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A B S T R A C T   

Impaired extinction of conditioned fear is associated with anxiety disorders. Common lifestyle factors, like 
isolation stress and exercise, may alter the ability to extinguish fear. However, the effect of and interplay between 
these factors on adolescent fear extinction, and the relevant underlying neural mechanisms are unknown. Here 
we examined the effects of periadolescent social isolation and physical activity on adolescent fear extinction in 
rats and explored neurogenesis as a potential mechanism. Isolation stress impaired extinction recall in male 
adolescents, an effect prevented by exercise. Extinction recall in female adolescents was unaffected by isolation 
stress. However, exercise disrupted extinction recall in isolated females. Extinction recall in isolated females was 
positively correlated to the number of immature neurons in the ventral hippocampus, suggesting that exercise 
affected extinction recall via neurogenesis in females. Pharmacologically suppressing cellular proliferation in 
isolated adolescents using temozolomide blocked the effect of exercise on extinction recall in both sexes. 
Together, these findings highlight sex-specific outcomes of isolation stress and exercise on adolescent brain and 
behavior, and highlights neurogenesis as a potential mechanism underlying lifestyle effects on adolescent fear 
extinction.   

1. Introduction 

Anxiety-related disorders are the most prevalent forms of psycho-
pathology in adolescence, with a world-wide prevalence of 4.7–9.1% 
(Polanczyk et al., 2015). In fact, adolescents experience anxiety disor-
ders more than any other age group (Merikangas et al., 2009). Devel-
opment and persistence of these disorders are closely tied to lifestyle 
factors such as stress and lack of physical activity (Bélair et al., 2018; 
Kantomaa et al., 2008; Kingery et al., 2010; Scaini et al., 2014; Schiele 
and Domschke, 2018; Teychenne et al., 2015). Sadly, global trends 
suggest reduced in-person interactions of children with their peers 
(George and Odgers, 2015; Griffiths, 1997; Orben et al., 2020; Twenge 
and Spitzberg, 2020) and increasing childhood inactivity (Brownson 

et al., 2005; Gray et al., 2014; Guthold et al., 2020; Rosenfeld, 2016; 
Ziviani et al., 2008). This highlights the critical need to study the con-
tributions of social isolation stress and/or exercise to anxiety disorders 
in adolescence. Further, how these prevalent factors may differentially 
affect females and males is poorly understood, despite known sex dif-
ferences in developmental stress-induced brain changes (Perry et al., 
2021) and anxiety-related psychopathology in adolescence (Altemus 
et al., 2014; Lewinsohn et al., 1998; Merikangas et al., 2009; Roza et al., 
2003). 

A key feature of anxiety disorders is the failure to appropriately 
inhibit, or extinguish, fear (Maren et al., 2013; Waters et al., 2009). 
Typically in fear extinction, a fear-eliciting stimulus is repeatedly pre-
sented in the absence of any aversive outcomes, ultimately reducing the 
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fear response (Myers and Davis, 2007). Extinction is evolutionarily 
conserved between humans and rodents (Sevenster et al., 2018), and 
extinction studies in humans and rodents have driven our understanding 
of anxiety disorder treatment (Hofmann and Smits, 2008; Kim and 
Ganella, 2015; Maren et al., 2013). Relative to adults, adolescent 
humans and rodents have impaired fear extinction (Ganella et al., 
2018a; Kim et al., 2011; McCallum et al., 2010; Pattwell et al., 2012). 
This is also reflected clinically, with worse treatment outcomes for ad-
olescents compared to other ages (Ollendick and Davis III, 2013). Sex 
differences in extinction is observed across all stages of development 
(Baran et al., 2009; Clark et al., 2019; Day and Stevenson, 2019; Park 
et al., 2017; Perry et al., 2020), supporting the use of fear extinction as a 
model to understand cognitive-affective processing relevant for anxiety 
disorders in adolescence. 

Sex- and age-specific fear extinction involves interactions between 
the prefrontal cortex, hippocampus (HPC), and amygdala (Day and 
Stevenson, 2019; Ganella et al., 2018b; Velasco et al., 2019). Of these 
regions, the HPC integrates information about our surroundings (Kent-
ner et al., 2019; Rudy, 2009) and adapts to change through neurogenic 
mechanisms (Kempermann et al., 1997). Notably, periadolescent isola-
tion stress can impair neurogenesis (Ibi et al., 2008) and prevent 
exercise-induced neurogenesis in adolescence (Kozareva et al., 2019). 
While neurogenic manipulations in adulthood generally do not alter cue 
extinction learning (Drew et al., 2010; Kim and Fanselow, 1992; Olsen 
et al., 2014; Phillips and LeDoux, 1992), their impact on adolescent fear 
extinction is poorly understood. New neurons are produced and inte-
grated in adolescence at up to four times the rate of adulthood (He and 
Crews, 2007), which strongly suggests neurogenic manipulations and 
associated neurogenesis may have profound effects on adolescent fear 
extinction. 

In the present study, we assessed the effects of periadolescent social 
isolation stress and voluntary running on cued fear extinction in male 
and female adolescent rats. We also explored whether these factors 
cause neurogenic changes in the HPC. The dorsal and ventral regions of 
the HPC (dHPC and vHPC) are neurochemically and functionally 
distinct (Fanselow and Dong, 2010; Lothmann et al., 2021; Park et al., 
2020; Strange et al., 2014), with vHPC proposed to be more 
stress-responsive than dHPC (Fanselow and Dong, 2010). Therefore, the 
effects of social isolation and voluntary running on neurogenesis in 
dHPC and vHPC were examined separately. By pharmacologically 
inhibiting proliferating cells in isolated adolescent rats, we further 
examined whether cellular proliferation was a mechanism by which 
exercise altered cued fear extinction in isolated adolescents. We 
observed that social isolation attenuated fear extinction recall only in 
male adolescents. Wheel running rescued extinction recall in isolated 
males, whereas it disrupted extinction recall only in isolated females. 
Suppression of proliferating cells during periadolescent isolation atten-
uated the effects of exercise on extinction recall in both sexes. 

2. Materials and methods 

2.1. Animals 

Sprague-Dawley rats were obtained from the breeding colony at the 
Florey Institute of Neuroscience and Mental Health (Melbourne, 
Australia), with breeders from the Animal Resource Centre (Perth, 
Australia). Each sex was housed in separate rooms on a 12:12hr light: 
dark cycle (lights on: 07:00). Standard chow and water were provided ad 
libitum. All procedures were approved by the Animal Ethics Committee 
at the Florey Institute of Mental Health under the guidelines of the 
National Health and Medical Research Council Code of Practice for the 
Care and Use of Animals Experimental Purposes in Australia (National 
Health and Medical Research Council, 2013). 

