
sensors

Article

A Novel Direction-of-Arrival Estimation via
Phase Retrieval with Unknown Sensor
Gain-and-Phase Errors

Lingwen Zhang, Siliang Wu * , Ao Guo and Wenkao Yang

School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
zhanglw@bjtu.edu.cn (L.Z.); 18125011@bjtu.edu.cn (A.G.); yangwk@bjtu.edu.cn (W.Y.)
* Correspondence: 16120143@bjtu.edu.cn; Tel.: +86-010-5168-8098

Received: 26 April 2019; Accepted: 10 June 2019; Published: 15 June 2019
����������
�������

Abstract: In signal array processing, high-resolution direction-of-arrival (DOA) estimation algorithms
work well on the assumption that the system models are perfect. However, in practicality, there
are imperfect system models in which sensor gain-and-phase errors are considered. In this paper,
we propose a novel framework that can effectively solve direction-of-arrival estimation tasks in the
presence of sensor gain-and-phase errors. In contrast to existing approaches based on phase retrieval,
our method eliminates gain errors by using the compensated covariance matrix. Meanwhile, we
propose a data preprocessing method by taking only one column of the compensated covariance
matrix without losing any magnitude information. Additionally, the phase retrieval problem is
formed by the proposed data preprocessing method. Furthermore, the phase retrieval problem is
solved by the recently proposed sparse feasible point pursuit algorithm, and DOA estimates are
obtained. To prevent the model from ambiguities, we employ the known DOA to place reference
sources. Numerical results show that the proposed scheme achieves better performance compared to
state-of-the-art approaches.
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1. Introduction

Direction-of-arrival (DOA) estimation of plane waves using sensor arrays is a key problem
which is frequently encountered in many applications, such as radar, sonar, biomedical engineering,
and astronomy. Various high-resolution algorithms for DOA estimation, such as Multiple Signals
Classification (MUSIC) [1], Estimation of Signal Parameters via Rotational Invariance Technique
(ESPRIT) [2], and the Propagator method [3] have been proposed. However, this class of approaches
is based on the assumption of the ideal array manifold. In practical applications, there always exist
some array perturbations, such as sensor gain-and-phase errors, which will cause severe degradation
in performance [4–6].

1.1. Related Work

Over the last four decades, a number of approaches have been proposed to calibrate the
gain-and-phase errors. The approaches developed in [7,8] have excellent performance; however,
these approaches require a multidimensional search so that they are complicated and time-consuming,
and they require calibration signals with known directions. Paulraj and Kailath [9] first investigated
the problem of DOA estimation for uniform linear arrays (ULA) in the presence of unknown
gain-and-phase errors, and proposed an approach to correct the array perturbations by estimating
these errors, but could not provide a unique solution.
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The approaches in [10,11] can simultaneously estimate the DOAs of signals and array parameters.
Unfortunately, these approaches suffer from suboptimal convergence because of the joint iteration
between DOA estimation and array parameter estimation, and they are based on the assumption that
the array errors are small.

Wylie et al. [12] also considered the problem in the presence of phase errors, and developed an
approach that can obtain a unique solution with some heuristic constraints of phase errors. The primary
contribution of this work is a simple, robust (and hence, practically useful) linear least-square (LS)
-based algorithm for self-calibration of linear-equispaced (LES) arrays with constant but unknown
phase errors that do not require any a priori knowledge of the DOA of any of the received signals,
and is consequently useful in situations where a cooperating source may not exist, or is temporarily
unavailable. LS estimation of the unknown DOA and array phase response is accomplished via the
imposition of a novel constraint, and the resultant estimator bias is shown to be inversely proportional
to the number of array elements.

In [13], Li and Er modified the tedious approach in [9] and proposed a class of simplified
calibration algorithms based on different diagonal lines of the covariance matrix. They concluded
that more diagonals may not result in better performance. Moreover, they presented the theoretical
performance of the gain-and-phase-errors estimation. The simplified approach in [13] is superior to the
original in [9]. A novel gain-and-phase calibration approach using independent component analysis
was proposed in [14], and able to achieve better performance than conventional approaches, but only
applicable to no-Gaussian sources.

