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ABSTRACT Metagenomic sequencing provides information on the metabolic capaci-
ties and taxonomic affiliations for members of a microbial community. When assessing
metabolic functions in a community, missing genes in pathways can occur in two
ways; the genes may legitimately be missing from the community whose DNA was
sequenced, or the genes were missed during shotgun sequencing or failed to assem-
ble, and thus the metabolic capacity of interest is wrongly absent from the sequence
data. Here, we borrow and adapt occupancy modeling from macroecology to provide
mathematical context to metabolic predictions from metagenomes. We review the five
assumptions underlying occupancy modeling through the lens of microbial community
sequence data. Using the methane cycle, we apply occupancy modeling to examine
the presence and absence of methanogenesis and methanotrophy genes from nearly
10,000 metagenomes spanning global environments. We determine that methanogene-
sis and methanotrophy are positively correlated across environments, providing a pre-
dictive framework for assessing gene absences for these functions. We present this ad-
aptation of macroecology’s occupancy modeling to metagenomics as a tool to quantify
the uncertainty in predictions of the presence/absence of traits in environmental micro-
biological surveys. We further initiate a call for stronger metadata standards to accom-
pany metagenome deposition, to enable robust statistical approaches in the future.

IMPORTANCE Metagenomics is maturing rapidly as a field but is hampered by a lack
of available statistical tools. A primary area of uncertainty is around missing genes or
functions from a metagenomic data set. Here, we borrow an established modeling
approach from macroecology and adapt it to metagenomic data sets. Rather than
multiple sampling trips to a specific area to detect a species of interest (e.g., identify-
ing a cardinal in a forest), we leverage the enormous amount of information within
a metagenome and use multiple gene markers for a function of interest (e.g., subu-
nits of an enzyme complex). We applied our adapted occupancy modeling to a case
study examining methane cycling capacity. Our models show methanogens and
methanotrophs are both more likely to cooccur than be present in the absence of
the other guild. The lack of consistent and complete metadata is a significant hurdle
for increasing the statistical rigor of metagenomic analyses.

KEYWORDS metagenomics, methane cycling, methanogenesis, methanotrophy,
microbial ecology, occupancy modeling

Environmental microbiology has been a methods-limited field since its conception.
Paradigm shifts in our understanding of microbial diversity and the ecological im-

portance of microbes have come hand in hand with new techniques—from the inven-
tion of the microscope to high-throughput sequencing strategies. Each ground-break-
ing technique then undergoes improvements and refinements and matures into a
standard approach. Metagenomics, or total community sequencing (1, 2), has demon-
strated that the diversity of life on Earth is far greater than was previously believed (3–6).
With metagenomics now a standard method of investigation, and public databases filling
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with deep-sequencing data sets from sampling locations around the globe, there is a
growing need for statistical tests that can be applied to anchor conclusions based on
metagenomic data and to understand patterns from incomplete data (see reference 7 for a
discussion of current statistical methods).

A current challenge is placing the information obtained from metagenomic sequenc-
ing studies into a greater ecological context. Microbial roles in geochemical cycles and
their contributions to microbial communities can be predicted from the annotated genes
within metagenomes. In generating metabolic predictions for a community, a major chal-
lenge is interpreting gene absences. Genes may be absent from a genome or metage-
nome because they are genuinely not encoded by the genome(s) (i.e., true negatives) or
because the sequencing depth or assembly failed to capture genes from the community
(i.e., false negatives). There are currently no options for robustly modeling which of these
gene absence scenarios is most likely.

This question of how to assess ecological relationships is not new. Macroecologists
have studied the relationships of organisms and populations for over a century. The
macroecology field has developed a wealth of statistical models, ranging from simple
to complex (the founding of the journal Ecological Modelling in 1975 is a testament to
this focus). In addition, since the 1960s there has been a movement in macroecology
to develop and enforce standards for metadata collection and quality assurance (8). As
a result, the foundation for ecological modeling is in place, but microbial ecologists
must now adapt these ideas to their own data sets.

Our research sought to adapt occupancy modeling to metagenomic data. The occu-
pancy model was developed by Mackenzie et al. (9) to address an important question
for any detection-based study; how can missed detections be accounted for? The
model addresses the issue that a nondetection could mean that the subject of interest
was not present (i.e., a true negative) or that the observer failed to detect it (i.e., a false
negative). The underlying idea of occupancy models is that detection can be modeled
as two statistical processes, the probability of the species of interest being present at
the given site and, given that it is present, the probability that it was observed (9). Two
parameters are used to model these, the proportion of sites occupied (denoted W) and
the probability of detection given that the species is present at the site (denoted p).
The value of W can be estimated by counting the number of sites at which the species
occurs and dividing it by the total number of sites visited, though in cases of imperfect
detection, this will result in an underestimate. The value of p can be estimated by revis-
iting a site at which the species is known to be present multiple times and dividing the
number of times the species was observed by the total number of visits. A theoretically
perfect model would have unique detection and occupancy parameters for every site,
but this model would be extremely challenging to calculate, lack flexibility, and have
little, if any, predictive power. Instead, the parameters W and p can be generalized (i.e.,
can be assumed to be equal for all sites and surveys), if the following five assumptions
are met:

i) The closure assumption, which states that there is no chance of the
occupancy state changing between sampling occasions for the site, within
the same season.

ii) The probability for occupancy is the same across all sites or is otherwise
modelled with appropriate covariates.

iii) The probability for detection is the same across all sites or is otherwise
modelled with appropriate covariates.

iv) The detection at each site is independent of detection at other sites.
v) There are no false positives.