2.2. Rearing 

From post-natal day 21 (P21) until perfusion, rats were randomly 
allocated to different rearing conditions within an open-top opaque 
plastic cage (40.64 × 50.8 × 41.91 cm) that contained a 35.56 cm 
diameter running wheel (Lafayette Instrument Company, Indiana, USA). 
All conditions were unchanged throughout experimentation (i.e., 
isolation and running conditions remained throughout fear condition-
ing, extinction, and testing periods). 

2.2.1. Environment 
Rats were either same sex grouped (3/cage; ‘grouped’) or isolated 

(1/cage; ‘isolated’). Cages allowed visual, auditory and olfactory access 
to other rats. 

2.2.2. Exercise 
Rats were either unable to use the running wheel (locked wheel; 

‘sedentary’) or had continual running wheel access (‘running’). In 
Experiment 1b only, rats had partial access during their active phase 
(wheel locked 01:00–07:00, ‘restricted running’). Running was quanti-
fied through an infra-red counter using Scurry Activity Monitoring 
Software (Lafayette Instrument Company). 

2.3. Temozolomide (TMZ) treatment 

The DNA-alkylating agent TMZ (Temodar®; T2744, Tokyo Chemical 
Industry Co. Ltd, Japan) was dissolved into 10% dimethyl sulfoxide 
(DMSO, Sigma Aldrich) in saline. The control vehicle (VEH) solution 
was prepared similarly with 10% DMSO in saline. The TMZ or VEH 
solution was intraperitoneally (i.p.) injected at a dose of 25 mg/kg using 
a standard protocol (i.e., once-daily injection for three consecutive days 
per week for three weeks (Akers et al., 2014; Garthe et al., 2009)). 

2.4. Conditioned fear 

From P43, a conditioned fear paradigm was given during the light- 
phase in previously described apparatus (Park et al., 2017; Zbukvic 
et al., 2017). Two distinct contexts located in separate rooms were used. 
In brief, context A had stainless-steel side walls and an opaque Perspex® 
rear wall with round stickers, with a tray of aspen bedding underneath 
the flooring, and cleaned with a eucalyptus-scented agent. Context B had 
a curved white Perspex® wall insert, with a tray lined with two paper 
towels underneath and cleaned with 80% ethanol. The Med Associates 
VideoFreeze® System (Med Associates, VT, USA) was used to program 
the delivery of all auditory and foot-shock stimuli, and to record all 
freezing behaviors using infrared cameras. The following protocol was 
used for behavioral testing: 

2.4.1. Fear conditioning (P43) 
Rats were placed in a novel chamber (context A) and after a 2min 

baseline period were presented with six 10s tone conditioned stimulus 
(CS; 5000 Hz, 80 dB) that co-terminated with a 1s foot-shock (1 mA). 
The mean inter-trial interval (ITI) was 110s. 

2.4.2. Extinction 1 (P44) and 2 (P45) 
Rats were placed in a new chamber (context B) and after a 2min 

baseline period 10s CS were presented 60 times (10s ITI) daily for 2 
days. 

2.4.3. Test (P48) 
Rats were placed back into the extinction context to receive a 2min 

baseline period followed by 15 trials of 10s CS (10s ITI). 

2.5. Estrous cycle monitoring 

Vaginal lavages on females were performed 2hrs after behavioral 
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testing as previously described (Perry et al., 2020). Males were also 
handled 2hrs after each behavioral testing to match the females. 

2.6. Perfusion and sectioning 

Standard perfusion and sectioning protocols were used, as previously 
described (Charlton et al., 2019). In brief, at P49, rats were trans-
cardially perfused with 50 ml 0.1 M phosphate-buffered saline (PBS) 
followed by 250 ml 4% paraformaldehyde (PFA, Sigma Aldrich) in PBS. 
Brains were post-fixed in PFA for 1hr then kept in 20% sucrose PBS 
overnight at 4 ◦C. The brains were frozen then coronal sections (40 μm) 
were taken using a cryostat (Leica Biosystems, NSW, Australia) and 
stored in sodium azide (0.1% w/v) in PBS at 4 ◦C. 

2.7. Immunohistochemistry 

Ki-67 and doublecortin (DCX) were chosen as neurogenesis markers. 
Ki-67 is a protein present in cells undergoing proliferation (Kee et al., 
2002), whilst DCX is expressed in immature neurons (Brown et al., 
2003). In brief, the following immunohistochemistry protocol was used. 
Free-floating sections were pre-treated with 2 M hydrochloric acid 
(Sigma-Aldrich, CAT 320331) for 30min and directly placed into 0.1 M 
boric buffer (0.1 M boric acid and 0.02 M sodium tetraborate) for 20min 
at room temperature (RT). The sections were then blocked for 30 min in 
a solution containing normal donkey serum (NDS; 1:10; Millipore, USA), 
Triton X-100 (Tx-100; 1:200; BDH Chemicals, Australia) and 0.1 M 
phosphate buffer (PB). After this they were incubated in a primary 
antibody solution for 72hrs at 4 ◦C which contained: mouse anti-DCX 
monoclonal antibody (1:500, SC-271390, Santa Cruz Biotechnology), 
NDS (1:100) and Tx-100 (1:200) in 0.1 M PB. In the last 24hrs of in-
cubation, rabbit anti-Ki-67 monoclonal antibody (1:1000, MA5-14520, 
Thermofisher Scientific) was added to the solution. Afterwards, sec-
tions were blocked for 1hr at RT (1:10 NDS, 1:200 Tx-100, 0.1 M PB). 
Subsequently they were incubated in a secondary antibody solution for 
2hrs at RT that contained: donkey anti-rabbit IgG (1:500, Alexa Fluor® 
488, Life Technologies, CA, USA), donkey anti-mouse IgG (1:500, Alexa 
Fluor® 594) and NDS (1:100) in 0.1 M PB. All sections were washed 
three times for 10min in 0.1 M PBS between each protocol step unless 
otherwise stated. Sections were mounted onto gelatin-coated slides and 
coverslipped with DAKO fluorescent mounting medium (Campbellfield 
Victoria, Australia). Samples of 3–6 brains per group were assessed with 
immunohistochemistry for Ki-67 and DCX expression. 

