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SUMMARY

Metabolomics describes a high-throughput approach for measuring a repertoire of metabolites 

and small molecules in biological samples. One utility of untargeted metabolomics, unbiased 

global analysis of the metabolome, is to detect key metabolites as contributors to, or readouts 

of, human health and disease. In this perspective, we discuss how artificial intelligence (AI) and 

machine learning (ML) have promoted major advances in untargeted metabolomics workflows 

and facilitated pivotal findings in the areas of disease screening and diagnosis. We contextualize 

applications of AI and ML to the emerging field of high-resolution mass spectrometry (HRMS) 

exposomics, which unbiasedly detects endogenous metabolites and exogenous chemicals in human 

tissue to characterize exposure linked with disease outcomes. We discuss the state of the science 

and suggest potential opportunities for using AI and ML to improve data quality, rigor, detection, 

and chemical identification in untargeted metabolomics and exposomics studies.

INTRODUCTION

Chemical reactions in the body produce the myriad metabolites essential for human life, 

a process known as metabolism. Metabolism itself falls in two main types: catabolism, 

or the breakdown of molecules to obtain energy, and anabolism, or the synthesis of 

compounds required by cells. Metabolism also encompasses deactivation, detoxification, 

and elimination of foreign or unwanted substances. Insight into these processes is crucial 

for understanding human physiology in health and disease. There are multiple ways to 
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study these processes individually or collectively, but one comprehensive, high-throughput 

approach is metabolomics, which relies on measurement of small molecules (<2,000 

Da) in a biological sample, typically blood, urine, or saliva (Figure 1, bottom). The 

metabolomics framework can capture endogenous metabolites and signal molecules that 

participate in regulation of gene expression, protein function, and enzyme activity. Its high-

throughput nature is particularly valuable, given that the scale of small molecule-enzyme 

interactions varies by organism from around 500 to a few thousand reactions and metabolite 

intermediates.1

Within the metabolomics framework, different approaches enable different kinds of insights 

into these metabolic processes. One approach, targeted metabolomics, typically measures 

concentrations of tens to approximately 100 endogenous metabolites determined a priori. 
This quantitative approach enables comparisons across studies and populations as well as 

development of thresholds describing average or expected ranges to aid medical diagnosis 

and intervention. A specific type of targeted metabolomics is metabolic flux analysis, which 

monitors the fate of stable isotope tracers (e.g., 13C-glucose, 15N-glutamine), allowing 

research into the flow of metabolites.1–5 Together, flux and concentration provide a fuller 

understanding of metabolism.

Complementing these quantitative approaches, untargeted metabolomics is an unbiased 

and semi-quantitative measure of thousands of small molecules simultaneously. This 

approach circumvents the logistical and economical challenges that restrict how many 

chemicals can be measured in a quantitative assay. Here, high-resolution mass spectrometry 

(HRMS) typically pairs with liquid chromatography (LC) or gas chromatography (GC) 

to easily separate and detect thousands of chemical peaks—unitless measurements of semi-

quantitative features applicable for downstream analysis. With particular study designs, 

untargeted metabolomics can generate new hypotheses on altered pathways and individual 

metabolites that can be linked to disease initiation, diagnosis, progression, or prognosis 

(Figure 1).6,7

Untargeted metabolomics offers a particularly valuable approach when considering that 

beyond the core set of metabolites studied in targeted and flux analysis lies the vast 

unknown metabolome described holistically as the “exposome.”The exposome stems from 

a hypothesis that most diseases and disorders are heterogeneous and that non-genetic 

influence or “exposure” from environmental chemicals, diet, lifestyle, psychosocial factors, 

and disease history throughout life may play pivotal roles in health. Indeed, exogenous 

chemicals from food (genistein, vitamin E), lifestyle (nicotine, caffeine), drugs (cefuroxime, 

acetaminophen), and pollution (phthalates, perfluoroalkyl substances) enter the body and 

circulate in the blood to cells and organs. Biological fluids and tissues contain chemical 

readouts of these exposures, such as cortisol from stress, di(2-ethylhexyl)phthalate (DEHP) 

from plasticizers, caffeine from coffee, cholesterol from high-fat diets, and antibiotics used 

before surgery. Over the last decade, untargeted metabolomics strategies have expanded to 

include detection and measurement of exposure chemicals. “Exposomics” analysis leverages 

HRMS-based strategies to capture, in the same analytical assay, the endogenous metabolites 

typically measured in untargeted metabolomics analysis and exogenous chemicals resulting 

from various exposures (Figure 1, top).
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Despite extensive LC-MS studies collecting exposome data, most of the human exposome 

remains unknown, with only a small fraction identified and incorporated into in-house 

libraries or databases. Even though only about 5,000 chemicals likely have wide 

enough dispersal in the environment to pose a global threat to the human population, 

many thousands more are expected to affect individuals.8 Because such chemicals 

can be converted to metabolites or environmental transformation products, first-order 

reaction products could number in the millions.9 Unlike typical endogenous metabolites 

and nutritional chemicals detected in high concentrations in most study participants, 

environmental chemicals often have concentrations orders of magnitude lower; they can 

be transient and then rapidly disappear, or they can fall below detection limits. Current 

hypotheses in environmental epidemiology purport that individuals commonly experience 

chemical exposure in mixtures rather than individually and that mixture effects underlie 

phenotypic changes in health or during disease.10,11

These phenomena are important when considering which suitable analytic approach to take. 

Although untargeted assays with HRMS can detect tens of thousands of peaks from each 

sample, the complexity of these data and inherent analytical variability in HRMS bring forth 

computational challenges. Advanced artificial intelligence (AI) and machine learning (ML) 

algorithms can assist with alignment of the data; feature selection to pinpoint important 

exposures, metabolites, and biomarkers as mixtures; and annotation of unknown metabolites. 

Thus, developing and optimizing such applications is necessary to advance exposomics 

discovery and further research.

Here we highlight some of the most recent AI/ML tools applied to the field of untargeted 

metabolomics data processing. Although AI/ML is now being applied to new technologies, 

including MS imaging and single-cell MS metabolomics,12–15 we focus our discussion on 

the most widely used LC- or GC-HRMS techniques and critical gaps required to overcome 

to advance exposomics research. We discuss these as key steps required for successful 

application of untargeted metabolomics within an exposomics framework.

Typical untargeted workflow

For biological matrices like serum, plasma, or urine, LC or GC column chromatography is 

used to first separate the complex mixture before detection and measurement by HRMS. 

The LC/GC-HRMS workflow typically follows a series of steps: sample preparation; 

data acquisition; data pre- and post-processing; data analysis, including feature selection; 

and identification/annotation of chemicals (Figure 2).16–18 Metabolites and chemicals are 

extracted from the biological sample using a high percentage of organic solvent that also 

removes proteins. In LC analysis, the extracts are usually analyzed using hydrophilic 

interaction LC (HILIC), which uses a column that retains polar chemicals, and reverse-phase 

(RP) chromatography, which uses a column that retains neutral and non-polar compounds. 

Together, these complementary methods maximize the total number of measurable small 

molecules. For GC analysis, a clean-up step using solid-phase extraction can precede protein 

precipitation; then the extracts are derivatized to make them more volatile so they can 

be analyzed on a capillary column.19 Physicochemical properties of the small molecules 

dictate their extraction efficiency as well as their retention on the LC or GC column, 
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and ionization/detection on the MS, which provides an opportunity for ML approaches to 

support chemical space prediction for selecting chromatographic columns and buffer or 

temperature gradients.20 The untargeted approach uses minimal sample processing steps 

to maximize the breadth of chemicals measured because multi-step extractions trade this 

breadth of measurement for one of maximizing the signal of particular chemical classes. 

Most of the MS features measured in an untargeted analysis are unknown, precluding a 

method to optimize conditions a priori based on properties of all intended targets or to 

determine all of the chemicals that are missing or lost from the analysis because of the 

selected conditions.

Data acquisition can occur in one stage of mass spectrometry (MS1) or two stages with 

tandem mass spectrometry (MS/MS), in which ions from MS1 are selectively fragmented 

to generate a molecular fingerprint of the molecule to aid identification (Figure 3). Most 

studies use combinations of collecting MS1 and MS2 data; MS1 is usually used for semi-

quantification of the feature, and MS/MS fragmentation data are usually used for annotation 

of the feature.

