s loop, and the AVP–AQP2 system in
the collecting ducts. In addition, it has been reported that
mutations in Kelch-like 3 (KLHL3), a member of BTB domain
containing Kelch protein, and Cul3 cause hypertension and
electrolyte abnormalities36,37, suggesting that Cul3 and members
of KLHL family, such as Keap1 and KLHL3, play important roles
in the maintenance of kidney homeostasis.

In light of the use of Nrf2-activating compounds as potential
medical treatments, it has been shown that the timing at which
the treatment is given needs to be carefully considered. In
contrast, our results clearly suggest that the administration of
Nrf2-activating chemicals during adulthood will not cause such
adverse effects in the kidney, even if the treatment includes
chronic administration of potent Nrf2 inducers. Indeed, many
studies have shown that pharmacological Nrf2 activation gives
rise to a protective effect against a variety of stresses, including
kidney injury38,39. Bardoxolone methyl (CDDO-Me), a potent
Nrf2 activator, has been studied in clinical trials, and the phase III
trial of CDDO-Me was terminated due to a higher rate of heart
failure events in advanced chronic kidney disease patients40.
Many of these events appear to be due to fluid retention41,
although CDDO-Me-treated patients had a clinically meaningful
increase of glomerular filtration rate42. In addition, treatment of
Zucker diabetic fatty rats with RTA405, a synthetic triterpenoid
analog of CDDO-Me, resulted in a reduction in urine volume43.
These observations indicate that the adverse effects of CDDO-Me,
namely, the fluid retention, are opposite to the phenotype
observed in NEKO mice, suggesting that the adverse effects of
CDDO-Me are pathology specific or independent of Nrf2
activation.

In addition to the renal phenotypes, we found mild anaemia,
growth retardation and poor survival in NEKO mice. Anaemia,
growth retardation and poor survival are not recapitulated in
renal tubular-specific Keap1-deficient mice (Keap1-TKO),
indicating that these phenotypes are independent of Nrf2
activation in the renal tubules. As loss of Keap1 in hematopoietic
cells has been shown to suppress differentiation towards the
erythroid lineage10, the anaemia in NEKO mice is likely due to a
loss of Keap1 in hematopoietic cells. The growth retardation of
NEKO mice may be due to Nrf2 activation in the skeletal muscle
and adipose tissues, as Keap1 deletion in the skeletal muscle
reduces body weight44, and loss of Keap1 represses differentiation
of adipose cells45. As NEKO mice likely have other phenotypes
that have not yet been studied, further analysis of NEKO
mice will provide new insights to understand the physiological
function of Nrf2.

In summary, we have generated NEKO mice harbouring
constitutive Nrf2 activation throughout the whole body, without
juvenile lethality. Through the analysis of NEKO mice, we
identified a novel phenotype in which Nrf2 hyperactivation
mediated by the loss of Keap1 in the developing kidney causes
NDI and hydronephrosis. Our findings imply that Nrf2 activity
should be controlled at an appropriate level during development
in order to maintain renal homeostasis. Thus NEKO mice serve
as a valuable experimental animal model with which to better
understand our cytoprotective defense systems.

Methods
Mice. Oesophageal Nrf2-deficient and systemic Keap1-null mice (NEKO,
Nrf2Flox/Flox::Keratin5-Cre::Keap1� /� ) were generated by crossbreeding
Nrf2Flox/Flox (ref. 46) with K5-Cre13 and Keap1þ /� (ref. 8), while littermate mice
(Nrf2Flox/Flox:K5-Cre:Keap1þ /� or Nrf2Flox/Flox::Keap1þ /� ) were used as controls.
Neuron-specific Keap1 knockout mice (Keap1-NKO, Keap1Flox/Flox::Nestin-Cre)
were generated by crossbreeding Keap1Flox/Flox (ref. 11) with Nestin-Cre47, while
littermate mice (Keap1Flox/Flox) were used as controls. Keap1 knockdown mice
(Keap1-KD, Keap1Flox/� ) were previously generated9, while littermate mice
(Keap1Flox/þ ) were used as controls. Keap1-Nrf2 double knockout mice
(Keap1� /� ::Nrf2� /� ) were previously generated8, while littermate mice
(Keap1þ /� ::Nrf2� /� ) were used as controls. Renal tubule-specific Keap1
knockout mice (Keap1-TKO, Keap1Flox/Flox::Pax8-rtTA::TetO-Cre) were generated
by crossbreeding Keap1Flox/Flox (ref. 12) with Pax8-rtTA48 and TetO-Cre49, while
littermate mice (Keap1Flox/Flox or Keap1Flox/Flox::Pax8-rtTA) were used as controls.
Four-week-old mice or pregnant female mice were fed with 1 mg ml� 1 DOX in the
drinking water43. After continuous DOX feeding, 8-week-old mice were subjected
to analysis. All compound mutant mice examined in this study were from a mixed
genetic background, with contributions from 129Sv/J and C57BL/6J strains. An
almost equal combination of male and female mice was used in our experiments.
The 24-h urine volume, drinking water volume and food consumption were
measured using a metabolic cage, and osmolality was measured by SRL, Inc.
Plasma AVP was quantified with a competitive enzyme-linked immunoassay
(Arg8-Vasopressin EIA Kit, Enzo Life Sciences). Blood samples were collected from
the mice and analysed using the iSTAT-1 analyser (Abbott). Plasma blood urea
nitrogen and creatinine were measured using FDCV7000V (Fujifilm). For the AVP
stimulation test, mice were given water containing 5% sucrose before the
experiment to make sure of production of dilute urine. Urine was collected and
1 ng g� 1 body weight of (desamino-Cys1, D-Arg8) AVP (dDAVP, Sigma) was
injected intraperitoneally. Urine osmolality was measured at 1 and 2 h after the
injection. All mice were treated according to the regulations of The Standards for
Human Care and Use of Laboratory Animals of Tohoku University (Sendai, Japan)
and the Guidelines for Proper Conduct of Animal Experiments of the Ministry of
Education, Culture, Sports, Science, and Technology of Japan. All animal in the
experiments were killed with the approval of the Tohoku University Animal Care
Committee.