These assumptions must be systematically considered when reinterpreting the
model for sequence-based data sets.

The original occupancy model was designed to assess the occupancy of a single spe-
cies, but its applications have since been expanded. Occupancy models that accommo-
date false positives have been developed (10, 11). Multispecies models allow exploration
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of other species of interest (12), with more recent models allowing multispecies modeling
without assuming a dominant partner (13).

Here, we apply occupancy models to metagenomic data sets. We develop a method
for deriving replicate sampling for functions of interest from a single metagenome and
assess each of the five model assumptions under metagenomic data. We applied this
approach as a proof-of-principle to the global methane cycle, using a data set of 9,629
metagenomes spanning global environments to assess the proportion of environments
that contain the capacity for methanogenesis and methanotrophy. From these metage-
nomes, we identified and curated markers for methanogenesis (McrABG) and methano-
trophy (PmoABC) as proxies for predicting these functions in an environment, and
assessed cooccurrence patterns for these two critical components of the methane cycle.

RESULTS AND DISCUSSION
Occupancy modeling as applied to metagenomes. In adapting occupancy model-

ing to metagenomics, the question for microbial ecologists becomes one of identifying
parallels between macroecological and microbiological data sets or systems. There are
several key aspects that need to be considered here, and in each of these aspects, the
solutions may not be universal or applicable to all studies. First, the definition of a site
needs to be considered. In addition to this, how a sample unit is defined is important, particu-
larly when considering the cost and labor involved in resampling a metagenome. Finally, the
applicability of the assumptions underlying occupancy modeling must be determined.

Site definition. There are multiple possible definitions of a site, with the simplest
being defining a single sample taken for metagenomics as a site. This has the advant-
age of unambiguously delineating the site but also poses some disadvantages. For
example, a hypothesis exploring cooccurrence of two or more species may not require
that the species be present in exactly the same sample but that they be present within
the same system (e.g., a soil core, lake depth profile, or host gastrointestinal system). In
these cases, it may be better to define a geographic location or geographic feature as
a single site (e.g., the same forest, lake, host), aggregating all associated metagenomes
for the defined site. Ultimately, the definition of a site will be dependent on the specific
questions of each study, but a clear definition is an important preanalysis requirement.

Sample unit. Another key component of occupancy modeling is that resampling a
site yields an estimation of the observer’s ability to detect the subject of interest (the variable
p within the models). Thus, a definition of a resampling event, or replicate of a surveyed, site
must be established. When working with metagenomes, there are several issues with resam-
pling. It is expensive, labor-intensive, and time-consuming to obtain samples, isolate DNA,
and perform sequencing analyses. Furthermore, it is not always clear what might constitute
a replicate sample. Microbial communities mere centimeters apart can be substantially and
meaningfully different (14), and by sampling a site, community composition can be changed
due to disturbances. In contrast to macroecological observational surveys, however, each
metagenome provides an enormous volume of data (Fig. 1), containing information from
the genomic sequences of hundreds or thousands of microbial populations (15, 16). Given
the depth of information available, we instead propose resampling a single metagenome
for multiple genetic markers of a function or group of interest. Each independent marker is
then considered a replicate survey for the target function or taxonomic group.

From this, a critical step in the application of occupancy models to microbial ecology
becomes the decision of which marker genes to use. Genes must be universally and uniquely
associated with the target function or taxonomic group. For a target function, an obvious
choice is genes encoding different, required subunits of an enzyme complex associated with
the function of interest. For a taxonomic group, core genes specifically and universally associ-
ated with the group of interest would be required. Occupancy models are explicitly designed
to avoid the problem of false negatives, but as a result they are biased toward false positives.
There are adaptations to occupancy modeling that handle false positives more robustly
(10, 11), but false positives within sequencing data are potentially more likely than for
macroecological surveys (e.g., confounding of closely related protein families), so whether
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a marker can be separated into true or false positives should be a first consideration. How
false positives are filtered out will depend on the selected marker genes, but considera-
tions such as active site, conserved residues, secondary and tertiary structure modeling,
length requirements, homology to characterized proteins, and phylogenetic placement
can be applied. Ultimately, the decision of which markers can be used, and what curation
is required, will be study-specific. In our case study below, the methyl-coenzyme M re-
ductase (MCR) complex is used as a marker for methanogenesis, despite its activity in an-
aerobic oxidation of methane in the ANaerobic MEthanotrophic archaea (ANME) organ-
isms; our curation thus required us to remove any MCR detected that were associated
with ANME to ensure we were targeting the correct function of interest. The use of multi-
ple marker genes as “resamplings” provides the advantage that multiple metagenomic
samples are not needed and also means that several of the assumptions of occupancy
models are met “for free” (see next).

Occupancy modeling assumptions. Occupancy modeling separates successful detec-
tions into two processes; first, the species of interest must be present at the survey site, and
second, given that it is present, it must be successfully detected. These processes are modeled
as two probabilities, denotedW and p (9). The first parameter,W, represents the proportion of
occupied sites, while the latter, p, represents the probability that, given the species is present,
it is successfully detected. A theoretically perfect model could have a unique detection and oc-
cupancy parameter for each site, but this would sacrifice flexibility. Instead, the model can be
generalized using certain assumptions, which restrict these parameters to single values across
all sites. Mackenzie et al. (9) proposed five assumptions that, if met, allow for this generaliza-
tion to be applied. In brief, each assumption seems reasonable to apply to metagenomic data
sets, but there are specific points that require consideration or definition.