Data are acquired for each analytical mode (HILIC-MS, RP-MS, or GC-MS) in three 

dimensions: mass-to-charge ratio (m/z), retention time (rt), and abundance. AI/ML play 

major roles in subsequent steps of metabolomics workflows. MS1 data are pre- and post-

processed using a variety of algorithms to transform the large amount of raw spectral data 

into a much smaller, statistically manageable set of peaks or features (Figure 2). Software 

processes include selecting the peaks and aligning the peaks across the samples. The output 

is a peak table for each analytical mode that has peak intensity values (abundance) for 

every metabolite feature for every sample. When the data are adjusted to remove unwanted 

technical variation, feature selection takes place, often using statistical approaches or ML 

to focus on the small molecules associated with health outcomes or exposure. Finally, these 

features are identified for biological interpretation, with many ML and AI tools developed to 

facilitate metabolite annotation using MS/MS data.

Innovation in the first two steps of the workflow (Figure 2, steps 1 and 2) stems 

largely from instrumentation and automation, which enable more reproducible sample 

preparation, better detection in smaller sample volumes, and a broader range of measurable 

metabolites. In contrast, innovations in the last three steps (Figure 2, steps 3–5) stem from 

computational advances. Most efforts in AI/ML to date have focused on the latter part of the 

data processing workflow—feature selection and metabolite identification—because of an 

urgent need for computational tools to draw biologically interpretably connections between 

complex MS metabolomics data and health and exposure outcomes. However, recent efforts 

demonstrate a shift toward developing and applying advanced ML methods to enhance 

quality control and cleaning—data processing—of untargeted MS data before downstream 

analysis. This shift reflects that most readily used peak-picking algorithms can successfully 

measure high-concentration, Gaussian-shaped peaks typical of endogenous metabolites21 

but are less successful with low-abundance signals. This measurement is a fundamental 

challenge for HRMS exposomics, which seeks to capture a handful of needles in a large and 

variable haystack. Therefore, advancing the field of HRMS exposomics requires robust peak 
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picking of low-abundance features and development or optimization of novel computational 

tools for data processing.

Data processing

Metabolomics raw data are inherently complex because of multiple linear and nonlinear 

interactions among the metabolites as well as challenges with mass spectrometry data 

structure.22 These challenges include features (e.g., peaks) that can massively outnumber the 

samples, high levels of noise, batch and run order effects during measurements, and missing 

values during peak detection. The data pre-processing step of this workflow is crucial for 

accurate translation of the 3D data obtained from LC-MS (m/z, rt, abundance) into a 2D 

aligned peaktable (aligned peaks [of specific m/z and rt] and their respective abundances in 

every sample) that is required for downstream data analyses.23,24 This is crucial because the 

peak area correlates with chemical concentration in a sample, which are the data ultimately 

analyzed to draw statistical and biological inferences. Even though data pre-processing is 

easily performed using automated software, it is challenging to precisely, accurately, and 

robustly synthesize the data across the full range of metabolite features, concentrations, and 

sample acquisition times into a manageable dataset.16,25

Algorithms for pre-processing include open-source XCMS,23 MZmine3,24 MS-Dial,26 and 

MetAlign27 as well as several types of proprietary software. XCMS and MZmine are the 

most widely used, but no algorithm has been accepted as the benchmark in the fields 

of metabolomics or exposomics. Consequently, concordance across methods can be less 

than 50%.28 Recent evidence demonstrates that false positives and poorly integrated peaks 

(low quality) are retained in the data at large numbers for public and private software 

platforms,29,30 which can propagate errors into downstream analyses.31 These findings 

have stoked increased interest in development of different quality control (QC) measures 

to improve the quality and reliability of data reporting for high-throughput untargeted 

analysis.32–34

After peak picking, application of subsequent filtering strategies based on predetermined 

thresholds, such as mean/median value across samples, variability across biological samples, 

and levels of missing values, is routine to remove noisy peaks.35 The most commonly used 

is a pooled QC that is generated by thoroughly combining a small volume from all samples 

or from a representative subset of the samples and realiquoting this into multiple samples. 

These replicates can be evenly distributed throughout the analytical batch for acquisition. 

Because the pooled QC sample is a representative sample comprising the metabolite 

compositions of the study samples, features present in all pooled QC samples with a low 

quantitative coefficient of variation across the analytical batches are retained. However, with 

complex samples, contaminants can be greater than 50% in some experiments,36 which 

may be difficult to discriminate from true positives of low abundance. Although QCs allow 

removal of many false positive features (noise or baseline recognized as a peak), correct 

features will also be discarded. A recent study illustrated this phenomenon by re-mining 

untargeted metabolomics data using minimal thresholds to reveal additional metabolites and 

pathways associated with the outcome that were not identified in the primary publication.37 

Therefore, to retain important but low-abundance features for downstream analysis, there is 
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a need for new approaches that comprehensively retain all high-quality peaks.38 Here, new 

peak-picking algorithms and ML-based filtering have entered the arena.

The comprehensive peak characterization (CPC) algorithm with user-based peak criterion 

filtering removes 35% of the peak-picked XCMS features and demonstrates, for a subset 

of retained peaks, a 90% true positive rate and 87% true negative rate.39 Similarly, 

Finnee introduces algorithms to correct baseline drift and background noise and uses a 

clustering and targeted analysis approach to reduce false-positives.40 These resulted in more 

biomarkers than XCMS or MS-DIAL, on a limited demonstration of five controls, five with 

an asthma medical diagnosis and five with a chronic obstructive pulmonary disease medical 

diagnosis, suggesting that algorithm development and optimization may be needed to enable 

detection and measurement of new chemicals in datasets for statistical analysis.41

Recent work introduced applications of ML classification approaches that use peak quality 

to train models. The first tool, WiPP, introduced in 2019, uses support vector machine 

(SVM) to classify high-concentration peaks from GC-MS data but performs worse for low-

concentration peaks.42 MetaClean assesses 24 different classifiers—combinations of eight 

algorithms and three sets of peak quality metrics—at filtering peaks based on quality of 

peak boundaries, revealing that the adaBoost algorithm and a set of 11 peak quality metrics 

perform best.43 However, the distributions of low-and high-abundance peaks between the 

true positive and true negative rates were not assessed. Peakonly44 and NeatMS45 utilize 

deep learning (DL) neural networks for LC-MS peak classification. Peakonly has a true 

positive detection rate of 97% but deliberately does not consider narrow peaks and uncertain 

peaks with noisy shape, achieving confidence to detect only true positive peaks. On the 

other hand, NeatMS demonstrates a greater ability to retain high-quality peaks even at lower 

concentrations. In the tool NPFimg, raw GC-MS data are flattened into a 2D image for 

processing using a neural networks model. NPFimg performs better than or to the same 

as XCMS, with true positive and true negative rates of more than 97% with a limited 

demonstration of application to human breath samples from a single participant.46 Finally, 

the software EVA uses convolutional neural networks (CNN) to classify good and bad peak 

shapes; applying this to 22 publicly available LC-MS-based metabolomics datasets yielded a 

classification accuracy greater than 90%.47

Although these tools show promise based on their initial demonstrations, their utility must 

be tested through full evaluations on large datasets. It is critical to determine whether 

exposure data, and not just endogenous metabolites, are retained in the analysis, especially 

after data processing,48–51 to determine where along the workflow critical improvements 

are needed. Anticipated future advancements and developments in algorithms for untargeted 

metabolomics data mining52 will contribute to robust data analysis and, ultimately, discovery 

of new biomarkers for health and disease.