2.8. Image acquisition and cell quantification 

Fluorescent images were captured using a Zeiss AxioImager M2 
(Zeiss, Göttingen, Germany) and the whole dentate gyrus (DG) was 
examined in 1:8 sections (320 μm apart). An observer blind to experi-
mental group quantified Ki-67+, DCX+ and Ki-67+DCX+ cells in the 
dorsal (dHPC; AP: − 2.8 mm to − 4.3 mm) and ventral hippocampus 
(vHPC; AP: − 4.8 mm to − 6.3 mm) with the software package ImageJ 
(Version 1.5, National Institutes of Health, USA) as described in 
(O’Leary et al., 2019). See Fig. S1 for anatomical definition of dorsal and 
ventral hippocampus used in immunohistochemical analyses. 

2.9. Statistical analysis 

Analyses used SPSS IBM (IBM, Armonk NY, USA) and GraphPad 
Prism (V7, La Jolla, CA), applying analysis of variance (ANOVA), t-tests, 
and Pearson correlations. Significant interactions were followed up with 
post hoc tests with Bonferroni corrections. Outliers were defined a priori 
as previously described (Robinson-Drummer and Stanton, 2014). See 
Table S1 for the sample sizes and number of exclusions for all experi-
ments. Sample sizes are also reported in figure captions. 

Running wheel activity, as measured by mean daily distance per 
week was analyzed separately for grouped and isolated rats because data 

were collected per box. The grouped running distance per box is for 
three rats whereas the isolated running distance per box is for a single 
rat. Freezing was calculated via automated near-infrared video tracking 
equipment as previously reported (Ganella et al., 2017; Perry et al., 
2020). In extinction sessions, trials were averaged into blocks of five for 
analysis. For test, the averaged CS-elicited freezing in response to 15 
tones was analyzed. Behavioral and neural analyses are reported per Sex 
due to extensive interactions involving Sex throughout the study (for 
overall ANOVAs with Sex included, see Supplementary Results 1–4), 
which led us to hypothesize sex-specific effects of Environment and 
Exercise. There were no group differences in baseline freezing levels 
throughout the study. Pearson correlations were performed for each 
Environment for average % freezing at test against either Ki67+ or DCX+

cell counts. 

3. Results 

3.1. Sex-specific effects of isolation and voluntary wheel running on 
adolescent extinction of conditioned fear 

Experiment 1a examined the effect of periadolescent isolation stress 
and/or voluntary running on cued fear extinction in adolescent rats. 
Experiment 1a is an Environment (grouped vs isolated) x Exercise 
(sedentary vs running) design with male and female adolescents 
(Fig. 1a). 

3.1.1. Weight 
All rats gained weight (Week, F (4,276) = 4486.164, p < 0.001) but 

females gained less weight compared to males (Sex, F (1,69) = 155.283, 
p < 0.001; Week × Sex interaction, F (4,276) = 69.967, p < 0.001). Post 
hoc tests showed significant Sex effects in weeks 1–4 (ps < 0.05). There 
were no other effects or interactions (Fig. 1b). 

3.1.2. Running 
In grouped rats, significant effects of Week (F (3,15) = 17.24, p <

0.001), Sex (F (1,5) = 18.593, p = 0.008) and Week × Sex interaction (F 
(3,15) = 11.757, p < 0.001) indicated that females escalated to higher 
weekly averaged daily running distance compared to males (Fig. 1c). 
Post hoc tests showed a significant effect of Sex at week 3 (p = 0.012). 
Similar results were observed in isolated rats with effects of Week (F 
(3,48) = 10.776, p < 0.001), Sex (F (1,16) = 5.331, p = 0.035) and 
Week × Sex interaction (F (3,48) = 4.647, p = 0.006), with post hoc tests 
indicating females running significantly more at week 4 (p = 0.032, 
Fig. 1d). 

3.1.3. Isolation transiently impaired the acquisition of fear in females 
All rats acquired conditioned fear, as indicated by a significant effect 

of Conditioning Trial for males (F (5,195) = 69.995, p < 0.001) and 
females (F (5,150) = 62.026, p < 0.001). In males, Environment and 
Exercise had no effects or interactions on the acquisition of CS-elicited 
freezing (Fig. 1e). In females, isolation caused a decrease in freezing 
levels during trials 2 and 3 (Conditioning Trial × Environment inter-
action, F (5,150) = 3.375, p = 0.006; post hoc tests significant at trials 2 
and 3 (p = 0.024 & p = 0.018)), without any Exercise effect or in-
teractions (Fig. 1i). This demonstrates that isolation transiently delays 
the acquisition of conditioned fear in adolescent females but not males. 

3.1.4. Environment and Exercise have sex-specific effects on adolescent 
extinction learning 

All rats extinguished their CS-elicited freezing response in the first 
extinction session, evident by the significant effects of extinction Block 
for both males (F (11,429) = 67.315, p < 0.001) and females (F (11,319) 
= 47.726, p < 0.001). In males, there were no other effects except for 
Block × Exercise interaction (F (11,429) = 2.244, p = 0.012; Fig. 1f), but 
post hoc tests were not significant. In females, there was Environment x 
Exercise × Block interaction (F (11,330) = 2.219, p = 0.013), with post 
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Fig. 1. Social isolation stress and exercise differentially alter extinction in adolescent males and females. a. Timeline: male and female P21 rats were reared in 
different conditions and underwent behavioral testing P43–P48. b. Weekly weights were unaffected by rearing conditions. Males were heavier than females at weeks 
1–4. Females ran more than males at week 3 for c. grouped and week 4 for d. isolated rats. e & i. Isolated females, but not males, had a transient delay in acquiring 
CS-elicited freezing during conditioning. f, g, j & k. Exercise transiently delayed acquisition of extinction only in grouped females in extinction session 1 and 2. 
Extinction 2 was transiently delayed in isolated males. h. Isolated males froze more compared to grouped males at test. Exercise mitigated this effect. l. Exercise 
increased freezing only in isolated females. Values are means ± SEM. For weight and fear behaviors, n = 7–11 per group per sex. For running, grouped n = 3–4 boxes 
per sex and individual n = 9–10 boxes per sex. *Post hoc effect of Sex (p < 0.05). ^Post hoc effect of Environment (p < 0.05). #Post hoc effect of Exercise (p < 0.05). 
&Significant post hoc difference compared to all other groups (ps < 0.05). g, gram; km, kilometers; P, postnatal day; BL, baseline. 
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hoc tests significant at block 11 (p = 0.012, Fig. 1j). This suggests that 
exercise in grouped females delayed extinction acquisition. 