(i) The closure assumption, which states that there is no chance of the occupancy
state changing between sampling occasions for the site, within the same season.
The first assumption is met without ambiguity when using multiple genetic markers from
a single metagenome as the sampling units. Detection of these markers is conducted on
the same metagenome, from the same extracted DNA, taken at the exact same time. This
is an advantage of metagenomic data sets compared to macroecological data sets, where
the observer must return to a site over multiple separate occasions.

(ii) The probability for occupancy is the same across all sites, or is otherwise mod-
eled with appropriate covariates and (iii) the probability for detection is the same
across all sites or is otherwise modeled with appropriate covariates. The second (ii)
and third (iii) assumptions are more challenging. It is unlikely that detection and occupancy

FIG 1 Schematic depicting connections between occupancy sampling for macroecologists compared to
the proposed method for metagenomic data sets. Where macroecological occupancy sampling requires
repeated observation (days 1, 2, 3) of the same environment (forest) for the presence/absence of a species of
interest (bird), we propose using molecular markers (genes 1, 2, 3) for an activity or lineage of interest that
allow multiple observations of the presence/absence from within a single metagenomic data set.
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are uniform across all sites. In particular, the occupancy state is expected to change as a
result of different environmental conditions, such as pH, temperature, and organic carbon
content of the site. It may be more reasonable to assume that detection probabilities are
uniform, but even this is unlikely. Factors affecting detection probabilities include challenges
in DNA extraction for difficult matrices or resistant microorganisms as well as variations due
to changing sequencing technologies, where greater sequencing depths enable better
assemblies and a higher likelihood of detecting a function or taxon at low abundance. It is
possible to separately estimate detection probability for each of these factors (DNA extrac-
tion, sequencing depth) to assess whether different sampling techniques may be more or
less capable of detecting the function of interest. Alternatively, variation in detection and oc-
cupancy can be modeled with covariates. In this context, a covariate might be metagenome
size, pH, total organic carbon, elevation above sea level, or other factors that would influ-
ence occupancy and detection for the trait or taxon of interest. Identifying useful covariates
was one of the major challenges in our methane cycle case study, described below.
Metadata reported for metagenomes was sporadic and incomplete, meaning that there
were very few variables that could be used as covariates. Better data deposition standards
have the potential to rapidly remedy this problem.

(iv) The detection at each site is independent of detection at other sites.
Assumption iv is a reasonable assumption for metagenomic data. Unless samples were
cross-contaminated, metagenomes should have no impact on the content of other meta-
genomes and thus can be treated as independent from one another. This holds true if
aggregating metagenomes into larger-scale samples (e.g., a soil core), as long as each set
of metagenomes is from samples/sites that do not meaningfully interact.

(v) There are no false positives. This assumption also poses a challenge. The best
solution is to employ procedures that carefully curate the detections prior to modeling,
as described above. Searching against established databases, the use of annotation pipe-
lines, multiple sequence alignments, and phylogenetics can be used to minimize the
number of false positives. Further case-specific information can be valuable, such as iden-
tifying key conserved residues at active sites or motifs thought to be conserved across all
members of the group of interest. By incorporating this sort of information and applying
rigorous filtering to the data, false positives can be minimized or eliminated.

Occupancy modeling and the global methane cycle. We took our theorized defi-
nitions of sites, sampling units, and the assumptions required for occupancy modeling
and applied them to a case study examining the cooccurrence of methanogenesis and
methanotrophy across global environments.

Two microbial groups are the main controls on biological methane cycling and the
flux of methane emissions. The majority of methane emissions originate from methano-
genic archaea (17). The other group of organisms implicated in the methane cycle are
the methane oxidizers. Methane-oxidizing organisms largely fall into two categories: the
bacterial methanotrophs (18) and the archaeal anaerobic oxidizers of methane (AOM; 19,
20). Understanding the cooccurrence patterns of methanogens and methanotrophs
across global environments would provide insight into methane emission fluxes and
spotlight regions where microbial control of methane emissions is tipped toward higher
emissions (i.e., sites with methanogens and no associated methanotrophs). Using 9,629
publicly available metagenomes from a wide variety of global environments, we applied
occupancy modeling to metagenomic data to assess the cooccurrence of methanogene-
sis and methanotrophy in the context of geographic location and environment type.

In defining a site for the occupancy models, we tested three approaches. First, we
tested the naive approach of each metagenome equating to a single site. However,
methanogens and methanotrophs differ in their oxygen requirements; methanogens
are obligately anaerobic, whereas methanotrophs are generally understood to be
microaerophilic (18, 21), though this paradigm is shifting with increased reports of
methanotrophy in anoxic conditions (22, 23). Given this difference, we would not gen-
erally expect methanogens and methanotrophs to occur at the exact same location,
but their presence within the same system would be informative. To address this, our
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second approach was to aggregate metagenomes from the same geographic coordi-
nates (latitude and longitude) as a single site, meaning soil cores and depth profiles
were merged. Our third and final approach was to separate the aggregated metage-
nomes in the second approach if their environmental coding differed between envi-
ronmental, engineered, and host-associated.