Zhao et al. [15] proposed a sparse-based DOA estimation approach under sensor gain-and-phase
uncertainties, and the approach utilized the sparsity of DOAs and uncertainty matrix and designed an
optimization problem for a joint estimation method. Then, an iterative two-step process was proposed
to solve the optimization problem, but Zhao’s approach is based on the assumption that the array
errors are small.

However, these calibration approaches are sensitive to phase errors, and the DOA estimation
level drops as the phase errors increase [7–15]. This serves as motivation for the introduction of a DOA
estimation approach that is robust against phase errors.

The approach in [16,17] can perform independently of the phase errors, but are limited to the
configuration of the arrays. These approaches cannot be applied to linear arrays. Moreover, they are
not applicable to cases where only one signal is observed.

1.2. Motivation and Contribution

Recently, the study on phase retrieval has attracted attention in signal processing [18–20]. The
problem of phase retrieval refers to recovering a signal from its magnitude measurements, and appears
in various fields, such as electron microscopy [21,22], crystallography [23], and optical imaging [24,25],
where it is difficult to measure the phase information [26]. To remove the effects of phase errors, Kim et
al. first applied the theory of phase retrieval in DOA estimation and proposed a new DOA estimation
approach from magnitude-only measurements [27]. Kim’s approach does not make use of sensor
phase information, so it is robust to phase errors. However, the gain errors were not eliminated in the
approach; hence, the DOA estimating performance of Kim’s approach becomes degraded as the gain
errors increase.

In this paper, we develop a direction-of-arrival (DOA) estimation approach for uniform linear
array (ULA) in the presence of gain-and-phase errors based on phase retrieval. The proposed
approach can solve the potential impracticality of Kim’s approach when gain-and-phase errors coexist.
Firstly, we start off by estimating the gain errors, and propose a data preprocessing method for
the compensated covariance matrix by taking one column of the matrix, though we include all the
magnitude information. In addition, the phase retrieval problem is formed by the proposed data
preprocessing method. The estimates of ambiguities are gotten rid of by introducing reference sources.
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By combining this with the phase retrieval technique in [28], the proposed DOA estimation approach
outperforms Kim’s approach in the presence of gain-and-phase errors.

1.3. Organizations

The remainder of this paper is arranged as follows. In Section 2, we present the direction-of-arrival
estimation system model in the presence of gain-and-phase errors. In Section 3, we propose a new
DOA estimation framework based on phase retrieval. Section 4 shows the simulation results of DOA
estimation performance for the proposed approach, and conclusions are given in Section 5.

2. Data Model

Consider a ULA consisting of M sensors with element spacing d. Let λ denote the wavelength
of the carrier signal. Assume there are Q far-field narrowband source signals impinging on the ULA.
The arriving direction of the qth signal is specified by θq, q = 1, 2, ..., Q. Then, the steering vector of the
ULA is

a(θq) = [1, ej2πd sin θq/λ, · · · , ej2π(M−1)d sin θq/λ]T. (1)

The signal received by the ULA array is given by the M× 1 vector

x(t) = As(t) + n(t), (2)

where A = [a(θ1), a(θ2), · · · , a(θQ)] is the M × Q steering matrix of the ULA with respect to the
directions of the incoming source signals of Q, s(t) is the Q× 1 source vector representing Q source
waveforms arriving at the ULA, and n(t) is the M× 1 additive Gaussian noise vector.

In this paper, the superscripts T and H represent the transpose and conjugate transpose operations,
respectively. For the (2) model, three assumptions are introduced, which are considered to hold
throughout the paper.

Assumption 1: The sources are zero-mean, stationary, and unrelated.
Assumption 2: The source s(t) is independent of the additive noise n(t).
Assumption 3: n(t) is assumed to be stationary, zero-mean, and spatially white Gaussian.
Denote the gain-and-phase error of the mth sensor with ρm and ϕm, respectively. The received

signal in the presence of gain-and-phase errors is

x(t) = GΦAs(t) + n(t), (3)

where Φ and G are diagonal matrices, and their mth diagonal elements are ejϕm and ρm, respectively.
Without loss of generality, we assume that ρ1 = 1.