Feature selection

Discovery of molecular biomarkers and metabolomics signatures requires analyzing the 

complex untargeted data in biological samples. Analyses using traditional univariate and 

multivariate linear models perform multiple hypothesis tests (one hypothesis per feature) 
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and apply a correction method to adjust for multiple hypothesis testing (false discovery rate 

or Bonferroni). Borrowing from the concept of genome-wide association studies (GWASs), 

environment-wide association studies (EWASs) analytically validate associations between 

metabolite features and a phenotype. Such studies are comprehensive in that each measured 

metabolite is assessed for possible association with the target phenotype.53 These methods 

enable successful biomarker discovery in metabolomics data across disease contexts.54–57 

However, these methods cannot consider the highly correlated structure of metabolomics 

data a priori and do not address interactions between molecules,58 thus increasing the 

probability of obtaining false positives and false negatives. In contrast, AI and ML 

approaches use the data to build models and then test those models with the data. For both 

epidemiological and clinical studies, AI and ML of metabolomics data can unveil important 

relationships between phenotypes and exposures or phenotypes and disease groups. AI and 

ML can identify variation between phenotypes through dimension reduction, metabolites 

and chemicals that can predict disease status or phenotypes, and biological pathways that 

are different between phenotypes, demonstrating the power of these approaches to answer a 

range of important clinical, environmental health, and precision health questions.59

The most widely used AI/ML tools in metabolomics include absolute shrinkage and 

selection operator (LASSO), principal-component analysis (PCA), hierarchical clustering 

analysis (HCA), self-organizing maps (SOMs), partial least square-discriminant analysis 

(PLS-DA), and random forest (RF).60,61 Recent studies also applied hidden-layer artificial 

neural networks (ANNs) and DL (CNN and deepNN [DNN]).62 These multivariate methods 

are advantageous in that they can consider all features simultaneously and, consequently, 

deal with correlation among the metabolites.63,64 As a result, these techniques have helped 

uncover significant biomarkers and metabolite signatures.

There are several examples of ML algorithm use in metabolite feature selection across 

disease contexts. In a recent metabolomics study, feature selection with RF identified 17 

metabolites that, in combination, accurately detected cirrhosis resulting from non-alcoholic 

fatty liver disease (NAFLD), and whose levels were sufficient to discriminate NAFLD 

cirrhosis from control probands in a PCA. These findings yielded a potential non-invasive 

stool signature for disease prediction of NAFLD cirrhosis.65 In another study, application of 

RF identified metabolites predictive of coronavirus disease 2019 (COVID-19) severity.66 

Similarly, RF and SVM uncovered a targeted metabolomics signature of Alzheimer’s 

disease (AD) in the brain.67 When tested in blood samples, this panel identified distinct 

metabolites belonging to the sphingolipid and glycerophospholipid classes that are related to 

the severity of AD pathology in the brain, and their concentrations in blood are associated 

with preclinical disease progression. In another example, application of LASSO defined 

metabolites as a metabolic clock of gestational age in maternal plasma during pregnancy.68 

Finally, an HSIC LASSO-based prediction model showed better predictive power than 

LASSO, SVM, PLS, RF, and neural network for predicting depression symptoms in a study 

of more than 800 Japanese adults.69 These examples highlight the number and breadth 

of applications of ML algorithms—alone or in combination—to discover metabolomic 

biomarkers to support prediction of disease incidence or severity, demonstrating the 

versatility of models for use in the field.
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To date, AI/ML feature selection applications have resulted primarily in identification of 

significant endogenous metabolites and pathways and not exogenous chemicals. Although 

use of classic statistical techniques, correlation analysis, and meet-in-the-middle approaches 

identified links between environmental and dietary exposure and disease outcomes,70–72 

success using AI/ML feature selection tools to identify non-endogenous metabolites remains 

limited. It is possible that these tools have been less successful in selecting robust peaks; 

however, to our knowledge, the necessary comprehensive comparison of tools with an 

exposomics focus has yet to be undertaken.

The complexity of environmental toxicity relationships (e.g., U-shaped toxicity, nonlinear 

associations, and unknown interactions) may require more advanced AI or deep ML 

algorithms. Emerging applications of CNN and DNN to metabolomics showed successful 

feature selection of predictors of estrogen receptor (ER) status in breast cancer73 or 

of predictors of Alzheimer’s disease.74 Indeed, a DL framework yielded the highest 

area-under-the-curve point estimate for classifying individuals with breast cancer by 

ER+/ER−status based on metabolomics data compared with that of six other ML algorithms. 

Biological interpretation of the first hidden layer identified by the DL framework revealed 

enrichment of eight cancer-relevant metabolic pathways that were not identified through 

conventional ML algorithms. Although DL methods do not always outperform traditional 

ML methods,75 these results suggest that further development and applications of tools in 

ML, and especially DL, for feature selection may help uncover novel exposure risk factors. 

Several existing projects aim to leverage such opportunities, using HRMS exposomics data 

integrated with other exposures and measures with planned AI and ML strategies; for 

example, in the areas of women’s health76 and chronic gut inflammation.77

Metabolite identification

Metabolite identification is a critically important aspect in the biomarker discovery pipeline. 

Accordingly, many researchers devote efforts in software and tool development to support 

this process.78 After feature selection, important peaks or features, minimally defined 

by a specific m/z and rt, must be annotated to determine biological plausibility for 

eventual translation into intervention and prevention strategies or clinical practice. This step 

often relies on use of metabolite databases and spectral libraries containing experimental 

and in silico spectra, including GNPS,79 Metlin,80 the Human Metabolome Database,81 

MassBank,82 and others.83 Users match to databases on m/z alone for low-confidence 

annotations or include additional orthogonal data (e.g., presence of isotopes and their ratios, 

MS/MS fragmentation data, neutral losses, and characteristic fragments) to increase the 

confidence of the annotations.84,85 For an annotated peak, the chemical or metabolite is 

confirmed by analyzing a commercially available or synthesized standard under the same 

experimental conditions and matching across all available parameters (m/z, retention time, 

MS/MS, etc.).

However, the list of chemicals available in databases is small compared with the more 

than 68 million known available chemicals,86 and spectral matching rates for specialized 

chemicals remain low. Thus, there is a need for additional tools to help generate annotations 

of unknown chemicals identified in an untargeted chemical assay. One approach is cognitive 
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metabolomics computing using ML and natural language processing (NLP), which extracts 

information from the scientific literature and understands its semantic context.87 Although 

promising for annotation and biological interpretation of exposomics data,88 applications 

remain limited thus far, likely because of entry barriers such as required subscriptions to 

the databases and the need for expert user knowledge to successfully execute this type of 

analysis. Recent efforts to overcome these challenges produced a protocol with suggestions 

for free and open-source tools for NLP,89 showing promise for further expansion of use in 

metabolomics and exposomics.

Easier-to-use in silico tools provide a widely adopted alternative for annotation. 

CSI:FingerID uses SVM to predict MS/MS spectra, then suggests candidate compounds to 

match those spectra.90 Other tools, like LipidBlast,26 MetFrag,91 MIDAS,92 and CFM-ID,93 

take molecular structures as inputs and predict the spectra. In CFM-ID, a pre-trained neural 

network model is mixed with rule-based fragmentation.93 The addition of rules, compared 

with ML alone, improves prediction of classes of metabolites found in food and endogenous 

metabolite databases but not exposomic chemicals, possibly because the approach lacks 

rules specific to industrial chemicals.

To match the spectral pairs between a user’s spectra and those of a database, there is a 

ranking system or score available to help the user understand the robustness of a match. 

One common metric for matching MS/MS spectral data is the cosine similarity score, 

which ranks the overlap between MS/MS spectral data but performs poorly at matching 

chemical analogs with several structural modifications.94,95 Recent improvements to this 

approach added ML algorithms focused on molecular structural similarity. Spec2Vec uses 

an unsupervised ML method to learn from co-occurrence of ion fragments across large 

datasets.96 This method is computationally faster than cosine similarity, and its results 

correlate better to structural similarity than cosine-based scores, suggesting better matching. 

Similarly, MS2Deep uses neural networks to predict structural similarity scores of MS/MS 

data without requiring a known molecular formula.97 Finally, SteroidXtract uses CNN on 

a training set of manually curated steroid MS/MS spectra to predict other steroid-like 

chemicals in an untargeted dataset.98

Further expansion of spectral libraries will facilitate confident metabolite and chemical 

identification, but this step must be supplemented with new annotation tools. In addition 

to the 1,500 new chemicals that are being produced annually by the United States,99 new 

sample types that require atypical sample processing are likely to generate new spectral 

adducts and unidentified chemicals. For example, using MS/MS spectral matching to Metlin, 

GNPS, and an in-house library resulted in just 4% of chemicals being annotated from a 

study on the tooth exposome.100 This example, with all 267 metabolites discriminating 

prenatal and postnatal tooth fractions unannotated, highlights that the large percentage 

of unannotated chemicals in a study poses a major challenge for biomarker discovery. 