For sampling units, we required a set of genes that could act as proxies for function
and be used to emulate resampling an environment, within a single metagenome. We
selected subunits of the catalytic enzyme complexes responsible for the final step of
methanogenesis and the first step of methane oxidation—methyl-coenzyme M reduc-
tase (MCR; subunits McrABG) and particulate methane monooxygenase (pMMO; subu-
nits PmoABC). Both enzyme complexes are built from three distinct and necessary sub-
units. All known methanogens contain mcr genes in their genomes (24, 25), which
encode the MCR complex responsible for the final step in methane formation (26, 27).
The mcr operon contains a suite of genes, but the three that encode the MCR complex
are mcrA, mcrB, and mcrG, which encode the a, b , andg subunits, respectively (28). The
MCR enzyme complex is an a2b2g2 hexamer (29). The mcrABG genes are frequently
used in combination as methanogenic markers (30–32) and can be used in place of
16S rRNA genes to infer phylogeny of methanogens (33). The oxidation of methane is
catalyzed by methane monooxygenases (MMO), which have two forms, soluble and
particulate (34). The soluble form (sMMO) is localized to the cytoplasm, while the par-
ticulate form (pMMO) is membrane bound (35). We chose the pMMO enzyme over
sMMO as a methanotrophic marker because the soluble form usually occurs alongside
the particulate form, but the reverse is not necessarily true. The pMMO complex is
encoded by the pmoCAB operon (36, 37). These genes, especially pmoA, are used as
functional markers for aerobic methanotrophy (35, 38, 39). While the pmo operon is
present in most methanotrophs, it has recently been found to be absent in some spe-
cies (37, 38; for a review see reference 39), meaning this marker may lead to false nega-
tives. Another source of false negatives in our analyses is anaerobic oxidation of meth-
ane by the ANME archaea (19, 20). The ANME archaea use the methanogenic pathway
in reverse, including McrABG, to catalyze the oxidation of methane (40–42). These
methane-oxidizing archaea are fascinating and likely important players in methane cy-
cling (43), but there is growing evidence the ANME can also produce methane (44),
meaning their McrABG are ambiguous markers for methane cycling, and we wanted a
straightforward initial case study. As a result, for the work described below, our focus
was on oxidation of methane performed by bacteria. The main relevance of the ANME
archaea for this research was that any McrABG proteins that were closely associated
with the ANME MCR were removed from the methanogenesis data sets. Excluding
sMMO and ANME MCR from our methanotrophic survey means we have not captured
the total methane oxidation capacity from the surveyed environments, but for this
proof-of-principle exercise, the advantages of having an equal number of marker
genes and a single set of markers per function of interest outweighed the potential for
false negatives.

Reviewing the 5 assumptions to allow for generalized W and p parameters in our
occupancy model, assumption i is met, as each metagenome or aggregated set of
metagenomes was static in time and searched simultaneously for the six marker genes.
Assumptions ii and iii are not met with the raw data, and so we used covariates to model
factors impacting occupancy (ii) and detection (iii) probabilities. Assumption iv is met, as
detections between sites are independent, given the reasonable assumption that each
metagenome stemmed from independent DNA extractions from isolated samples (e.g.,
sample handling minimized cross-contamination). Assumption v, that there are no false
positives, required significant data set curation of our candidate marker genes.

The data set used consisted of 9,629 metagenomes from across every continent on
Earth (Fig. 2). The metagenomes were classified into three broad categories; 80.6% were
from environmental samples, 13.3% were host-associated samples, and 6.2% were from
engineered environments. From these data sets 261,869 sequences were identified as
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candidate matches to the target genes (based on KEGG KO annotations). After size-filter-
ing sequences to remove partial and truncated sequences, 59,390 candidate sequences
remained. Filtering using DIAMOND BLASTp further reduced the set, leaving 29,308
sequences. Finally, after manual assessment for phylogenetic congruence, 27,730 of the
initial sequences remained. This curation was important to minimize false positives to
satisfy assumption v. Following curation, the frequencies of each complex’s subunits
were similar within different environmental categories (Fig. S1 and S2).

Single species models were run for each of the two functions (methanogenesis and
methanotrophy) (Table 1). In nearly all cases, the null model (i.e., models run without
any covariates) explained the least variability in the data. The available covariates were
ecosystem type, latitude, and date of metagenome deposition. Where applicable, ecosys-
tem type as a covariate for the occupancy state contributed to the best model (Table 1).
In addition to this, the latitude seemed to offer some small improvement. The square-
root-transformed add date, counted as days since 1 January 2006, improved models when
used as a covariate for the detection probability (Table 1).

In general, the models predicted that methanogens occupied a larger portion of
engineered sites than methanotrophs. In contrast, a higher proportion of environmen-
tal sites were predicted to be occupied by methanotrophs than methanogens, and the
proportion of host-associated sites occupied by each group was similar (Fig. 3). For
both functional groups, the proportion of sites occupied appeared to increase with lati-
tude. Interestingly, this trend followed from extreme southern latitudes through to the
extreme northern latitudes, rather than increasing from the equator toward both poles
(Fig. S3). This trend may reflect a strong geographic bias in sampling. The majority of
available metagenomes were from samples taken from locations in North America and
western Europe (Fig. 2), which cover a similar range of latitudes. In practice, this may
impact the model estimates of occupancy, biasing them toward detection in better-
covered regions of the map. Finally, the estimated detection probability increased with
the square-root-transformed dates (Fig. S4). This may not mean there was an increase
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FIG 2 Geocoordinates associated with all metagenomes examined for methanogenesis and methanotrophy marker enzymes. All continents were included
within this survey, but there is a clear sampling bias toward North America and Europe. The map was generated using the R package “maps,” which is
open source and in the public domain.
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in prevalence of these metabolisms over time but, rather, that this covariate captures
underlying differences in the data that would be better or more precisely captured by
other covariates that were not accessible to us due to incomplete metadata for the
submitted metagenomes. For example, the observed increase may be tied to advances
in technology and/or be due to increasing metagenome sizes over time leading to
higher detection probabilities of lower-abundance functions.