3. DOA Estimation Framework Based on Phase Retrieval

3.1. Gain Errors Estimation from Covariance Matrix

From (3), the covariance matrix R = E[x(t)xH(t)] can be expressed as

R = GΦARsAHΦHGH + σ2
nIM, (4)

where Rs = E[s(t)s(t)H] = diag([σ2
1 , ..., σ2

Q]), σ2
q denotes the power of the qth source, σ2

n denotes the
power of the noise, and IM is an M×M identity matrix.

The eigendecomposition of R is given as

R=
M

∑
m=1

vmumuH
m , (5)
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where the eigenvalues {vm}M
m=1 are arranged in descending order and um is the corresponding

eigenvector. Then, σ2
n can be estimated as

σ̂2
n=

1
M−Q

M

∑
m=Q+1

vm. (6)

Define the mth diagonal element R of R(m, m). From (4), we have

R(m, m) = ρ2
m

Q

∑
q=1

σ2
q + σ2

n . (7)

Recall that ρ1 = 1, where the gain errors can be estimated as

ρ̂m=

√
R(m, m)− σ̂2

n
R(1, 1)− σ̂2

n
,m = 2, 3, ..., M. (8)

3.2. Gain Errors Calibration

As the gain errors and noise power have been estimated, we are going to find a way to calibrate
the gain errors. Since the information on arriving angle is included in the covariance matrix, it can be
a feasible way to estimate the arriving angles from the covariance matrix, meaning that we need to
eliminate the gain errors in this matrix.

As the noise power is estimated from (6), we can remove the noise in the covariance matrix first:

R− σ̂2
nIM ≈ GΦARsAHΦHGH (9)

Using the estimated gain errors from (8), we can eliminate the gain errors by compensating for the
covariance matrix:

Rc = Ĝ−1
(

R− σ̂2
nIM

)
(Ĝ−1)H ≈ ΦARsAHΦH. (10)

where Ĝ = diag(1, ρ̂2, . . . , ρ̂M). For the compensated covariance matrix Rc, we can find that the impact
of gain errors and noise can be removed if they are correctly estimated. The next object is to eliminate
the phase errors in the compensated covariance matrix, Rc.

3.3. A Simple Data Preprocessing Method

For the compensated covariance matrix Rc, we propose a new simple data preprocessing method
in order to simplify the complexity of the problem. Define the mnth element of Rc as rmn; rmn can then
be expressed as (assume d = λ/2)

rmn=ej(ϕm−ϕn) ∑Q
q=1 σ2

q ej(π(m−n) sin θq). (11)

Let B=∑Q
q=1 σ2

q ej(π(m−n) sin θq), and Equation (11) can then be written as

rmn=ej(ϕm−ϕn)B. (12)

Based on the Euler Theorem, rmn = B(cos(ϕm − ϕn) + j sin(ϕm − ϕn)). Therefore, taking the
magnitude squared of rmn, we obtain

|rmn|2=|B|2 =
∣∣∣∑Q

q=1 σ2
q ej(π(m−n) sin θq)

∣∣∣2. (13)

It is easy to see that the magnitude information of rmn is independent of phase errors, but depends
on the phase information related to the arriving angle θq. This motivates the introduction of a DOA
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estimation approach based on the magnitude information of rmn. Taking the first column of Rc, we
obtain an M× 1 vector

r =
[
∑Q

q=1 σ2
q , ej(ϕ2−ϕ1) ∑Q

q=1 σ2
q ej(π sin θq), . . . , ej(ϕM−ϕ1) ∑Q

q=1 σ2
q ej(π(M−1) sin θq)

]T
. (14)

Then, taking the magnitude squared of r, we obtain

y =

[∣∣∣∑Q
q=1 σ2

q

∣∣∣2,
∣∣∣∑Q

q=1 σ2
q ej(π sin θq)

∣∣∣2, . . . ,
∣∣∣∑Q

q=1 σ2
q ej(π(M−1) sin θq)