Despite no group differences in the first extinction session, isolated 
male adolescents showed significantly delayed second extinction (Block, 
F (11,429) = 30.951, p < 0.001; Block × Environment interaction, F 
(11,429) = 3.167, p < 0.001), with post hoc tests showing an Environ-
ment effect at block 4 (p = 0.005) but no others (Fig. 1g). In female 
adolescents, exercise delayed extinction (Block, F (11,330) = 22.576, p 
< 0.001; Exercise, F (1,30) = 7.480, p = 0.010; Block × Exercise 
interaction, F (11,330) = 2.029, p = 0.025). Post hoc tests showed an 
Exercise effect at block 4 (p = 0.048, Fig. 1k). There were no other 
effects. 

3.1.5. Exercise rescued isolation-induced extinction recall impairment in 
males, while disrupting it only in isolated females 

When extinction recall was tested three days later, males showed 
effects of Environment (F (1,39) = 13.15, p = 0.001), Exercise (F (1,39) 
= 4.801, p = 0.034), and Environment × Exercise interaction (F (1,39) 
= 4.267, p = 0.046). Post hoc tests revealed that isolated-sedentary 
group was significantly different from all other groups (ps < 0.05), 
demonstrating that while isolation stress impaired extinction recall in 
adolescent males, exercise rescued this impairment (Fig. 1h). Females 
showed effects of Exercise (F (1,30) = 4.783, p = 0.037) and Environ-
ment × Exercise interaction (F (1,30) = 6.055, p = 0.020), but no 
Environment effect (Fig. 1). Post hoc tests revealed that exercise signif-
icantly increased freezing only in isolated females (p = 0.034), with no 

other group differences. Thus, while exercise rescues extinction recall 
deficits in isolated males, exercise disrupts extinction recall in isolated 
females. 

3.1.6. Isolation attenuated the neurogenic effect of exercise in male but not 
female adolescents 

Cells expressing neurogenic markers Ki-67+ and DCX+ were counted 
(Fig. 2). Dorsal (dHPC) and ventral hippocampus (vHPC) regions 
counted are defined in Fig. S1. 

In males, ANOVA revealed significant effects of Environment, Exer-
cise, and Environment × Exercise interaction (ps < 0.05) in the number 
of Ki-67+ and DCX+ cells in dHPC (Fig. 3a and d) and vHPC (Fig. 3b and 
e). Post hoc tests showed that running increased Ki-67+ and DCX+ cells 
only in grouped males in dHPC and vHPC (ps < 0.05). In females, 
running increased Ki-67+ and DCX+ cells in dHPC and vHPC (ps < 0.05), 
without any other effects (Fig. 3a, b, d & e). Although there were Ki- 
67+DCX+ double-labelled cells in dHPC and vHPC (Fig. 2) with ~30% of 
Ki-67+ cells double-labelled for DCX+ (Table S2), this percentage was 
not significantly altered by rearing environment. Taken together, 
isolation alone had no effect on proliferation (Ki-67+) or neuronal dif-
ferentiation (DCX+) in either sex but the pro-neurogenic effects of 
running were prevented only in isolated male adolescents. 

Average % CS-elicited freezing at test and Ki-67+ or DCX+ counts in 
the vHPC of isolated female adolescents significantly and positively 
correlated (p = 0.026 & p = 0.002, Fig. 3c). There were no other sig-
nificant correlations. Fig. 3f depicts individual data points plotted for 

Fig. 2. Representative images of the dentate gyrus showing Ki-67+ cells (red), DCX+ cells (green), and double labelled Ki-67+DCX+ cells (yellow). Scale bar = 25 μm 
dHPC, dorsal hippocampus; vHPC, ventral hippocampus. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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average CS-elicited freezing at Test and vHPC DCX+ cell counts in iso-
lated adolescents as an example. The signficant correlation in isolated 
females suggest vHPC neurogenesis promotes freezing (i.e., impairs 
extinction recall) at test. 

3.2. Experiment 1b: temporal restriction of running wheel activity in 
females did not change the effects of running and isolation stress on 
extinction recall 

In Experiment 1a, females ran more than males. To assess whether 
the changes in behavior and brain observed in Experiment 1a occur in 
female rats with a level of running comparable to males, Experiment 1b 
locked the wheels during the last 6 h of dark cycle in a new cohort of 
female adolescents. Experiment 1b is an Environment (grouped vs iso-
lated) x Exercise (sedentary vs restricted running) design with female 
adolescents (Fig. 4a). 

3.2.1. Weight and running 
Rats gained weight over time (Week, (F (4,112) = 2736.273, p <

0.001)). There were no other effects or interactions involving Environ-
ment or Restricted Exercise (ps < 0.05, Fig. 4b). Both grouped and iso-
lated female rats ran stable distances, with the effect of Week not 
significant in either condition (Fig. 4c & d). Running distances recorded 
in Experiment 1b were similar to those for the males in Experiment 1a 
(Fig. S2). 

3.2.2. Conditioned fear extinction in female adolescents with restricted 
running 

Isolation stress again transiently delayed acquisition of conditioned 

fear (Fig. 4e). There were significant effects of Conditioning Trial (F 
(5,140) = 84.967, p < 0.001), Environment (F (1,28) = 14.858, p =
0.001) and Conditioning Trial × Environment interaction (F (5,140) =
2.893, p = 0.016). Post hoc tests showed Environment effect at trials 3 
and 4 (p = 0.03 & p = 0.002) but no others. There were no other effects. 

In both extinction sessions, only Extinction Block was significant (ps 
< 0.05, Fig. 4f and g), which suggests the exercise effects on within- 
session extinction in females in Experiment 1a (Fig. 1j and k) were 
due to their escalated running. 

At test, there was a significant Restricted Exercise × Environment 
interaction (F (1,28) = 4.626, p=0.0403) and no other effects. Post hoc 
tests indicated restricted exercise increased freezing only in isolated (p 
= 0.005) females (Fig. 4h). Together with Experiment 1a, this shows 
exercise – restricted or free – impairs extinction recall in isolated 
females. 

3.2.3. Restricted voluntary wheel running increased neurogenesis in female 
adolescents regardless of isolation stress 

Analyses of Ki-67+ and DCX+ counts in the dHPC and vHPC revealed 
significant effects of Restricted Exercise (ps < 0.005, Fig. 5a, b, d & e) 
but no other effects. The percentage of Ki-67+ cells double-labelled for 
DCX+ was not significantly altered by rearing conditions (Table S2). 
There was a significant correlation between average freezing at test and 
vHPC DCX+ cell counts in isolated females (Fig. 5c and f). There were no 
other significant correlations. 