In the case of the multispecies models, the ecosystem covariate was found to have
the strongest influence in explaining the data, regardless of the data set used (Table 2).
In all cases, the presence of the other functional group in the model increased the esti-
mated proportion of sites occupied for the other group (Fig. 4, Fig. S5). For the unag-
gregated data, the occupancy in MCR increased if pMMO was present for the entire
range of latitudes, in all three environment types (Fig. 4). According to the models, this
prediction was most robust for engineered sites. The confidence intervals for both

TABLE 1 Occupancy model parameters for MCR and pMMO data setsa

Model

MCR pMMO

No. of parameters AIC DAIC AIC DAIC
Metagenomes as sites (n = 9,420)
p; 1,W; ecosystem 4 9,691.23 0.00 15,669.51 0.00
p; sqrt(numeric.add.date),W; latitude 4 9,936.71 245.47 15,705.84 36.33
p; 1,W; latitude 3 9,958.31 267.08 15,929.51 260.00
p; sqrt(numeric.add.date),W; 1 3 9,987.42 296.18 15,830.36 160.85
p; 1,W; 1 2 10,007.15 315.91 16,053.68 384.17

Aggregated by geocoordinates and environment (1,229 sites)
p; 1,W; ecosystem 4 1,555.15 0.00 2,284.47 0.00
p; 1,W; latitude 3 1,594.58 39.43 2,329.47 45.00
p; sqrt(numeric.add.date),W; Latitude 4 1,596.74 41.59 2,308.65 24.18
p; 1,W; 1 2 1,619.65 64.50 2,330.83 46.36
p; sqrt(numeric.add.date),W; 1 3 1,621.81 66.66 2,310.07 25.60

Aggregated by geocoordinates only (1,202 sites)
p; 1,W; latitude 3 1,578.66 0.00 2,297.88 0.00
p; 1,W; 1 2 1,605.03 26.37 2,299.55 1.67

aSeparate models were developed for each aggregated set of global metagenomes under each of the possibleW values, with p; 1 (intercept only model) or as the square
root (sqrt) of the metagenome’s add date (as a count from 1 January 2006). Results are ordered by ascending AIC for MCR. AIC, Akaike information criterion.

A: metagenomes as sites B: metagenomes aggregated by geocoordinate
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FIG 3 Predicted proportion of sites occupied for both MCR and pMMO. (A) The unaggregated metagenomes; (B)
aggregated metagenomes where the geocoordinate and ecosystem type were the same. The model used for both plots
was p ; 1, W ; ecosystem. Error bars indicate 95% confidence intervals for the estimated occupancies.
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environmental and host-associated sites were much broader, but the same trends
were observed. The same trend was observed for pMMO, which increased in occu-
pancy if MCR was present. However, the occupancy of pMMO in engineered sites was
very low regardless of the occupancy of MCR, possibly due to a bias toward anaerobic
systems for the engineered environments. More than a third (36%) of engineered
metagenomes were labeled as deriving from “anaerobic bioreactors,” where the sys-
tem is manipulated to maintain anoxic conditions which would exclude the aerobic
methanotrophs. The aggregated data sets were similar in pattern compared to the
unaggregated data. However, the confidence intervals were much larger, most notably
for the occupancy of pMMO at environmental sites (Fig. S5). The data that were aggre-
gated solely by geocoordinates showed the clearest trend where the occupancy of
each function increased when the other function was present (Fig. S6). A hypothesis of
this work was that methanotrophs would be more likely to occur at sites containing
methanogens or would occur at close proximity to sites containing methanogens. The
opposite case, where a methanogen would be more likely to occur if a methanotroph
was present, is not anchored in our understanding of the biology of these organisms.
This makes our model results interesting, since both scenarios are predicted to be true.
It may be that external variables controlling the presence or absence of each group are
shared, and so the two functional groups coincide because of limitations to their distri-
butions. The size of the confidence intervals across all trials prevents strong conclu-
sions from being drawn. We note that sample date was not considered when aggregat-
ing data sets; of the 1,093 aggregated data sets based on geographical coordinates, 285

TABLE 2Multispecies occupancy models for MCR and pMMO across global metagenomesa

Model No. of parameters AIC DAIC
Metagenomes as sites (n = 9,420 sites)
W[mcr]; ecosystem,W[pmo]; ecosystem1 sqrt(numeric.add.date),W[mcr:pmo]; ecosystem 12 24,803.63 0
W[mcr]; ecosystem1 latitude,W[pmo]; ecosystem1 latitude,W[mcr:pmo]; 1 11 24,919.92 116.28
W[mcr]; ecosystem,W[pmo]; ecosystem,W[mcr:jpmo]; ecosystemW[mcr]; ecosystem,W[pmo]
; ecosystem,W[mcr:pmo]; 1