∣∣∣2]T
, (15)

where y = |r|2 and the absolute value operator is applied element-wise to the vector r. The magnitude
squared of the nth column of Rc can be expressed as

yn =

[∣∣∣∑Q
q=1 σ2

q ej(π(1−n) sin θq)
∣∣∣2,
∣∣∣∑Q

q=1 σ2
q ej(π(2−n) sin θq)

∣∣∣2, . . . ,
∣∣∣∑Q

q=1 σ2
q ej(π(M−n) sin θq)

∣∣∣2]T
, (16)

where yn = |rn|2 and rn denotes the nth column of Rc.
Based on the following equation:∣∣∣∑Q

q=1 σ2
q ej(π(m−n) sin θq)

∣∣∣2 =
∣∣∣∑Q

q=1 σ2
q ej(π(n−m) sin θq)

∣∣∣2, (17)

we have lemma 1 about the magnitude squared of the elements in the compensated covariance
matrix Rc.

Lemma 1. For any element in yn, n = 2...M, there must be an equivalent element in y. Therefore, we can say
that y contains all the magnitude information of Rc.

Proof. The elements in y are given as
∣∣∣∑Q

q=1 σ2
q ej(π(m−1) sin θq)

∣∣∣ , m = 1...M, and the elements in yn

are expressed as
∣∣∣∑Q

q=1 σ2
q ej(π(m−n) sin θq)

∣∣∣ , m = 1...M. Because n = 2...M, the lemma can be proved
by (16).

Note that y contains all the magnitude information of Rc, and we can use y = |r|2, only a column
of Rc, to form the phase retrieval problem in order to reduce the computational cost. Therefore, we
only use one column of Rc without missing the magnitude information. The simple data preprocessing
method for the compensated covariance matrix helps us to reduce the redundancy of the matrix and
form the phase retrieval problem easily.

3.4. A New Way to Eliminate the Phase Errors

r can be written as
r = Φ′Ap, (18)

where p = [σ2
1 , σ2

2 , . . . , σ2
Q]

T , and Φ′ can be regarded as a new phase error matrix: Φ′ =

diag([1, ej(ϕ2−ϕ1), . . . , ej(ϕM−ϕ1)]). In order to convert the DOA estimating problem into a nonlinear
optimization in a sparse framework, we assume the source’s possible DOAs comply with a grid of S
points, with S� Q. Consider the estimation error for the gain errors and noise power, where (17) can
be revised as

r ≈ Φ′Ãp̃, (19)

where p̃ is defined as an S× 1 sparse vector that only has Q non-zero elements representing source
powers, and Ã is defined as a M× S dictionary matrix with a sth column:

a (θs) = [1, ej2πd sin θs/λ, · · · , ej2π(M−1)d sin θs/λ]T, (20)
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where θs refers to a possible DOA. Our goal is to determine the Q non-zero elements of p̃ from the
knowledge of r and Ã. The support of the sparse vector p̃ has a one-to-one relation with the Q arriving
angles θq, q = 1, 2, ..., Q. Based on

∣∣Φ′Ãp̃
∣∣2 =

∣∣Ãp̃
∣∣2, we can obtain

y = |r|2 ≈
∣∣Ãp̃

∣∣2. (21)

Therefore, we have converted the DOA estimation problem into a phase retrieval problem [13].
The rows of Ã can be regarded as the known measurement vectors. We can now propose estimating
the support of p̃ from Ã and y, and we can find that the phase errors are totally removed in (21) by
taking the magnitude squared of the elements in r.

3.5. Phase Ambiguities Solution

However, the phase ambiguity problem associated with phase retrieval solutions should be
considered in the DOA estimation. It is significant to resolve the phase ambiguity problem to get a
unique solution.

Consider the scenario of two sources, assume the compensated covariance matrix is approximated
correctly, and let βq = π(m− 1) sin θq, where ym can be written as:

ym =
∣∣∣∑2

q=1 σ2
q ejβq

∣∣∣2 =
∣∣σ2

1 ejβ1 + σ2
2 ejβ2

∣∣2
= σ4

1 + σ4
2 + 2σ2

1 σ2
1 cos(β1 − β2).