Gene expression analysis. Total RNA was prepared from tissues and cells using
a Sepazol-RNA I Super G RNA Extraction Kit (Nakalai). The cDNAs were
synthesized from the total RNA using ReverTra Ace qPCR RT master mix with
gRNA Remover (Toyobo). Real-time quantitative PCR was performed using
StepOne or QuantStudio (Life Technologies). Primer and probe sequences are
listed in Supplementary Table 1.

Western blotting. Kidney tissues were homogenized in 0.25 M sucrose. The
homogenates were analysed by western blotting using anti-AQP2 (sc-9882; Santa
Cruz; 1:200 dilution), SLC34A1 (Novus Biologicals; NBP2-13328; 1:1,000 dilution)
and a-Tubulin (T9026, Sigma; 1:1,000 dilution) antibodies. Each urine sample was
loaded with the same amount of creatinine. Full blottings are provided in
Supplementary Fig. 15.

Histological analysis. Oesophagus and kidney from the mice were fixed with
Mildform 10N and embedded in paraffin. Samples were subjected for periodic
acid-Schiff staining or haematoxylin and eosin staining. For immunostaining,
samples were stained using anti-AQP2 (C-17, sc-9882; Santa Cruz; 1:500 dilution),
AQP4 (Millipore; AB3594; 1:400 dilution), NCC (Millipore; AB3553; 1:1,000
dilution) and anti-NQO1 (ab2346, Abcam; 1:1,000 dilution), and positive reactivity
was visualized with diaminobenzidine staining.

Renal collecting duct sorting by biotinylated DBA/streptavidin magnet beads.
After removing the kidney capsule, the kidney was immersed in 1 ml fresh-made
digestion buffer (0.52 U ml� 1 liberase TM (Roche) and 3 U ml� 1 DNase I (Roche)
in Hanks balanced salt solution (Invitrogen)). Kidney was minced using scissors
and incubated in a 37 �C water bath for 2 h, with gentle pipetting every 30 min.
After incubation, the cells were filtrated through a 40-mm cell strainer (BD
Bioscience) to remove clumps. For DBA magnetic sorting, the kidney cell
suspension was incubated with biotinylated DBA (Vector Laboratories) in a
cold room for 1 h. DBA-labelled cells were incubated with Dynabeads M-280
streptavidin (Life Technologies) and separated by magnet concentrator four times.

ChIP-qPCR assay. To obtain BMDMs, haemolysed bone marrow cells from wild-
type and Nrf2� /� mice were cultured for 7 days in DMEM supplemented with
10% FBS, 20 ng ml� 1 macrophage colony-stimulating factor (M-CSF, PeproTech)
and antibiotic–antimycotic reagent (Life Technologies). At day 3, a half volume of
fresh DMEM with 10% FBS and 20 ng ml� 1 M-CSF was added. At day 7, BMDMs
were depleted with M-CSF several hours before stimulation. BMDMs were treated
with or without 100 mM DEM for 4 h and subjected to a ChIP assay. Succinctly,
BMDMs were fixed with 1% formaldehyde and subsequently quenched with
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glycine. After washing with PBS, fixed samples were suspended in cell lysis buffer
(5 mM PIPES-KCl (pH 8.0), 85 mM KCl, and 0.5% NP40), and nuclei were
collected and stored at 80 �C as nuclear pellets, or nuclear lysates were prepared by
dissolving nuclei in a nucleus lysis buffer (50 mM Tris-HCl (pH 8.0), 10 mM EDTA
and 1% SDS).

For Nrf2 ChIP analysis, lysates were thawed and sonicated with Sonifier
(BRANSON) to obtain chromatin fragments of 300–1,000 bp, and the lysates were
then diluted 10-fold with ChIP dilution buffer (16.7 mM Tris-HCl (pH 8.0),
1.2 mM EDTA, 0.01% SDS, 1.1% TrironX100 and 167 mM NaCl). After doubling
dilution with a sonication buffer (90 mM HEPES (pH 7.9), 220 mM NaCl, 10 mM
EDTA, 1% NP-40, 0.2% sodium deoxycholate and 0.2% SDS), nuclei were
homogenized with a Bioruptor (Tosho-Denki). After washing, a complex of nuclear
proteins, DNA and antibodies against Nrf2 (Cell Signaling technology; D1Z9C;
1:250 dilution) was retrieved with Protein A- and Protein G-Dynabeads (Life
Technologies). After the crosslinking was reversed, chromatin fragments were
treated with RNase A and proteinase K. DNA was purified with phenol–
chloroform extraction or Ampure XP (Beckman 566 Coulter). In the ChIP-qPCR
analyses, the values from the immunoprecipitated samples were normalized to
that from the input DNA. Primer sequences are listed in Supplementary Table 1.
ChIP-seq data were obtained from a previous study24.

Statistical analysis. Values, including those displayed in the graphs, represent
means±s.e. Statistical analyses were performed using the unpaired t-test (Welch’s
t-test). Variation estimated by F-test was considered in t-test.

Data availability statement. Microarray data are deposited in GEO (Gene
Expression Omnibus) under accession number GSE84780. Other data that support
the findings of this study are available from the corresponding author upon
reasonable request.
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