11 25,043.00 239.37

W[mcr]; sqrt(numeric.add.date),W[pmo]; sqrt(numeric.add.date),W[mcr:pmo]; sqrt
(numeric.add.date)

9 25,076.89 273.26

W[mcr]; latitude,W[pmo]; latitude,W[mcr:pmo]; latitudeW[mcr]; 1,W[pmo]; 1,W[mcr:pmo];
ecosystem

8 25,622.46 818.83

W[mcr]; 1,W[pmo]; 1,W[mcr:pmo]; 1 8 25,728.01 924.38
W[mcr]; ecosystem1 sqrt(numeric.add.date), 7 25,792.37 988.73
W[pmo]; ecosystem1 sqrt(numeric.add.date),W[mcr:pmo]; 1 5 25,882.22 1,078.59
W[mcr]; 1,W[pmo]; 1 11 35,276.17 10,472.54
W[mcr:pmo]; ecosystem 13 35,280.17 10,476.54

Aggregated by geocoordinates and environment (1,229 sites)
W[mcr]; ecosystem,W[pmo]; ecosystem1 sqrt(numeric.add.date),W[mcr:pmo]; ecosystem 12 3,745.72 0
W[mcr]; ecosystem1 latitude,W[pmo]; ecosystem1 latitude,W[mcr:pmo]; 1 11 3,757.98 12.26
W[mcr]; ecosystem,W[pmo]; ecosystem,W[mcr:pmo]; ecosystemW[mcr]; ecosystem,W[pmo];
ecosystem,W[mcr:pmo]; 1

11 3,776.41 30.69

W[mcr]; sqrt(numeric.add.date),W[pmo]; sqrt(numeric.add.date),W[mcr:pmo]; sqrt
(numeric.add.date)

9 3,781.61 35.89

W[mcr]; latitude,W[pmo]; latitude,W[mcr:pmo]; latitudeW[mcr]; 1,W[pmo]; 1,W[mcr:pmo];
ecosystem

8 3,878.95 133.23

W[mcr]; 1,W[pmo]; 1,W[mcr:pmo]; 1 8 3,885.95 140.23
W[mcr]; ecosystem1 sqrt(numeric.add.date), 7 3,888.03 142.32
W[pmo]; ecosystem1 sqrt(numeric.add.date),W[mcr:pmo]; 1 5 3,908.36 162.64
W[mcr]; 1,W[pmo]; 1 11 5,131.21 1,385.49
W[mcr:pmo]; ecosystem 13 5,135.21 1,389.49

Aggregated by geocoordinates only (1,202 sites)
W[mcr]; latitudeW[pmo]; latitude,W[mcr:pmo]; 1 7 3,839.91 0
W[mcr]; latitude,W[pmo]; latitude,W[mcr:jpmo]; latitude 8 3,841.47 1.56
W[mcr];1,W[pmo]; 1,W[mcr:pmo]; latitude 6 3,851.49 11.58
W[mcr]; 1,W[pmo]; 1,W[mcr:pmo]; 1 5 3,865.21 25.39

aSeparate models were developed for each aggregated set of global metagenomes under each of the possibleW values, with p; 1 (intercept-only model for species-
specific detection probabilities). AIC, Akaike information criterion.
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(26%) include samples from different dates. Refining this aggregation might improve con-
fidence intervals on these occupancy estimates.

This initial application of occupancy modeling has generated a series of interesting hypoth-
eses around the interconnection of methanogens andmethanotrophs within the global meth-
ane cycle. The positive occupancy relationship of MCR in the presence of PMO warrants fur-
ther study, as does the connection of occupancy to latitude. Application of this adaptation of
occupancymodeling to other global geochemical cycles is likely to identify similarly interesting
trends and generate hypotheses to guide future sampling, sequencing, and analysis efforts.

FIG 4 Predicted occupancy for functions of interest given the presence (blue) or absence (red) of the other function.
Shaded regions represent 95% confidence intervals for the estimates (solid lines). All sites are unaggregated
metagenomes. The model used was W[mcr] ; ecosystem, W[pmo] ; ecosystem 1 sqrt(numeric.add.date), W[mcr:pmo] ;
ecosystem. (A to C) The estimated occupancy for MCR; (D to F) show that of pMMO.
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What this proof-of-principle study also demonstrates is an ability to associate confi-
dence intervals with metagenomic predictions and to temper conclusions based on
statistical analyses. Given a new metagenome, the best-fitting model can be applied to
predict the presence/absence of one of the traits of interest, given the presence/ab-
sence of the other(s) and values of the associated covariates. If a trait is not identified
in the metagenome, the model prediction provides a quantified likelihood as to
whether this is a true or false negative. For researchers applying occupancy modeling
to smaller-scale data sets (e.g., trait occupancy and cooccurrence across a connected
system such as a municipal landfill or aquifer), the models will provide quantification
of uncertainty around trait presence/absence, likely with narrower confidence intervals
than were seen in this global survey. If applied with care in selecting covariates and
definitions of site and sample, this method provides a way to robustly model whether
a true or false negative is the more likely scenario when a trait is not annotated within
a metagenome. Occupancy modeling enables hypotheses on microbial metabolism to
be anchored in statistical analysis and is a valuable addition to the growing toolkit for
metagenome statistics. This move to greater rigor in hypothesis generation is a neces-
sary and important addition to the maturation of metagenomics as a field.