(22)

Assume the source power is known, and the arriving angle can be estimated from Equation (22).
To simplify the phase ambiguity problem, let σ2

1=σ2
2= 1/

√
2, ∆β=β1− β2. Equation (22) then becomes

ym = 1 + cos ∆β. (23)

The solution ∆β to (23) is subject to phase ambiguities, which consist of phase shift ambiguity and
phase mirroring ambiguity. The phase shift ambiguity refers to the case that there exists an arbitrary
βi, ∆β=β1 − β2 = (β1 + βi) − (β2 + βi). The phase mirroring ambiguity originates from the fact
that ∆β and −∆β can be the two solutions to (23). The phase ambiguity can be removed by placing
known reference sources, where the DOA of a source can be estimated unambiguously if the source is
restricted to only one side of the reference source. For example, if the DOA of the reference source is
set at θre f = 0 rad, the estimating DOA can be estimated unambiguously if it is restricted to the region
[0, π/2]. As depicted in Figure 1, the angle ambiguities problem can be solved after a reference target
is placed at the cost of a small loss in the visible region. For the multiple-sources DOA estimation
problem, the ambiguity can be removed by setting multiple reference sources.

Figure 1. Using a reference source to solve the phase ambiguities.
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3.6. DOA Estimation Using Sparse Least-Square Feasible Point Pursuit (LS-FFP) Approach

Based on (21), the DOA estimation problem can be considered as the optimization problem

min
p̃

∥∥∥y−
∣∣Ãp̃

∣∣2∥∥∥2

2
. (24)

Let bm denote the mth row of Ã, where (24) can be recast as

min
p̃

M

∑
m=1

(ym − p̃HBmp̃)2, (25)

where Bm = bm
Hbm and (22) can be recognized as the least-squares (LS) formulation for phase retrieval.

To solve (25), we use the sparse Least-Square Feasible Point Pursuit (LS-FFP) algorithm, a phase
retrieval algorithm that exploits sparsity [28]. Firstly, (25) is recast in the following equivalent form:

min
w,p̃

‖w‖2
2

s.t. p̃HBmp̃ + wm = ym, ∀m,
(26)

where w = [w1, . . . , wM]T, and the equality constraints in (26) are rewritten as

p̃HBmp̃ + wm ≤ ym, (27)

p̃HBmp̃ + wm ≥ ym. (28)

It is clear that (28) is a non-convex constraint. In order to transform the optimization problem into a
convex one, following the principles in [29], (28) can be replaced by

2Re{zHBmp̃}+ wm + hm ≥ ym + zHBmz, (29)

where z is an S× 1 random vector, and hm ≥ 0 is a slack variable. We thus obtained the following
convex, quadratically constrained quadratic programming (QCQP) by:

min
p̃,w,h

‖w‖2
2 + λ

M
∑

i=1
hm

s.t. 2Re(zHBmp̃) + wm + hm ≥ zHBmz + ym

p̃HBmp̃ + wm ≤ ym

hm ≥ 0, ∀m,

(30)

where h = [h1, . . . hM]T, and λ trades off the original objective function and the slack penalty term. For
sparse LS-FFP, we have:

min
p̃,w,h

‖w‖2
2 + λ

M
∑

i=1
hm + µ‖p̃‖1

s.t. 2Re(zHBmp̃) + wm + hm ≥ zHBmz + ym

p̃HBmp̃ + wm ≤ ym

hm ≥ 0, ∀m,

(31)

where l1-norm ‖p̃‖1 is an ideal description of sparsity, and µ balances the objective function and the
sparsity of p̃.