Fig. 3. Voluntary wheel running increases hippocampal neurogenesis depending on isolation stress in males but not in females a, b, d & e. Exercise increased Ki-67+

and DCX+ cells in dHPC and vHPC in all groups except in isolated males. c. Pearson’s correlation (r) values between average % CS-elicited freezing at Test and Ki-67+

or DCX+ cell counts. A signficant positive association exists in the vHPC of isolated female adolescents only. Color corresponds to the r value. f. As an example, 
individual data points displayed for the correlations between average % CS-elicited freezing at Test and vHPC DCX+ cell counts in isolated adolescents, showing that 
there is a signficant correlation in isolated females. #Exercise main or post hoc effect (p < 0.05). *Significant correlation (p < 0.05). Values are means ± SEM. n = 4–5 
per group per sex. For correlations, n’s were pooled across running condition. dHPC, dorsal hippocampus; vHPC, ventral hippocampus. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.3. Experiment 2: pharmacological suppression of neurogenesis in 
isolated female and male adolescents 

In Experiments 1a & b, exercise affected fear extinction recall in 
isolated stressed adolescent rats. Further, fear extinction recall corre-
lated with Ki-67+ or DCX+ cell counts in vHPC of isolated females only, 
suggesting a role for neurogenesis in extinction recall in isolated rats. To 
investigate whether periadolescent exercise mediates its effects in iso-
lated adolescents through a cytogenic mechanism, we pharmacologi-
cally suppressed cytogenesis and examined the effect on extinction 
recall in isolated adolescents. Experiment 2 is Exercise (sedentary vs 
running) x Drug (TMZ-treated vs VEH-treated) design in male and 

female adolescents within an isolated environment (Fig. 6a). Consid-
ering that the amount of running did not affect exercise-impaired 
extinction recall in isolated females (Experiments 1a and 1b), all 
running groups in Experiment 2 had continual access to the running 
wheel to best match rearing conditions between the sexes. 

3.3.1. Weight and running 
All rats gained weight (Week, F (4,212) = 7324.141, p < 0.0001) 

with males gaining more weight than females (Sex, F (4,212) = 219.774, 
p < 0.0001; post hoc effects at week 1–4, ps < 0.01). TMZ-treatment 
transiently delayed weight gain in males (Week x Sex × Drug interac-
tion, F (4,212) = 3.933, p = 0.004; Sex × Drug interaction with Drug 

Fig. 4. Social isolation stress and restricted voluntary wheel running activity alters extinction of learned fear in adolescent females. a. Timeline: females were reared 
in different conditions and underwent behavioral testing P43-48. b. Weekly weights of female rats were not affected by Environment and Restricted Exercise factors. 
Weekly mean daily running wheel activity was stable across weeks for c. grouped and d. isolated. e. During conditioning, isolated females had a transient delay in 
acquiring CS-elicited freezing compared to grouped females. f & g. All rats simarly decreased their CS-elicited freezing across extinction sessions 1 and 2 regardless of 
rearing condition. h. Restricted exercise impaired extinction recall in isolated females. Values are means ± SEM. For weight and fear behaviors, n = 7–9 per group per 
sex. For running data, grouped n = 3 boxes and individual n = 8 boxes per sex. ^Post hoc effect of Environment (p < 0.05). #Post hoc effect of Exercise (p < 0.05). g, 
gram; km, kilometers; P, postnatal day; BL, baseline. 
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effect only in males at week 2, p = 0.005). There was no effect of TMZ- 
treatment on weight gain by behavioral testing (week 3, Fig. 6b). 
Consistent with Experiment 1a, females ran more than males (Week (F 
(3,81) = 7.36, p < 0.001, and Week × Sex interaction (F (3,81) = 9.054, 
p < 0.001)), with post hoc tests revealing a significant effect of Sex at 
weeks 2–4 (ps < 0.005). There were no effects/interactions involving 
Drug on running (Fig. 6c). 

3.3.2. Conditioned fear extinction in isolated adolescents following TMZ- 
treatment 

The main effect of Conditioning Trial was significant in both males (F 
(5,130) = 14.393, p < 0.001) and females (F (5,135) = 49.075, p <
0.001). Neither Drug nor Exercise had effects or interactions on CS- 
elicited freezing in either sex (Fig. 6d and h). 

In the first extinction session, there was a significant effect of 
Extinction Block in males (F (11,286) = 48.677, p < 0.001) and females 
(F (11,297) = 50.923, p < 0.001), without any other effects or in-
teractions (Fig. 6e and i). In the second extinction session, CS-elicited 
freezing was reduced in both male (F (11,286) = 36.96, p < 0.001) 

and female (F (11,297) = 19.939, p < 0.001) adolescents. In males there 
was a main effect of Drug (F (1,26) = 8.905, p = 0.006) and Extinction 
Block × Drug interaction (F (11,286) = 4.541, p < 0.001). Post hoc tests 
revealed significant effect of Drug at block 2 (p = 0.024, Fig. 6f), indi-
cating a transient delay in second extinction due to TMZ treatment in 
males. In females there were no significant effects or interactions of 
either Drug or Exercise (Fig. 6j). 

At test, males showed effects of Drug (F (1,26) = 11.611, p = 0.002) 
and Drug × Exercise interaction (F (1,26) = 9.333, p = 0.005). Post hoc 
tests revealed that VEH-treated males had impaired extinction recall but 
exercise rescued this (p = 0.027). However, exercise effects were not 
observed in TMZ-treated males that showed high levels of freezing 
(Fig. 6g). In females, there was an effect of Exercise (F (1,27) = 7.207, p 
= 0.012) and Drug × Exercise interaction (F (1,27) = 5.131, p = 0.032). 
Post hoc tests revealed that exercise impaired extinction recall in VEH- 
treated females (p = 0.014) but not in TMZ-treated females that 
showed low levels of freezing (Fig. 6k). Overall, TMZ-treatment blocked 
the effects of exercise on extinction recall at test in isolated adolescents. 