Metagenomic metadata is a limiting factor for statistical analyses.While our mod-
els predicted interesting cooccurrence patterns, we were constrained by the lack of
metadata available for the metagenomes of interest. The accuracy of occupancy mod-
eling is specifically strengthened by continuous covariates that can be used to assess
how detectability and occupancy vary as some external parameter does (9). The meta-
data associated with the metagenomic data sets used here included very few numeri-
cal covariates, which were often incomplete. Our models showed occupancy trends
associated with the available numerical covariates, though we think some of the
observed trends may be driven by sampling biases, particularly for the latitude covari-
ate. Having more covariates would help to deconflate the underlying confounding fac-
tors that are driving these biases or allow selection of covariates with lower bias levels.
Metagenomic data sets with curated metadata are good candidates for occupancy
modeling. An advantage to microbial surveys over macroecological ones is that differ-
ent sites can be located very close to each other (e.g., soil core depth samples), for
which detailed metadata can be collected, including variables that are expected to
explain changes in the microbial community (e.g., pH, electrical conductivity, dissolved
organic carbon). Our case study was purposefully ambitious; a global-scale examina-
tion is not a requirement for the application of occupancy modeling to assess the pres-
ence, absence, and cooccurrence of functions.

To further strengthen statistical assessment of metagenome data, it would be useful
to implement better metadata deposition standards. This would not require new or
standardized sampling protocols, which would be near impossible to implement across
environments. Instead, database administrators could more strongly encourage depo-
sition of more metadata, to be uploaded alongside sequence data sets. A way forward
might be requiring a suite of basic metadata for data deposition (e.g., pH, temperature,
oxygen content) as well as enforcing the use of a hierarchical classification system for
categorizing environments (e.g., the ENVironment Ontology system [ENVO]). A process
for requesting exceptions based on resource availability would be required, to ensure
metadata reporting does not represent a new barrier to less well-resourced laborato-
ries, potentially exacerbating the observed geographic bias. If the default of providing
metadata is faster and simpler than requesting an exception, uptake might improve
significantly. Applying a standardized environment classification system for all depos-
ited metagenomic data would not increase the cost or complexity of sampling, and
would be accessible for all research groups regardless of the resources available, mak-
ing this a means to substantially improve metadata at a minimum burden.

Conclusions. Perfect detection is unlikely to ever be fully achieved in field ecology.
The need to properly account for false negatives in detection surveys motivated the
development of the occupancy model by Mackenzie et al. in 2002 (9). The method out-
lined here provides a novel approach for microbial ecologists to apply macroecological
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occupancy models to microbial metagenomic data sets and to assess microbial interac-
tions on a global scale. The advantage to this approach is that it enables researchers to
study a hypothesis of interest using statistical replicates, without the need for expen-
sive resampling. We successfully applied occupancy modeling to metagenomic data
sets, generating predictions about the cooccurrence patterns of methanogenesis and
methanotrophy across global environments. None of the covariates available with
these data were particularly compelling, and yet each improved either the occupancy
or detection probability model fit when applied. Occupancy modeling on metagenom-
ics provides a statistical framework for assessing the cooccurrence of key functions in
global geochemical cycles and provides a method to assess the likelihood of a missing
annotation being a true or a false negative. For metagenomic research to continue to
evolve statistical rigor, better data-deposition standards are required to ensure that rel-
evant metadata are available to researchers.

MATERIALS ANDMETHODS
Reference protein retrieval. Reference sequences for the proteins of interest (methanogenesis:

McrA, McrB, McrG; methanotrophy: PmoA, PmoB, PmoC) as well as known homologs with alternative
functions (AmoA, AmoB, AmoC) were retrieved from the Genome Taxonomy Database (GTDB; 45) using
AnnoTree (46; accessed 11 February 2019) and the Kyoto Encyclopedia of Genes and Genomes
Orthology (KO) based on KO numbers (Table 3; 53). Data were downloaded in CSV format. Any sequen-
ces that were metagenome-derived or for which taxonomy was not resolved to the species level were
removed, unless there was supporting literature for the protein as a true representative of the function
of interest. Sequences were imported into Geneious v. 11.0.2 (54), aligned with MUSCLE v. 3.8.425 (47),
and maximum likelihood trees were inferred using FastTree v. 2.1.5 (48) to assess the quality of the refer-
ence sets. The final reference data sets’ accession numbers and host names are listed in Table S1.

Metagenome-derived gene collection and curation. Data were retrieved from the Joint Genome
Institute’s portal for Integrated Microbial Genomes and Microbiomes (JGI IMG/M; accessed between 14
December 2018 and 22 February 2019). All sequences annotated with KOs of interest (Table 3, top) were
downloaded in FASTA amino acid format along with metadata tables for the metagenomes from which
they were derived. Sequences retrieved from IMG/M were first filtered based on size in a protein-specific
manner, with passing sequences falling between a minimum length of the smallest sequence in the ref-
erence set less 50 amino acids and a maximum length of 50 amino acids longer than the longest refer-
ence sequence for that protein. Sequences were then screened for known homologs with off-target functions
(e.g., butyrate-active Mcr homologs, ammonia monooxygenases). Reference sequences were labeled as either
true or false positives and then searched against a local copy of the UniRef50 database (release 2019_04) using
DIAMOND BLASTp v0.9.24 (49). Any sequences within the Uniref50 database matching either a true or false
positive were removed. The labeled true- and false-positive reference sequences were then included in this
modified database. The length-curated sequences from IMG/M were searched against the modified database
using DIAMOND BLASTp. Sequences for which the top hit was not one of the labeled true positives were
removed from further analyses. The remaining sequences from IMG/M were then imported into Geneious and
aligned to the reference sequences using MUSCLE, and maximum likelihood trees were inferred with FastTree
from the alignments. From these trees, sequences which did not cluster with the reference sequences, were
excessively divergent, or were on extremely long branches, were removed.