Development of additional tools for annotation and identification of unknowns can be 

facilitated by the publicly available spectral databases that are now large enough to provide 

substantial training, validation, and testing data. Whether using network maps to expand 

annotations of unknowns through chemical similarity to those in databases101 or using 

biological information to drive development of chemical class prediction, ML and DL hold 
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promise for robust MS/MS data interpretation and endogenous and exogenous chemical 

elucidation.102

Challenges for the future

Significant advances in untargeted chemical analysis instrumentation enable large 

numbers of measurements through several orders of magnitude including at trace-level 

concentrations. Similar to other fields, such as DNA sequencing, the decrease in cost of 

these technologies now facilitates cost-effective measurement of thousands of samples for 

epidemiological and clinical studies. Critically, over the last decade, AI/ML tools have been 

developed to support extraction and formatting of data, mining the data, and annotating 

the data generated from these massive datasets,103 already playing an important role in 

accelerating discovery.

Many applications of ML in metabolomics have focused on the forward-facing step of 

the untargeted analysis pipeline—the feature selection process. In this step, aided by 

ML algorithms, thousands of features are siphoned down to the tens of features that are 

predictive of a health outcome or phenotype. Although current applications are limited 

largely to an individual “omics” dataset, recent advances include using ML to combine 

data across different types of “omics” levels in a system’s biology approach.104–106 This 

development will lead to identification of additional and combined biomarkers to attain 

higher specificity or to assist with unraveling the cascade of factors associated with 

disease initiation and progression. However, these achievements require that metabolites 

are sufficiently annotated.

When features are selected, researchers hit the ultimate bottleneck of untargeted chemical 

analysis—annotation of the unknown metabolites. Without this critical step, selected 

metabolites cannot be biologically interpreted or further validated. This issue prompts 

burgeoning efforts to develop experimental databases of spectra along with AI/ML-based 

in silico prediction models, retention time predictors, and chemical similarity algorithms 

to facilitate annotation of metabolites at different levels of confidence from molecular 

formulas, to chemical classes, to absolute identification of a metabolite or chemical with the 

potential to drastically improve the breadth of annotations needed for exposomics.

Much work remains to be done. Evidence suggests that, when provided with information 

that an exogenous or non-endogenous chemical compound exists within an untargeted 

dataset, by screening the data for a chemical in an in-house library or a priori hypothesis, we 

can uncover associations between those chemicals and health outcomes. However, examples 

of successfully extracting these chemicals directly from the data using untargeted data 

analysis workflows (e.g., pre-processing, feature selection) are limited beyond food and 

microbiome metabolites.54,107 Recent work has shown that using typical filtering criteria of 

untargeted data can miss up to 80% of significant peaks,37 suggesting that pre-processing 

may play a pivotal role in this challenge. However, only in the last several years has there 

been advancement in addressing this peak quality aspect via ML classifiers and AI algorithm 

development.16
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The ability to maximize features while decreasing false positives is a critical challenge to 

overcome in the field of untargeted metabolomics. This issue is exacerbated in exposomics, 

in which exposure biomarkers may be difficult to discriminate from noise. Although 

important strides are being made through development of ML classifiers to improve 

retention of high-quality peaks, these classifiers remain largely untested on the diverse range 

of concentrations seen in complex biological samples, and the little data available suggest 

that current algorithms and classifiers are insufficient to robustly capture low-concentration 

chemicals. Therefore, there is an important gap to fill, highlighting a critical need for 

ML algorithms with a focus on retaining quality peaks across the full dynamic range of 

measured chemicals in a biological sample.

The “functional exposomics” concept suggests that the complexity of the exposome can 

be reduced by focusing on a biology-driven approach.108 Such an approach is meant to 

complement measurement-based approaches; for example, using SteroidXtract,98 ML might 

predict and identify spectral patterns of exogenous chemicals by chemical class, focusing 

on those with similar biological activity, such as endocrine-disrupting chemicals or those 

for which analytical standards are not readily available, such as conjugated phthalates. This 

principle—that exogenous metabolites with potential to alter biology are likely to consist 

of several building blocks that mimic biochemical machinery—drives development of tools 

for determining structures of natural products.109 In this case, using a biological approach 

rather than a statistical approach to focus on feature candidates within the HRMS data 

may reveal previously unknown combinations of chemicals working synergistically to affect 

health. Many of these high-confidence annotations require collection of MS/MS data, which 

may not be possible for low-concentration chemicals. However, this problem might be 

surmountable by utilizing MS1 data collected on every sample. Existing HRMS exposomics 

tools that focus on reaction-level chemical changes110,111 and “molecular gatekeepers” that 

focus on determining active molecular networks can be expanded with information from 

in-source fragments, retention time prediction, and cognitive computing.112,113

AI/ML advances in data processing have triggered significant discoveries in metabolomics 

and are poised to do the same in the field of exposomics. The success of DL algorithms 

for unstructured data and use of new AI/ML approaches not readily implemented in 

metabolomics and exposomics, combined with available datasets or samples with known 

chemicals of low and high concentrations114,115 for training and validating peak picking 

algorithms and the QC step, are key starting points for catalyzing this new era of discovery 

toward environmental and precision health.

ACKNOWLEDGMENTS

L.P. is supported by National Institute of Environmental Health Sciences grants U2CES026561, U2CES030859, 
P30ES023515, R21ES030882, and R01ES031117 and National Cancer Institute grant UH2CA248974.

REFERENCES

1. Jang C, Chen L, and Rabinowitz JD (2018). Metabolomics and isotope tracing. Cell 173, 822–837. 
[PubMed: 29727671] 

Petrick and Shomron Page 11

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Sahu A, Blätke MA, Szymański JJ, and Töpfer N (2021). Advances in flux balance analysis 
by integrating machine learning and mechanism-based models. Comput. Struct. Biotechnol. J 19, 
4626–4640. 10.1016/j.csbj.2021.08.004. [PubMed: 34471504] 

3. Martínez-Reyes I, and Chandel NS (2021). Cancer metabolism: looking forward. Nat. Rev. Cancer 
21, 669–680. [PubMed: 34272515] 

4. Antoniewicz MR (2018). A guide to 13C metabolic flux analysis for the cancer biologist. Exp. Mol. 
Med 50, 1–13.

5. Weitzel M, Nöh K, Dalman T, Niedenführ S, Stute B, and Wiechert W (2013). 13CFLUX2—high-
performance software suite for 13C-metabolic flux analysis. Bioinformatics 29, 143–145. [PubMed: 
23110970] 

6. Monteiro MS, Carvalho M, Bastos ML, and Guedes de Pinho P (2013). Metabolomics analysis 
for biomarker discovery: advances and challenges. Curr. Med. Chem 20, 257–271. [PubMed: 
23210853] 

7. Zhang A, Sun H, Yan G, Wang P, and Wang X (2015). Metabolomics for biomarker discovery: 
moving to the clinic. Biomed. Res. Int 2015, 354671. 10.1155/2015/354671. [PubMed: 26090402] 

8. Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu NN, Baldé AB, Bertollini R, 
Bose-O’Reilly S, Boufford JI, et al. (2018). The Lancet Commission on pollution and health. Lancet 
391, 462–512. 10.1016/s0140-6736(17)32345-0. [PubMed: 29056410] 

9. Vermeulen R, Schymanski EL, Barabási AL, and Miller GW (2020). The exposome and 
health: where chemistry meets biology. Science 367, 392–396. 10.1126/science.aay3164. [PubMed: 
31974245] 

10. Carlin DJ, Rider CV, Woychik R, and Birnbaum LS (2013). Unraveling the health effects of 
environmental mixtures: an NIEHS priority. Environ. Health Perspect 121,A6–A8. [PubMed: 
23409283] 

11. Joubert BR, Kioumourtzoglou MA, Chamberlain T, Chen HY, Gennings C, Turyk ME, Miranda 
ML, Webster TF, Ensor KB, Dunson DB, and Coull BA (2022). Powering research through 
innovative methods for mixtures in epidemiology (PRIME) program: novel and expanded 
statistical methods. Int. J. Environ. Res. Public Health 19, 1378. 10.3390/ijerph19031378. 
[PubMed: 35162394] 

12. Abdelmoula WM, Lopez BGC, Randall EC, Kapur T, Sarkaria JN, White FM, Agar JN, Wells 
WM, and Agar NYR (2021). Peak learning of mass spectrometry imaging data using artificial 
neural networks. Nat. Commun 12, 5544. 10.1038/s41467-021-25744-8. [PubMed: 34545087] 

13. Behrmann J, Etmann C, Boskamp T, Casadonte R, Kriegsmann J, and Maaß P (2018). Deep 
learning for tumor classification in imaging mass spectrometry. Bioinformatics 34, 1215–1223. 
[PubMed: 29126286] 

14. Xie YR, Castro DC, Bell SE, Rubakhin SS, and Sweedler JV (2020). Single-cell classification 
using mass spectrometry through interpretable machine learning. Anal. Chem 92, 9338–9347. 
10.1021/acs.analchem.0c01660. [PubMed: 32519839] 

15. Liu R, Zhang G, and Yang Z (2019). Towards rapid prediction of drug-resistant cancer cell 
phenotypes: single cell mass spectrometry combined with machine learning. Chem. Commun 55, 
616–619. 10.1039/c8cc08296k.