Fig. 5. a, b, d & e. Restricted exercise increased Ki-67+ and DCX+ cells in dHPC and vHPC regardless of isolation stress. c. Pearson’s correlation (r) values between 
average % CS-elicited freezing at Test and Ki-67+ or DCX+ cell counts. Color corresponds to the r value. f. A signficant positive correlation was observed between 
average % CS-elicited freezing at Test and vHPC DCX+ cell counts in isolated, but not grouped, females, showing that there is a signficant correlation in isolated 
females. #Exercise main effect (p < 0.05). *Significant correlation (p < 0.05). Values are means ± SEM. n = 3 per group per sex. For correlations, n’s were pooled 
across running condition. dHPC, dorsal hippocampus; vHPC, ventral hippocampus. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 6. TMZ-treatment blocks the effect of exercise on fear extinction recall in isolated adolescent male and female rats. a. Timeline: isolated adolescents received 
either TMZ or VEH treatment and underwent behavioral testing P43-8. b. TMZ-treatment reduced weight only at week 2 only in males. c. Females ran more than 
males at week 2,3 and 4. d & h. Rats similarly acquired conditioned fear. e & i. Extinction 1 was comparable across groups. f & j. TMZ-treatment increased CS- 
elicited freezing at extinction 2 block 2 only in male adolescents. g. VEH-treated sedentary males froze more than their exercising counterparts when isolation- 
reared. TMZ-treatment blocked this effect of exercise. k. VEH-treated sedentary females froze less than their exercising counterparts when isolation-reared. TMZ- 
treatment blocked the effect of exercise. Values are means ± SEM. For running, weight and fear behaviors, n = 7–11 per group per sex. *Post hoc effect of Sex (p <
0.05), +Post hoc effect of Drug (p < 0.05) #Post hoc effect of Exercise (p < 0.05). g, gram; km, kilometers; P, postnatal day; BL, baseline. 
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3.3.3. TMZ-treatment suppressed neurogenesis and attenuated the 
neurogenic effect of voluntary wheel running in female adolescents 

TMZ reduced neurogenic markers in dHPC and vHPC (Fig. 7a). In 
males, analyses of Ki-67+ and DCX+ cells in the dHPC and vHPC 
revealed significant effects of Drug (ps < 0.05) without any other effects 
(Fig. 7b–e). In females, there were significant effects of Exercise, Drug 
and Exercise × Drug interaction for Ki-67+ in each brain region and for 
DCX+ in vHPC (ps < 0.05). Post hoc tests showed that running increased 
Ki-67+ or DCX+ cells only in VEH-treated adolescents (ps < 0.05). There 
were also significant effects of Exercise (F (1,12) = 10.355, p = 0.012) 
and Drug (F (1,12) = 62.458, p < 0.001) for DCX+ cells in the female 
dHPC but no interaction (Fig. 7d). Analyses of percentage of Ki-67+ cells 
double-labelled for DCX+ revealed no effect of Drug, Exercise or any 
interactions (Table S3). Consistent with Experiments 1a and 1 b, average 
% CS-elicited freezing at test and vHPC DCX+ cell counts were signifi-
cantly and positively correlated for VEH-treated females (p = 0.031; 
Fig. 7f and g). There were no other significant correlations. 

4. Discussion 

In the present study, periadolescent isolation stress impaired 
extinction recall in male adolescents, an effect prevented by exercise. 
Isolation in female adolescents temporarily delayed conditioned fear 
acquisition while exercise disrupted extinction recall in isolated females. 
CS-elicited freezing during extinction recall in isolated females was 
positively correlated to the number of DCX+ cells in the vHPC. Sup-
pression of cellular proliferation in isolated adolescents blocked the ef-
fect of exercise on extinction recall in both sexes. 

4.1. Sex-specific interplay between isolation and exercise on extinction of 
conditioned fear 

Periadolescent social isolation delayed the acquisition of CS-elicited 
freezing during conditioning only in female adolescents. Such sex- 
specific effects of isolation during conditioning may be unique to 
adolescence because previous findings demonstrate that isolation rear-
ing had no effects on the acquisition of conditioned fear in adult male or 
female rats (Weiss et al., 2004). The transient reduction in freezing 
observed in our study may be due to locomotion, with evidence for 
hyperlocomotion following isolation rearing in adolescent female rats 
(Domjan et al., 1977; Jahng et al., 2011; Weiss et al., 2004). Alterna-
tively, there may be sex differences in foot-shock sensitivity or cue 
inattention in isolated adolescents, although previous investigations in 
adults have observed no differences in these underlying processes 
(Fessler and Beatty, 1976; Li et al., 2009). Notably, the acquisition delay 
was transient and all groups reached similar levels of CS-elicited 
freezing by the final trial. 

Similar to isolation-reared adults (Weiss et al., 2004), isolation stress 
alone did not affect initial acquisition of extinction. In order to promote 
sufficient extinction recall, the present study had 2 extinction sessions 
because extinction recall deficits in group-housed adolescent rats are 
well-documented (Baker et al., 2016; Kim et al., 2011; Perry et al., 2020; 
Zbukvic et al., 2017). Isolation delayed extinction reacquisition and 
impaired extinction recall in males but not females. This is the first 
observation that periadolescent isolation stress promotes the recovery of 
extinguished fear in adolescent males. Taken together, recall and reac-
quisition of extinction appear particularly vulnerable to the effects of 
isolation stress in adolescent males. 

Strikingly, isolated but not grouped adolescents were susceptible to 
exercise effects on extinction recall, with isolated males and females 
responding in opposite directions. The lack of exercise effects on 
grouped adolescents was not the result of one social environment 
engaging in higher levels of running wheel activity (Fig. S3). It is also not 
due to handling differences between grouped and isolated conditions, 
because exercise in the home cage was used to minimize handling 
(handling in non-home cage running protocols could disrupt isolation- 

rearing experience (Bouchet et al., 2017)). No effects of exercise on 
cued fear extinction has been previously observed in group-housed fe-
male adult mice (Pietropaolo et al., 2006), which is consistent with our 
observations in group-housed adolescent rats. In isolated adolescents, 
exercise enhanced extinction recall (i.e., reduced freezing) in males, but 
inhibited recall (i.e., increased freezing) in females. These effects were 
observed in isolated adolescents regardless of whether females ran more 
than (Fig. 1) or similar to males (Fig. 4). Such effects of exercise may be 
specific to isolated adolescents. It has been reported that 
individually-housed adult male mice do not show any effects of chronic 
running on multiple extinction tests (Dubreucq et al., 2015). Present 
exercise effects were selective to extinction memory recall, with fear 
memory recall unaffected as shown in first extinction. Overall, these 
findings suggest that while periadolescent exercise may not affect 
cognitive-affective processing of fear cues in an ordinary social envi-
ronment, it could buffer the effects of social isolation stress in both sexes. 