As indicated in Section 3.5, reference sources should be added to resolve the ambiguity problem.
In this paper, the sources are random variables distributed according to the standard Gaussian
distribution, so the average power of each source is 1. For the scenario of the single-source DOA
estimation, a reference source is set at θr= 0, and the estimating source is coming from [0, π/2] rad.
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The M× S dictionary matrix is Ã = [a(0), a(∆), · · · , a(π/2− ∆), a(π/2)], and S = π/2∆ + 1. Thus,
we modified (31) to the following optimization problem by adding two constraints,

min
p̃,w,h

‖w‖2
2 + λ

M
∑

i=1
hm + µ‖p̃‖1

s.t. 2Re(zHBmp̃) + wm + hm ≥ zHBmz + ym

p̃HBmp̃ + wm ≤ ym

hm ≥ 0, ∀m
ps ≥ 0, ∀s
p1 = 1,

(32)

where ps denotes the power of the sth source, and p1 = 1 describes the reference source with
direction-of-arrival (DOA) θr = 0 rad. Using the convex optimization toolbox convex (CVX) [30],
we were able to solve the convex quadratically constrained quadratic programming (QCQP) (32)
in MATLAB.

LS-FPP is an iterative algorithm starting with a random initial S× 1 vector z. In the kth iteration,
we solve (32) to obtain p̃k, then setting zk+1 = p̃k. Since the optimal value of the cost function in
each iteration step is non-increasing [28], the iteration stops until the difference of the optimal value
between two adjacent iterations is less than a given threshold. As p̃ is estimated, the DOA estimates
can be obtained by seeking the peaks of p̃.

Consequently, the proposed approach for DOA estimation is summarized as follows:
Step 1: Estimate the covariance matrix with L snapshots

R̂ =
1
L

L

∑
l=1

x(tl)x
H(tl). (33)

Step 2: Estimate the noise power and gain errors by (6) and (8).
Step 3: Calculate the compensated covariance matrix Rc as (10).
Step 4: Take the first column of Rc and construct the data model as (18).
Step 5: Use the sparse LS-FPP approach to solve the convex QCQP (32) and obtain p̃.
Step 6: Obtain DOA estimates by seeking the peaks of p̃.

3.7. Computational Complexity

Computational complexity of the proposed DOA estimation framework lies in three parts: gain
errors estimation, compensated covariance matrix construction, and DOA estimation using the Sparse
LS-FFP approach. For the gain errors estimation part, the computational complexity is O(M2L + M3),
which comes from the covariance matrix calculation and eigenvalue decomposition of the covariance
matrix. For the compensated covariance matrix construction part, the computational complexity is
O(M3), which comes from Equation (10). For the part where the DOA estimation was done using the
Sparse LS-FFP approach, the computational complexity mainly comes from solving the optimization
problem (32), which is O((S + 3M)3.5). Assuming the maximum iteration is Imax, the complexity of
the part where DOA estimation is done using the Sparse LS-FFP approach is O(Imax(S + 3M)3.5).

The computational complexity of Kim’s approach is O(Imax(S + M)2). For the approach in [15],
it cost O(Imax(S + M)3). Figure 2 shows the computational complexity comparison of the proposed
approach and other existing approaches. The maximum iteration is assumed to be Imax = 10 and
S = 30. It can be seen that the proposed approach requires more computational complexity to
improve performance.
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Figure 2. Complexity comparison of different approaches versus the number of sensors.

4. Numerical Simulations

In this section, numerical simulations are run to demonstrate the performance of the proposed
DOA estimation approach. All the simulations are based on a ULA with M = 32 sensors, and the
sensor spacing d = 0.5λ. The number of snapshot is L = 100. Let ∆ = π/60 rad, so a grid of
S = 31 points is uniformly spaced over the [0, π/2] rad. A reference source of the known DOA is set at
θre f = 0 rad, and the estimating source is located at θ = 2π/15 rad. We also evaluated the performance
of the proposed approach for the multiple sources estimation, where two known reference sources were
set at θre f 1 = 0 rad and θre f 2 = π/15 rad, and the estimating sources are located at θ1 = 2π/15 rad and
θ2 = π/5 rad. The input signal-to-noise ratio (SNR) of the qth signal is defined as SNR = −10log10σ2

n .
The gain-and-phase errors were generated by the following formulas, respectively:

ρm = 1 +
√

12σρβm, (34)

ϕm =
√

12σϕηm, (35)

where βm and ηm are uniform random variables in interval [−0.5, 0.5], σρ, and σϕ are the standard
deviations of gain-and-phase errors, respectively. To compare with Kim’s approach, we used the
probability of error to evaluate the performance. The probability of error is defined as the ratio of
incorrectly estimated DOAs to 100 simulations. Moreover, we compare this with a state-of-the-art
sparse DOA estimation approach proposed by Zhao et al. [15].