16. Rampler E, Abiead YE, Schoeny H, Rusz M, Hildebrand F, Fitz V, and Koellensperger G (2021). 
Recurrent topics in mass spectrometry-based metabolomics and lipidomics—standardization, 
coverage, and throughput. Anal. Chem 93, 519–545. 10.1021/acs.analchem.0c04698. [PubMed: 
33249827] 

17. O’Shea K, and Misra BB (2020). Software tools, databases and resources in metabolomics: updates 
from 2018 to 2019. Metabolomics 16, 36. 10.1007/s11306-020-01657-3. [PubMed: 32146531] 

18. Spicer R, Salek RM, Moreno P, Cañueto D, and Steinbeck C (2017). Navigating freely-available 
software tools for metabolomics analysis. Metabolomics 13, 106. 10.1007/s11306-017-1242-7. 
[PubMed: 28890673] 

19. Musharraf SG, Mazhar S, Siddiqui AJ, Choudhary MI, and Atta-ur-Rahman. (2013). Metabolite 
profiling of human plasma by different extraction methods through gas chromatography–
mass spectrometry—an objective comparison. Anal. Chim. Acta 804, 180–189. 10.1016/
j.aca.2013.10.025. [PubMed: 24267080] 

Petrick and Shomron Page 12

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20. Matyushin DD, Sholokhova A.Yu, and Buryak AK (2021). Deep learning based prediction of 
gas chromatographic retention indices for a wide variety of polar and mid-polar liquid stationary 
phases. Int. J. Mol. Sci 22, 9194. 10.3390/ijms22179194. [PubMed: 34502099] 

21. Ji H, Zeng F, Xu Y, Lu H, and Zhang Z (2017). KPIC2: an effective framework for mass 
spectrometry-based metabolomics using pure ion chromatograms. Anal. Chem 89, 7631–7640. 
10.1021/acs.analchem.7b01547. [PubMed: 28621925] 

22. Yu H, and Huan T (2022). Comprehensive assessment of the diminished statistical power caused 
by nonlinear electrospray ionization responses in mass spectrometry-based metabolomics. Anal. 
Chim. Acta 1200, 339614. 10.1016/j.aca.2022.339614. [PubMed: 35256134] 

23. Smith CA, Want EJ, O’Maille G, Abagyan R, and Siuzdak G (2006). XCMS: processing 
mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and 
identification. Anal. Chem 78, 779–787. 10.1021/ac051437y. [PubMed: 16448051] 

24. Pluskal T, Castillo S, Villar-Briones A, and Orešič M (2010). MZmine 2: modular framework 
for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC 
Bioinformatics 11, 395. 10.1186/1471-2105-11-395. [PubMed: 20650010] 

25. Sindelar M, and Patti GJ (2020). Chemical discovery in the era of metabolomics. J. Am. Chem. 
Soc 142, 9097–9105. [PubMed: 32275430] 

26. Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn 
O, and Arita M (2015). MS-DIAL: data independent MS/MS deconvolution for comprehensive 
metabolome analysis. Nat. Methods 12, 523–526. [PubMed: 25938372] 

27. Lommen A (2009). MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-
scan mass spectrometry data preprocessing. Anal. Chem 81, 3079–3086. 10.1021/ac900036d. 
[PubMed: 19301908] 

28. Rafiei A, and Sleno L (2015). Comparison of peak-picking workflows for untargeted liquid 
chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Commun. 
Mass Spectrom 29, 119–127. [PubMed: 25462372] 

29. Myers OD, Sumner SJ, Li S, Barnes S, and Du X (2017). Detailed investigation and comparison 
of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection 
methods for preprocessing mass spectrometry metabolomics data. Anal. Chem 89, 8689–8695. 
10.1021/acs.analchem.7b01069. [PubMed: 28752757] 

30. Li Z, Lu Y, Guo Y, Cao H, Wang Q, and Shui W (2018). Comprehensive evaluation of untargeted 
metabolomics data processing software in feature detection, quantification and discriminating 
marker selection. Anal. Chim. Acta 1029, 50–57. 10.1016/j.aca.2018.05.001. [PubMed: 29907290] 

31. Myers OD, Sumner SJ, Li S, Barnes S, and Du X (2017). One step forward for reducing false 
positive and false negative compound identifications from mass spectrometry metabolomics data: 
new algorithms for constructing extracted ion chromatograms and detecting chromatographic 
peaks. Anal. Chem 89, 8696–8703. 10.1021/acs.analchem.7b00947. [PubMed: 28752754] 

32. Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, and Dunn WB 
(2018). Guidelines and considerations for the use of system suitability and quality control samples 
in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 
14, 72. [Internet][cited 2020 Dec 22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960010/. 
[PubMed: 29805336] 

33. Quintás G, Sánchez-Illana Á, Piñeiro-Ramos JD, and Kuligowski J (2018). Chapter six - data 
quality assessment in untargeted LC-MS metabolomics. In Comprehensive Analytical Chemistry, 
Jaumot J, Bedia C, and Tauler R, eds. (Elsevier), pp. 137–164. https://www.sciencedirect.com/
science/article/pii/S0166526X18300564.

34. Beger RD, Dunn WB, Bandukwala A, Bethan B, Broadhurst D, Clish CB, Dasari S, Derr L, 
Evans A, Fischer S, et al. (2019). Towards quality assurance and quality control in untargeted 
metabolomics studies. Metabolomics 15, 4. 10.1007/s11306-018-1460-7. [PubMed: 30830465] 

35. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, and Xia J (2018). 
MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic 
Acids Res. 46, W486–W494. [PubMed: 29762782] 

Petrick and Shomron Page 13

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960010/
https://www.sciencedirect.com/science/article/pii/S0166526X18300564
https://www.sciencedirect.com/science/article/pii/S0166526X18300564


36. Mahieu NG, and Patti GJ (2017). Systems-level annotation of a metabolomics data set reduces 
25 000 features to fewer than 1000 unique metabolites. Anal. Chem 89, 10397–10406. 10.1021/
acs.analchem.7b02380. [PubMed: 28914531] 

37. Barupal DK, Baygi SF, Wright RO, and Arora M (2021). Data processing thresholds for 
abundance and sparsity and missed biological insights in an untargeted chemical analysis of 
blood specimens for exposomics. Front. Public Health 9, 653599. 10.3389/fpubh.2021.653599. 
[PubMed: 34178917] 

38. Baygi SF, Kumar Y, and Barupal DK (2022). IDSL.IPA Characterizes the Organic Chemical Space 
in Untargeted LC/HRMS Data Sets. J. Proteome Res 21, 1485–1494. Published online 2022 May 
17. 10.1021/acs.jproteome.2c0012θ. [PubMed: 35579321] 

39. Pirttilä K, Balgoma D, Rainer J, Pettersson C, Hedeland M, and Brunius C (2022). Comprehensive 
peak characterization (CPC) in untargeted LC-MS analysis. Metabolites 12, 137. 10.3390/
metabo12020137. [PubMed: 35208212] 

40. Erny GL, Acunha T, Simó C, Cifuentes A, and Alves A (2016). Finnee — a Matlab toolbox for 
separation techniques hyphenated high resolution mass spectrometry dataset. Chemometr. Intell. 
Lab. Syst 155, 138–144. 10.1016/j.chemolab.2016.04.013.