Sex differences in running behavior in maturing rodents have been 
observed across multiple laboratories (Correa et al., 2014; Eikelboom 
and Mills, 1988; Gallego et al., 2014; Hancock and Grant, 2009; Rose-
nfeld, 2016; Smethells et al., 2019) (although see (Ivy et al., 2020; 
Purohit et al., 2019)). Interestingly, the more running isolated adoles-
cent females engaged in, the more apparent the extinction recall deficit 
(i.e., increased freezing). Indeed, we observed that unconstrained 
running in grouped females delayed extinction acquisition (Experiment 
1a), an outcome that was eliminated when grouped females ran at 
comparable levels to males (Experiment 1b). While wheel running ac-
tivates the hypothalamic-pituitary-adrenal (HPA) axis in both sexes 
(Stranahan et al., 2008), there is speculation that unconstrained wheel 
running could be stress-provoking in female rats (James et al., 2014). It 
is yet unknown whether elevated wheel running in females causes or is 
caused by the potential sex differences in the HPA axis regulation. 
Considering that the sex difference in wheel activity emerged over time 
in the present study, future studies should measure corticosterone levels 
throughout the whole running period to fully assess the potential rela-
tionship between running and HPA axis. 

Sex hormones may also play a role in sex differences observed in 
running (Rosenfeld, 2016). Ovariectomy can reduce heightened wheel 
running and open-field activity in females (Blizard et al., 1975; Park 
et al., 2016; Wollnik and Turek, 1988), while testosterone given during 
the neonatal period in females can induce similar activity patterns to 
males in late adolescence (Blizard et al., 1975). Sex-specific patterns in 
activity could also render females more fatigued at the time of behav-
ioral testing (Bono et al., 2006; Hopkins and Bucci, 2010), although this 
did not appear to affect fear conditioning and extinction in the present 
study because there were no exercise main effects in females. That is, 
fatigue would affect both grouped and isolated females, but we only 
observed exercise effects either in grouped or isolated rats at different 
days in Experiment 1a. 

Voluntary wheel running occurring after conditioning or extinction 
can augment consolidation processes and then alter fear extinction 
recall (Bouchet et al., 2017; Siette et al., 2014; Tanner et al., 2018). We 
thus examined levels of running immediately after conditioning or 
extinction. However, we found no group differences in the distance ran 
2hrs following conditioning or extinction, and the amount ran did not 
correlate with freezing at test (Fig. S4). We also tested whether acute 
running for 2hrs after each extinction session affects extinction recall in 
isolated adolescents with a new cohort of rats, and observed that acute 
running following extinction sessions had no effect on extinction recall 
(Fig. S5). Therefore, chronic voluntary running appears to drive the 
sex-specific effects on extinction recall in isolated adolescents. 

4.2. Newborn cells mediate the exercise effects on extinction in isolated 
adolescents 

In response to isolation alone, we found no changes in the number of 
hippocampal Ki-67+ and DCX+ cells in adolescents, which is consistent 
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Fig. 7. Pharmacological supression of neurogenesis blocks the effect of exercise on extinction recall in male and female isolated adolescents. a. Representative 
images of the dHPC and vHPC dentate gyrus after VEH- or TMZ-treatment showing Ki-67+(red), DCX+ (green). Scale bar = 25 μm b-e. TMZ-treatment reduced Ki-67+

and DCX+ cells in the dHPC and vHPC in all groups. In females, TMZ prevented the exercise-induced increase in neurogenesis except for dHPC Ki-67+. f & g. Average 
% CS-elicited freezing at test and vHPC DCX+ cell counts were significantly and positively correlated for VEH-treated females. There were no other correlations. 
+Main effect of Drug (p < 0.05). #Main or post hoc effect of Exercise (p < 0.05). *Significant correlation (p < 0.05). Values are means ± SEM. n = 3 per group per sex. 
For correlations, n’s were pooled across running condition. dHPC, dorsal hippocampus; vHPC, ventral hippocampus; h, hilus; GC, granule cell layer. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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with other studies (Bjørnebekk et al., 2007; Kannangara et al., 2009; 
Spritzer et al., 2011). A pro-neurogenic effect of exercise was observed 
in all groups, except for isolated males. This prevention of 
exercise-induced neurogenesis by isolation in males has also been 
observed in adolescent male mice (Kozareva et al., 2018), and adult 
males also appear more susceptible than adult females to the suppressive 
effect of isolation on exercise-induced cytogenesis (Leasure and Decker, 
2009; Stranahan et al., 2006). In those studies, proliferating progenitor 
cells were labelled with bromodeoxyuridine (BrdU+), with Kozareva 
et al. (2018) and Stranahan et al. (2006) further characterising 
neuron-specific nuclear protein (NeuN) to specifically assess neuro-
genesis. Taken together, the present findings on immature new neurons 
labelled with DCX appear to be consistent with the reports on new 
neurons labelled with mature neuronal marker NeuN. 

To examine the relationship between hippocampal neurogenesis and 
extinction recall, we correlated the number of hippocampal Ki-67+ or 
DCX+ cells with CS-elicited freezing at test. We consistently observed a 
significant positive association between vHPC DCX+ cells and elevated 
freezing in isolated females. Interestingly, increased DCX+ expression in 
the hippocampus has been previously shown to interfere with remem-
bering (Akers et al., 2014), which suggests that exercise may interfere 
also with extinction recall in isolated females via increasing vHPC 
neurogenesis in the present study. When we chronically suppressed 
cellular proliferation in isolated rats using an established TMZ-treatment 
protocol (Nokia et al., 2012), the effects of exercise on extinction recall 
were blocked in both male and female isolated adolescents. This sug-
gests that at least in isolated females, the number of DCX+ cells within 
the vHPC directly influences extinction memory recall, adding to the 
increasing evidence for vHPC in supporting the maintenance and 
retrieval of extinction memory (Hugues and Garcia, 2007; Park et al., 
2020; Sierra-Mercado et al., 2010; Sotres-Bayon et al., 2012). 

In contrast, exercise did not increase the number of new cells in the 
dHPC or vHPC of isolated male adolescents. However, TMZ-treatment 
still blocked the exercise-induced enhancement of extinction recall in 
males. These results suggest that while the number of newborn cells in 
the hippocampus does not directly influence extinction recall, neuro-
genesis may still play a role in adolescent males via other mechanisms 
such as: (1) modification to the functional properties of hippocampal 
newborn (DCX+) cells (Alvarez et al., 2016; Liu et al, 1996, 2000; Sah 
et al., 2017); (2) altered proliferation leading to different hippocampal 
cellular populations (e.g., neural stem cells (Dranovsky et al., 2011)); 
and/or (3) modification number or functional properties of newborn 
cells in non-hippocampal neurogenic niches within the fear extinction 
circuit such as the amygdala (Ehninger et al., 2011; Fowler et al., 2008; 
Jhaveri et al., 2017; Okuda et al., 2009; Sorrells et al., 2019; Yang et al., 
2013). These mechanisms may also contribute towards extinction recall 
in female adolescents. 