Occupancy table construction. A table containing a row for each metagenome was generated,
with columns for each of the six proteins of interest. Each metagenome for which at least one sequence of a
given protein remained after curation were marked with a “1” in the appropriate column; otherwise, they were
marked with “0.” Here, “1” represents a detection and “0” represents a nondetection, regardless of the total
number of detections for a given protein within a given metagenome. These were collectively referred to as

TABLE 3 Protein sequences identified for reference sets (all) as well as from annotated
metagenomes (MCR and pMMO complexes only)a

Protein symbol Gene name KO identifier
McrA* Methyl-coenzyme M reductase alpha subunit K00399
McrB Methyl-coenzyme M reductase beta subunit K00401
McrG Methyl-coenzyme M reductase gamma subunit K00402
PmoA Particulate methane/ammonia monooxygenase subunit A K10944
PmoB* particulate methane/ammonia monooxygenase subunit B K10945
PmoC Particulate methane/ammonia monooxygenase subunit C K10946
AmoA Ammonia monooxygenase subunit A K10944
AmoB* Ammonia monooxygenase subunit B K10945
AmoC Ammonia monooxygenase subunit C K10946
aNote that Pmo and Amo proteins share KO identifiers. Asterisks signify the active site-containing subunit of the
complexes.
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the detection histories for each site (Table S2). This table was imported into R v. 3.5.3 along with a table con-
taining metadata for each metagenome, including geographic coordinates (longitude and latitude), ecosystem
type (coded as either host-associated, environmental, or engineered), and the date that the samples were
uploaded to IMG/M, converted into days since 1 January 2006. These variables were chosen for their complete-
ness on IMG/M. The data were aggregated into three different data sets. The first data set had no aggregation,
with each metagenome treated as a separate sample/site. The second data set aggregated metagenomes
with identical geographic coordinates into a single site, where any metagenome encoding a gene of interest
was sufficient to code that gene as a 1/presence for the given aggregated site. The third data set aggregated
metagenomes with identical geographic coordinates and ecosystem types into a single site, under the
assumption that a shift from environmental/engineered/host-associated implied a physical separation of sam-
ples despite shared geocoordinates (e.g., a sample from a cow rumen and from soil in the same pasture are
not likely to be directly impacting one another, compared to samples from different depths in a soil core). This
aggregation was achieved using the dplyr v. 0.8.0.1 package (50). Finally, sites with missing metadata were
removed to allow comparison of sites.

Single-species occupancy modeling. Single-species occupancy models were used as a preliminary
analysis. The species were defined as the functions of interest (methanogenesis and methanotrophy).
Surveys (i.e., the repeated sampling events) were defined as the individual genes encoding the enzymes
of interest. The R package unmarked v. 0.12-3 (51) was used for occupancy modeling. There were six
model sets in total, with a model for each function and each of the aggregated data sets described
above. To run the models, data were loaded into unmarkedOccuFrame objects, which combined the
detection history data (i.e., the presence/absence table, Table S2) with the site-level metadata. The func-
tion occu was used with default parameters, other than the engine parameter, which was set to C. For
each set of metagenomes (aggregated or not), model sets were developed using different covariates.
The impact of covariates within each model set was compared using the Akaike information criterion
(AIC) (52). Where applicable, the occupancy data were plotted against different covariates with 95% con-
fidence intervals.

Multispecies occupancy modeling. Multispecies occupancy models were fit according to the Rota et
al. (13) model using the function occuMulti in the unmarked package for R in a manner similar to the sin-
gle-species modeling. Data for both metabolic functions were combined into an unmarkedOccuFrameMulti
object. For each data set, models with different parameterizations (Table 1) were run and compared
using AIC.

Data availability. All sampled metagenomes are publicly available on the Joint Genome Institute’s
Integrated Microbial Genomes database. Accession numbers for reference genomes used for positive-
and negative-control sequences are listed in Table S1. Accession numbers and accompanying metadata
for the metagenomes used are available in Table S2. Supplemental Files 1 to 6 are available on the Open
Science Framework (https://doi.org/10.17605/OSF.IO/T97SA). These include an R script which computes
and outputs the model statistics (Supplemental File 1). The input table is provided as Supplemental File
2. In addition to the input file, a directory can be specified as an optional parameter, which will save
tables of predicted occupancy and error values. These tables were used to generate the figures in this ar-
ticle, and example outputs are included as Supplementary Files 3 to 6.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.1 MB.
FIG S3, PDF file, 1.3 MB.
FIG S4, PDF file, 0.3 MB.
FIG S5, PDF file, 1.3 MB.
FIG S6, PDF file, 1.2 MB.
TABLE S1, CSV file, 0.1 MB.
TABLE S2, CSV file, 1.2 MB.
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