41. Erny GL, Gomes RA, Santos MSF, Santos L, Neuparth N, Carreiro-Martins P, Marques JG, 
Guerreiro ACL, and Gomes-Alves P (2020). Mining for peaks in LC-HRMS datasets using finnee 
– a case study with exhaled breath condensates from healthy, asthmatic, and COPD patients. ACS 
Omega 5, 16089–16098. 10.1021/acsomega.0c01610. [PubMed: 32656431] 

42. Borgsmüller N, Gloaguen Y, Opialla T, Blanc E, Sicard E, Royer AL, Bizec BL, Durand S, Migné 
C, and Pétéra M (2019 Sep). WiPP: workflow for improved peak picking for gas chromatography-
mass spectrometry (GC-MS) data. Metabolites 9, 171. 10.3390/metabo9090171.

43. Chetnik K, Petrick L, and Pandey G (2020). MetaClean: a machine learning-based classifier for 
reduced false positive peak detection in untargeted LC–MS metabolomics data. Metabolomics 16, 
117. [Internet]. [cited 2020 Oct 24]. 10.1007/s11306-020-01738-3. [PubMed: 33085002] 

44. Melnikov AD, Tsentalovich YP, and Yanshole VV (2020). Deep learning for the 
precise peak detection in high-resolution LC–MS data. Anal. Chem 92, 588–592. 10.1021/
acs.analchem.9b04811. [PubMed: 31841624] 

45. Gloaguen Y, Kirwan J, and Beule D (2022). Deep learning assisted peak curation for large scale 
LC-MS metabolomics. Anal. Chem 94, 4930–4937. [PubMed: 35290737] 

46. Jirayupat C, Nagashima K, Hosomi T, Takahashi T, Tanaka W, Samransuksamer B, Zhang G, 
Liu J, Kanai M, and Yanagida T (2021). Image processing and machine learning for automated 
identification of chemo-/biomarkers in chromatography-mass spectrometry. Anal. Chem 93, 
14708–14715. 10.1021/acs.analchem.1c03163. [PubMed: 34704450] 

47. Guo J, Shen S, Xing S, Chen Y, Chen F, Porter EM, Yu H, and Huan T (2021). EVA: evaluation 
of metabolic feature fidelity using a deep learning model trained with over 25000 extracted 
ion chromatograms. Anal. Chem 93, 12181–12186. 10.1021/acs.analchem.1c01309. [PubMed: 
34455775] 

48. Deng K, Zhao F, Rong Z, Cao L, Zhang L, Li K, Hou Y, and Zhu ZJ (2021). WaveICA 2.0: a novel 
batch effect removal method for untargeted metabolomics data without using batch information. 
Metabolomics 17, 87. 10.1007/s11306-021-01839-7. [PubMed: 34542717] 

49. Brunius C, Shi L, and Landberg R (2016). Large-scale untargeted LC-MS metabolomics data 
correction using between-batch feature alignment and cluster-based within-batch signal intensity 
drift correction. Metabolomics 12, 173. 10.1007/s11306-016-1124-4. [PubMed: 27746707] 

50. Kuligowski J, Sánchez-Illana Á, Sanjuán-Herráez D, Vento M, and Quintás G (2015). Intra-batch 
effect correction in liquid chromatography-mass spectrometry using quality control samples and 
support vector regression (QC-SvRc). Analyst 140, 7810–7817. 10.1039/c5an01638j. [PubMed: 
26462549] 

51. Tokareva AO, Chagovets VV, Kononikhin AS, Starodubtseva NL, Nikolaev EN, and Frankevich 
VE (2021). Normalization methods for reducing interbatch effect without quality control samples 
in liquid chromatography-mass spectrometry-based studies. Anal. Bioanal. Chem 413, 3479–3486. 
[PubMed: 33760933] 

Petrick and Shomron Page 14

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



52. Pomyen Y, Wanichthanarak K, Poungsombat P, Fahrmann J, Grapov D, and Khoomrung S (2020). 
Deep metabolome: applications of deep learning in metabolomics. Comput. Struct. Biotechnol. J 
18, 2818–2825. 10.1016/j.csbj.2020.09.033. [PubMed: 33133423] 

53. Patel CJ (2017). Analytic complexity and challenges in identifying mixtures of exposures 
associated with phenotypes in the exposome era. Curr Epidemiol Rep. 4, 22–30. [PubMed: 
28251040] 

54. Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, Cajka T, Mohan ML, Li L, Wu Y, et 
al. (2020). A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. 
Cell 180, 862–877.e22. [PubMed: 32142679] 

55. Zacharias HU, Hertel J, Johar H, Pietzner M, Lukaschek K, Atasoy S, Kunze S, Vӧlzke H, Nauck 
M, Friedrich N, et al. (2021). A metabolome-wide association study in the general population 
reveals decreased levels of serum laurylcarnitine in people with depression. Mol Psychiatry 26, 
7372–7383. [PubMed: 34088979] 

56. Robinson O, Keski-Rahkonen P, Chatzi L, Kogevinas M, Nawrot T, Pizzi C, Plusquin M, 
Richiardi L, Robinot N, Sunyer J, et al. (2018). Cord blood metabolic signatures of birth weight: 
a population-based study. J. Proteome Res 17, 1235–1247. 10.1021/acs.jproteome.7b00846. 
[PubMed: 29401400] 

57. Gumpenberger T, Brezina S, Keski-Rahkonen P, Baierl A, Robinot N, Leeb G, Habermann N, Kok 
D, Scalbert A, Ueland PM, et al. (2021). Untargeted metabolomics reveals major differences in 
the plasma metabolome between colorectal cancer and colorectal adenomas. Metabolites 11, 119. 
10.3390/metabo11020119. [PubMed: 33669644] 

58. Antonelli J, Claggett BL, Henglin M, Kim A, Ovsak G, Kim N, Deng K, Rao K, Tyagi O, 
Watrous JD, et al. (2019). Statistical workflow for feature selection in human metabolomics data. 
Metabolites 9, 143. 10.3390/metabo9070143.

59. Mazzella M, Sumner SJ, Gao S, Su L, Diao N, Mostofa G, Qamruzzaman Q, Pathmasiri W, 
Christiani DC, Fennell T, and Gennings C (2020). Quantitative methods for metabolomic analyses 
evaluated in the children’s health exposure analysis resource (CHEAR). J. Expo. Sci. Environ. 
Epidemiol 30, 16–27. 10.1038/s41370-019-0162-1. [PubMed: 31548623] 

60. Liebal UW, Phan ANT, Sudhakar M, Raman K, and Blank LM (2020). Machine 
learning applications for mass spectrometry-based metabolomics. Metabolites 10, 243. 10.3390/
metabo10060243.

61. Mendez KM, Reinke SN, and Broadhurst DI (2019). A comparative evaluation of the generalised 
predictive ability of eight machine learning algorithms across ten clinical metabolomics data 
sets for binary classification. Metabolomics 15, 150. 10.1007/s11306-019-1612-4. [PubMed: 
31728648] 

62. Sen P, Lamichhane S, Mathema VB, McGlinchey A, Dickens AM, Khoomrung S, and Orešič M 
(2021). Deep learning meets metabolomics: a methodological perspective. Brief. Bioinform 22, 
1531–1542. [PubMed: 32940335] 

63. Sharma A, Lysenko A, Boroevich KA, Vans E, and Tsunoda T (2021). DeepFeature: feature 
selection in nonimage data using convolutional neural network. Brief. Bioinform 22, bbab297. 
10.1093/bib/bbab297. [PubMed: 34368836] 

64. Deep learning (2022). [Internet]. [cited 2022 Mar 1]. https://www.deeplearningbook.org/.

65. Oh TG, Kim SM, Caussy C, Fu T, Guo J, Bassirian S, Singh S, Madamba EV, Bettencourt R, 
Richards L, et al. (2020). A universal gut-microbiome-derived signature predicts cirrhosis. Cell 
Metabol. 32, 901. 10.1016/j.cmet.2020.10.015.

66. Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, Quan S, Zhang F, Sun R, Qian L, et al. (2020). 
Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72.e15. 
[PubMed: 32492406] 

67. Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, O’Brien R, Pletnikova 
O, Troncoso JC, Toledo J, et al. (2018). Brain and blood metabolite signatures of pathology 
and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 15, e1002482. 
10.1371/journal.pmed.1002482. [PubMed: 29370177] 

Petrick and Shomron Page 15

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.deeplearningbook.org/


68. Liang L, Rasmussen MLH, Piening B, Shen X, Chen S, Rӧst H, Snyder JK, Tibshirani R, Skotte L, 
Lee NC, et al. (2020). Metabolic dynamics and prediction of gestational age and time to delivery 
in pregnant women. Cell 181, 1680–1692.e15. 10.1016/j.cell.2020.05.002. [PubMed: 32589958] 

69. Takahashi Y, Ueki M, Yamada M, Tamiya G, Motoike IN, Saigusa D, Sakurai M, Nagami F, 
Ogishima S, Koshiba S, et al. (2020). Improved metabolomic data-based prediction of depressive 
symptoms using nonlinear machine learning with feature selection. Transl. Psychiatry 10, 157. 
10.1038/s41398-020-0831-9. [PubMed: 32427830] 

70. Gaskins AJ, Tang Z, Hood RB, Ford J, Schwartz JD, Jones DP, Laden F, and Liang D 
(2021). Periconception air pollution, metabolomic biomarkers, and fertility among women 
undergoing assisted reproduction. Environ. Int 155, 106666. 10.1016/j.envint.2021.106666. 
[PubMed: 34116378] 

71. Jeong A, Fiorito G, Keski-Rahkonen P, Imboden M, Kiss A, Robinot N, Gmuender H, Vlaanderen 
J, Vermeulen R, Kyrtopoulos S, et al. (2018). Perturbation of metabolic pathways mediates the 
association of air pollutants with asthma and cardiovascular diseases. Environ. Int 119, 334–345. 
10.1016/j.envint.2018.06.025. [PubMed: 29990954] 

72. Niedzwiecki MM, Walker DI, Howell JC, Watts KD, Jones DP, Miller GW, and Hu WT (2019). 
High-resolution metabolomic profiling of Alzheimer’s disease in plasma. Ann. Clin. Transl. 
Neurol 7, 36–45. 10.1002/acn3.50956. [PubMed: 31828981] 

73. Alakwaa FM, Chaudhary K, and Garmire LX (2018). Deep learning accurately predicts estrogen 
receptor status in breast cancer metabolomics data. J. Proteome Res 17, 337–347. 10.1021/
acs.jproteome.7b00595. [PubMed: 29110491] 

74. Stamate D, Kim M, Proitsi P, Westwood S, Baird A, Nevado-Holgado A, Hye A, Bos I, Vos 
SJ, Vandenberghe R, et al. (2019). A metabolite-based machine learning approach to diagnose 
Alzheimer-type dementia in blood: results from the European Medical Information Framework 
for Alzheimer disease biomarker discovery cohort. Alzheimers Dement. 5, 933–938. 10.1016/
j.trci.2019.11.001.

75. Trainor PJ, DeFilippis AP, and Rai SN (2017). Evaluation of classifier performance for 
multiclass phenotype discrimination in untargeted metabolomics. Metabolites 7, E30. 10.3390/
metabo7020030. [PubMed: 28635678] 

76. Merino Martinez R, Müller H, Negru S, Ormenisan A, Arroyo Mühr LS, Zhang X, Trier Møller F, 
Clements MS, Kozlakidis Z, Pimenoff VN, et al. (2021). Human exposome assessment platform. 
Environ Epidemiol 5, e182. 10.1097/ee9.0000000000000182. [PubMed: 34909561] 

77. Pero-Gascon R, Hemeryck LY, Poma G, Falony G, Nawrot TS, Raes J, Vanhaecke L, De Boevre 
M, Covaci A, and De Saeger S (2022). FLEXiGUT: rationale for exposomics associations with 
chronic low-grade gut inflammation. Environ. Int 158, 106906. 10.1016/j.envint.2021.106906. 
[PubMed: 34607040] 

78. Blaženović I, Kind T, Ji J, and Fiehn O (2018). Software tools and approaches for compound 
identification of LC-MS/MS data in metabolomics. Metabolites 8, E31. 10.3390/metabo8020031. 
[PubMed: 29748461] 

79. Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, 
Gauglitz JM, Sikora N, Vargas F, et al. (2020). Reproducible molecular networking of untargeted 
mass spectrometry data using GNPS. Nat. Protoc 15, 1954–1991. [PubMed: 32405051] 

80. Xue J, Guijas C, Benton HP, Warth B, and Siuzdak G (2020). METLIN MS 2 molecular standards 
database: a broad chemical and biological resource. Nat. Methods 17, 953–954. [PubMed: 
32839599] 

81. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney 
S, et al. (2007). HMDB: the human metabolome database. Nucleic Acids Res. 35, D521–D526. 
[PubMed: 17202168] 

82. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima 
K, et al. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. J. 
Mass Spectrom 45, 703–714. [PubMed: 20623627] 

83. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, and Yanes O (2016). Mass 
spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future 
prospects. TrAC Trends Anal. Chem 78, 23–35. 10.1016/j.trac.2015.09.005.

Petrick and Shomron Page 16

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



84. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, and Hollender J (2014). 
Identifying small molecules via high resolution mass spectrometry: communicating confidence. 
Environ. Sci. Technol 48, 2097–2098. 10.1021/es5002105. [PubMed: 24476540] 

85. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, 
Goodacre R, Griffin JL, et al. (2007). Proposed minimum reporting standards for chemical 
analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). 
Metabolomics 3, 211–221. [PubMed: 24039616] 

86. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, 
et al. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47, 
D1102–D1109. 10.1093/nar/gky1033. [PubMed: 30371825] 

87. Chen Y, Elenee Argentinis J, and Weber G (2016). IBM Watson: how cognitive computing can 
Be applied to big data challenges in life sciences research. Clin. Therapeut 38, 688–701. 10.1016/
j.clinthera.2015.12.001.

88. Warth B, Spangler S, Fang M, Johnson CH, Forsberg EM, Granados A, Martin RL, Domingo-
Almenara X, Huan T, Rinehart D, et al. (2017). Exposome-scale investigations guided by 
global metabolomics, pathway analysis, and cognitive computing. Anal. Chem 89, 11505–11513. 
10.1021/acs.analchem.7b02759. [PubMed: 28945073] 

89. Majumder ELW, Billings EM, Benton HP, Martin RL, Palermo A, Guijas C, Rinschen MM, 
Domingo-Almenara X, Montenegro-Burke JR, Tagtow BA, et al. (2021). Cognitive analysis of 
metabolomics data for systems biology. Nat. Protoc 16, 1376–1418. [PubMed: 33483720] 

90. Dührkop K, Shen H, Meusel M, Rousu J, and Bӧcker S (2015). Searching molecular structure 
databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 112, 12580–
12585. 10.1073/pnas.1509788112. [PubMed: 26392543] 

91. Ruttkies C, Schymanski EL, Wolf S, Hollender J, and Neumann S (2016). MetFrag 
relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminform 8, 3. 10.1186/
s13321-016-0115-9. [PubMed: 26834843] 

92. Wang Y, Kora G, Bowen BP, and Pan C (2014). MIDAS: a database-searching algorithm 
for metabolite identification in metabolomics. Anal. Chem 86, 9496–9503. 10.1021/ac5014783. 
[PubMed: 25157598] 

93. Wang F, Liigand J, Tian S, Arndt D, Greiner R, and Wishart DS (2021). CFM-ID 4.0: more 
accurate ESI-MS/MS spectral prediction and compound identification. Anal. Chem 93, 11692–
11700. 10.1021/acs.analchem.1c01465. [PubMed: 34403256] 

94. Bittremieux W, Schmid R, Huber F, van der Hooft JJ, Wang M, and Dorrestein PC (2022). 
Comparison of cosine, modified cosine, and neutral loss based spectral alignment for discovery 
of structurally related molecules. Preprint at bioRxiv. [Internet][cited 2022 Jun 12]. https://doi.org/
10.1101/2022.06.01.494370. https://biorxiv.org/lookup/doi/10.1101/2022.06.01.494370.