Our findings suggest that while periadolescent exercise may not 
affect processing of fear cues in an ordinary social environment, it may 
buffer the effects isolation stress in both sexes (Fallon et al., 2019; 
Greenwood and Fleshner, 2011; Mul et al., 2018; Pan-Vazquez et al., 
2015; Robinson et al., 2019; Schoenfeld et al., 2013; Tanner et al., 
2019). We hypothesize that this is mediated by the actions of prolifer-
ating cells within the developing vHPC. In adulthood, neurogenesis in 
this region confers stress resilience (Anacker et al., 2018). Furthermore, 
neurogenesis in the dentate gyrus also alters the function of mature 
granule cells (Lacefield et al., 2012), which could affect the ability of 
vCA1 afferents to mediate changes in fear extinction recall behavior 
(Pattwell et al., 2016). Neurogenesis in the maturing brain may sculpt 
the development of fear extinction circuits to respond to environmental 
signals. For instance, by modulating the development of vCA1 afferents 
that compete with afferents from the amygdala to innervate the mPFC 
during adolescence (Guirado et al., 2016). This likely occurs in a 
sex-specific manner, due to the known sex differences in brain regions 
involved in fear extinction (e.g., Cullity et al., 2019; Drzewiecki et al., 
2020; Perry et al., 2021; Velasco et al., 2019). Future studies could 

examine if neurogenesis within the vHPC mediates the maturation of 
structural connectivity between vHPC, prefrontal cortex and the 
amygdala, to result in sex-specific effects of periadolescent isolation 
stress and exercise. 

4.3. Limitations and future directions 

Our study is underpowered to comprehensively assess the impact of 
estrous cycling in females, which requires 3–4 times more females than 
males, as previously reported (Perry et al., 2020). Given this caveat, we 
found no differences between groups or behavioral testing days in 
estrous cycling (Fig. S6), but others have reported that social environ-
ment can alter estrous cycling (McClintock, 1981). Estrous cycling has 
been shown to alter freezing behavior in adolescent rats (Perry et al., 
2020), although this has not been consistently observed in adult rodents 
(Chen et al., 2009; Gruene et al., 2015; Zhao et al., 2018). 

In our study, individual running was not tracked in a grouped 
environment. While it may be informative to evaluate how individual 
variability in running in a grouped environment contributes towards 
extinction, it is unlikely to have affected overall outcomes in the present 
study, with a previous investigations reporting no differences in indi-
vidual running in grouped housing (Stranahan et al., 2006). 

Our findings on the effect of TMZ may be extended in future by 
examining affective and innate anxiety-like behaviors in male and fe-
male adolescent rats. In adult male mice, TMZ-treatment can evoke 
depression-like behavior, as quantified by an increase in novelty sup-
pressed feeding (Egeland et al., 2017). However, along with another 
antimitotic agent, methylazomethanol acetate, its effects are minimal on 
adult innate anxiety-like behavior (Egeland et al., 2017; Shors et al., 
2002). It will also be critical to further explore whether TMZ effects were 
mediated by the depletion of neurogenesis in other neurogenic zones (e. 
g. amygdala and subventricular zone). For instance, olfactory bulb 
neurogenesis has been implicated in olfactory processing in reversal 
learning (Alonso et al., 2012; Gheusi et al., 2000; Sakamoto et al., 2014) 
and thus TMZ-treatment could have influenced olfactory memory 
associated with the extinction context. 

It would also be valuable to assess in future the mechanisms un-
derlying running-induced neurogenesis in adolescence. Putative medi-
ators of exercise-induced neurogenesis include insulin growth factor-1 
(Carro et al., 2000), vascular-endothelial growth factor (Fabel et al., 
2003), adiponectin (Yau et al., 2014) and lactate (Lev-Vachnish et al., 
2019). For instance, adiponectin (a hormone secreted by adipocytes) 
may modulate the effectiveness of exercise in increasing HPC neuro-
genesis by adiponectin receptor 1-mediated activation of AMP-activated 
protein kinase signalling pathway (Yau et al., 2014; Zhang et al., 2016). 
Interestingly, periadolescent social isolation has been reported to in-
crease adiponectin in female but not in male rats (Krolow et al., 2013). 
Given the role of adiponectin in fear extinction (Zhang et al., 2017), its 
role as a potential mediator of exercise effects on extinction warrants 
further investigation. 

Periadolescent isolation stress increases innate anxiety-like behavior 
in adolescent male rats (Molina-Hernandez et al., 2001; Morinan et al., 
1992; Parker and Morinan, 1986; Stanford et al., 1988; Wright et al., 
1991) but has inconsistent effects in adolescent female rats (Jahng et al., 
2011; Molina-Hernandez et al., 2001) and mice (Abramov et al., 2004; 
Guo et al., 2004). Notably, changes in measures of innate anxiety (e.g., 
elevated plus maze, light-dark box) often do not correlate with changes 
in extinction of conditioned freezing (Short et al., 2016, 2017). There-
fore, our study focussing on the fear regulation processes of extinction 
provide novel evidence towards environmental effects on 
anxiety-relevant behaviours. 

Effects of social isolation on adolescent brain and behavior observed 
in the present study could also be long-lasting. Previous studies 
demonstrate that post-weaning isolation exerts effects on anxiety-like 
behaviors in adulthood (Walker et al., 2019), with effects again more 
consistently observed in males (Hellemans et al., 2004; McCool and 
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Chappell, 2009; Parker and Morinan, 1986; Pritchard et al., 2013; Skelly 
et al., 2015; Weintraub et al., 2010; Weiss et al., 2004; Wright et al., 
1991) than in females (Bourke and Neigh, 2011; Butler et al., 2014; Guo 
et al., 2004; Jahng et al., 2011; Weintraub et al., 2010; Weiss et al., 
2004). 

4.4. Conclusions 

Our results have implications for understanding emotional regula-
tion in adolescence. We provide evidence suggesting that periadolescent 
isolation impairs the recall of an extinction memory in adolescent males 
but not females. Increasing physical activity improved isolation-induced 
recall deficits in males; however, it impaired recall in isolated females. 
Moreover, we showed that cellular proliferation mediates these sex- 
specific effects. Taken together, the present study highlights the need 
for personalized approaches to exposure-based treatment of fear disor-
ders in adolescence, taking into account lifestyle factors that may have 
profound effects on fear regulation. 
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