Firstly, we compared the probability of error of the DOA estimation versus the standard deviation
of gain errors (σρ) for the existing approaches and the proposed approach of one or two sources. Here,
the SNR was set at 10 dB, and the standard deviation of phase errors (σϕ) was assumed to be 0.3π

rad. As shown in Figure 3, the performance of Kim’s approach noticeably began to deteriorate as
σρ increased. For the proposed approach, it has a probability of error lower than 0.1 for σρ ≤ 0.75.
Therefore, the proposed approach performs more robustly than Kim’s approach for a wide range of
σρ. The proposed approach performs slightly better than Zhao’s approach; however, Kim’s approach
is better when the gain errors do not exist. In the next two experiments, the standard deviation of
gain errors is set at 0.5, and Kim’s approach is not considered in the next experiments because it is not
suitable when the gain errors exist, as we can know from Figure 3.
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Figure 3. Probability of error versus the standard deviation of gain errors.

Then, we evaluated the probability of error of the DOA estimation versus SNR for the proposed
approach of one or two sources. The standard deviation of phase errors (σϕ) was assumed to be
0.3π rad, and the standard deviation of gain errors (σρ) was set at 0.5. From Figure 4, it was shown
that the probability of error of the proposed approach is lower than 0.1 for all SNRs. The proposed
approach was shown to provide better performance than Zhao’s approach. It is remarkable that the
proposed approach is robust to noise.

Figure 4. Probability of error versus signal-to-noise ratio (SNR).

To demonstrate the effect of phase errors on DOA estimation, we evaluated the probability of
error of the DOA estimation for the proposed approach with respect to the standard deviation of phase
errors from 0 rad to 2π rad. Here, the standard deviation of gain errors (σρ) was set at 0.5, and the SNR
was 10 dB. Figure 5 shows that the probability of error of the proposed approach is lower than 0.1 as
the standard deviation of phase errors varies. However, the performance of Zhao’s approach becomes
degraded when σϕ > 0.3π rad. Zhao’s approach was based on the assumption that the array errors
are small [15], and it is indicated that the phase errors have no effect on the proposed approach, which
is a key benefit based on phase retrieval.
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Figure 5. Probability of error versus the standard deviation of phase errors.

In order to explore the results better, we also evaluated the root mean square error (RMSE) on
the DOA estimates. We compared the RMSE of the DOA estimates versus the standard deviation
of gain errors for the existing approaches and the proposed approach. The SNR was set at 10 dB,
and the standard deviation of phase errors was assumed to be 0.3π rad. We also compared with
another existing techniques in [13]. As shown in Figure 6, the proposed approach performs better than
other existing approaches. Then, we compared the RMSE of the DOA estimates versus the standard
deviation of gain errors for the existing approaches and the proposed approach. The SNR was set at
10 dB, and the standard deviation of gain errors was set at 0.15. Shown in Figure 7, we can see that the
proposed approach and Kim’s approach perform independently of phase errors. Kim’s approach even
performs slightly better than the proposed approach, because the standard deviation of gain errors is
relatively small in this experiment. However, Zhao’s approach and Li’s approach perform badly when
the standard deviation of phase errors rise to 0.5π rad.

Figure 6. Root mean square error (RMSE) versus the standard deviation of gain errors.
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Figure 7. RMSE versus the standard deviation of phase errors.

5. Conclusions

In this paper, we presented a new DOA estimation approach for ULA in the presence of
gain-and-phase errors based on phase retrieval. In contrast to the existing DOA estimation approach
using phase retrieval, the proposed approach can provide more robust DOA-estimating performance
as the gain errors increase. Meanwhile, because the effect of phase errors is eliminated by taking the
magnitude squared of the elements in the compensated covariance matrix, the proposed approach
performs independently of phase errors.
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