95. Schollée JE, Schymanski EL, Stravs MA, Gulde R, Thomaidis NS, and Hollender J 
(2017). Similarity of high-resolution tandem mass spectrometry spectra of structurally related 
micropollutants and transformation products. J. Am. Soc. Mass Spectrom 28, 2692–2704. 10.1007/
s13361-017-1797-6. [PubMed: 28952028] 

96. Huber F, Ridder L, Verhoeven S, Spaaks JH, Diblen F, Rogers S, and van der Hooft JJJ (2021). 
Spec2Vec: improved mass spectral similarity scoring through learning of structural relationships. 
PLoS Comput. Biol 17, e1008724. 10.1371/journal.pcbi.1008724. [PubMed: 33591968] 

97. Huber F, van der Burg S, van der Hooft JJJ, and Ridder L (2021). MS2DeepScore: a novel 
deep learning similarity measure to compare tandem mass spectra. J. Cheminform 13, 84. 10.1186/
s13321-021-00558-4. [PubMed: 34715914] 

98. Xing S, Jiao Y, Salehzadeh M, Soma KK, and Huan T (2021). SteroidXtract: deep learning-
based pattern recognition enables comprehensive and rapid extraction of steroid-like metabolic 
features for automated biology-driven metabolomics. Anal. Chem 93, 5735–5743. 10.1021/
acs.analchem.0c04834. [PubMed: 33784068] 

99. United States Government Accountability Office. (2019). HIGH-RISK SERIES substantial efforts 
needed to achieve greater progress on high-risk areas. [Internet]. https://www.gao.gov/assets/
gao-19-157sp.pdf.

Petrick and Shomron Page 17

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.gao.gov/assets/gao-19-157sp.pdf
https://www.gao.gov/assets/gao-19-157sp.pdf


100. Yu M, Tu P, Dolios G, Dassanayake PS, Volk H, Newschaffer C, Fallin MD, Croen L , Lyall K, 
Schmidt R, et al. (2021). Tooth biomarkers to characterize the temporal dynamics of the fetal 
and early-life exposome. Environ. Int 157, 106849. 10.1016/j.envint.2021.106849. [PubMed: 
34482270] 

101. Fox Ramos AE, Evanno L, Poupon E, Champy P, and Beniddir MA (2019). Natural products 
targeting strategies involving molecular networking: different manners, one goal. Nat. Prod. Rep 
36, 960–980. [PubMed: 31140509] 

102. Liu Y, De Vijlder T, Bittremieux W, Laukens K, and Heyndrickx W (2021). Current and future 
deep learning algorithms for tandem mass spectrometry (MS/MS)-based small molecule structure 
elucidation. Rapid Commun. Mass Spectrom e9120. 10.1002/rcm.9120. [PubMed: 33955607] 

103. Dekermanjian J, Labeikovsky W, Ghosh D , and Kechris K (2021). MSCAT: a machine learning 
assisted catalog of metabolomics software tools. Metabolites 11, 678. 10.3390/metabo11l00678. 
[PubMed: 34677393] 

104. Meng C, Kuster B, Culhane AC, and Gholami AM (2014). Amultivariate approach to the 
integration of multi-omics datasets. BMC Bioinformatics 15, 162. [PubMed: 24884486] 

105. Picard M, Scott-Boyer MP, Bodein A, Périn O, and Droit A (2021). Integration strategies of 
multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J 19, 3735–3746. 
10.1016/j.csbj.2021.06.030. [PubMed: 34285775] 

106. Reel PS, Reel S, Pearson E,Trucco E, and Jefferson E (2021). Using machine learning 
approaches for multi-omics data analysis: a review. Biotechnol. Adv 49, 107739. 10.1016/
j.biotechadv.2021.107739. [PubMed: 33794304] 

107. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, 
Chung YM, et al. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular 
disease. Nature 472, 57–63. [PubMed: 21475195] 

108. Chung MK, Rappaport SM, Wheelock CE, Nguyen VK, van der Meer TP, Miller GW, Vermeulen 
R, and Patel CJ (2021). Utilizing a biology-driven approach to map the exposome in health and 
disease: an essential investment to drive the next generation of environmental discovery. Environ. 
Health Perspect 129, 085001. 10.1289/ehp8327.

109. van der Hooft JJJ, Mohimani H, Bauermeister A, Dorrestein PC, Duncan KR, and Medema MH 
(2020). Linking genomics and metabolomics to chart specialized metabolic diversity. Chem. Soc. 
Rev 49, 3297–3314. 10.1039/d0cs00162g. [PubMed: 32393943] 

110. Yu M, and Petrick L (2020). Untargeted high-resolution paired mass distance data mining for 
retrieving general chemical relationships. Commun. Chem 3, 157. 10.1038/s42004-020-00403-z. 
[PubMed: 34337162] 

111. Yu M, Teitelbaum SL, Dolios G, Dang LHT, Tu P, Wolff MS, and Petrick LM (2022). Molecular 
gatekeeper discovery: workflow for linking multiple exposure biomarkers to metabolomics. 
Environ. Sci. Technol 56, 6162–6171. [Internet]. 2022 Feb 7 [cited 2022 Mar 15]. 10.1021/
acs.est.1c04039. [PubMed: 35129943] 

112. Bonini P, Kind T, Tsugawa H, Barupal DK, and Fiehn O (2020). Retip: retention time prediction 
for compound annotation in untargeted metabolomics. Anal. Chem 92, 7515–7522. 10.1021/
acs.analchem.9b05765. [PubMed: 32390414] 

113. Witting M, and Bӧcker S (2020). Current status of retentiontime prediction in metabolite 
identification. J. Separ. Sci 43, 1746–1754.

114. Human health exposure analysis resource (HHEAR) data center (2022). [Internet]. [cited 2022 
Apr 3]. https://hheardatacenter.mssm.edu/.

115. Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O, Higashi R, Nair 
KS, et al. (2016). Metabolomics Workbench: an international repository for metabolomics data 
and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic 
Acids Res. 44, D463–D470. 10.1093/nar/gkv1042. [PubMed: 26467476] 

Petrick and Shomron Page 18

Cell Rep Phys Sci. Author manuscript; available in PMC 2022 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hheardatacenter.mssm.edu/


Figure 1. Metabolomics and exposomics facilitate discovery
Metabolomics (pink shading, bottom) focuses on measures of endogenous small molecules 

as outputs of metabolic pathways. Perturbations in the ‘omics’ layers can lead to changes 

in metabolite profiles linked with phenotypes. Exposomics (blue shading, top) expands 

on this to include measurements of exogenous small molecules as well as the influence 

of exogenous and non-genetic factors on the ‘omics’ cascade that can lead to changes 

in metabolite profiles linked with phenotype. The timing of sample collection relative to 

phenotype characterization helps determine whether the metabolite biomarker or pathway is 

linked to etiology, diagnosis, or progression of disease.
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Figure 2. Untargeted analysis workflow for biomedical applications
Step 1: biological samples, including biofluids, tissues, and/or cells, are collected from 

the study groups or phenotypes of interest (e.g., exposed or not exposed, cases or 

controls). Metabolites and chemicals are isolated through sample preparation. Step 2: the 

metabolites and chemicals are analyzed by liquid or gas chromatography-high resolution 

mass spectrometry (LC- or GC-HRMS, respectively), which separates the molecules in the 

complex mixture and detects and measures them. Step 3: data undergo processing to convert 

the 3D data collected on each sample (m/z, retention time, and abundance) to a 2D table 

for analysis. In pre-processing, the peaks are found and aligned across all samples, and 

the area under the peak curve is calculated. In post-processing, the data are normalized 

and scaled, batch correction is performed when needed, as well as filtering for QC. Step 

4: data are analyzed using AI/ML and classic statistical approaches to identify individual 

metabolites and chemicals or pathways that are predictive of the phenotype of interest. Step 

5: metabolites and chemicals of interest are annotated by matching to spectral libraries, 

spectral prediction, and spectral/chemical similarities.
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Figure 3. MS and MS/MS data acquisition
(A) A sample after injection into a chromatography column enters the mass spectrometer, 

where eluting chemicals are ionized, accelerated, and analyzed by mass spectrometry 

(MS1). Each chemical elutes at a characteristic time and m/z.

(B) Tandem mass spectrometry (MS/MS) can then be performed, where the ions of interest 

(e.g., m/z 195.0877) can be selectively fragmented to generate fragment ions (e.g., m/z 
138.1). These fragment ions are characteristic of the molecule. Therefore, MS/MS spectra 

can be used to aid chemical identification.
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