
 International Journal of 

Molecular Sciences

Article

Meta-Analysis of Transcriptome Data Detected New
Potential Players in Response to Dioxin Exposure
in Humans

Evgeniya Oshchepkova 1,*,†, Yana Sizentsova 1,†, Daniil Wiebe 1 , Victoria Mironova 1,2

and Nikolay Kolchanov 1

1 Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; sizentsova@bionet.nsc.ru (Y.S.);
daniil.wiebe@gmail.com (D.W.); kviki@bionet.nsc.ru (V.M.); kol@bionet.nsc.ru (N.K.)

2 Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
* Correspondence: nzhenia@bionet.nsc.ru
† These authors contributed equally to this work.

Received: 1 October 2020; Accepted: 21 October 2020; Published: 23 October 2020
����������
�������

Abstract: Dioxins are one of the most potent anthropogenic poisons, causing systemic disorders
in embryonic development and pathologies in adults. The mechanism of dioxin action requires
an aryl hydrocarbon receptor (AhR), but the downstream mechanisms are not yet precisely clear.
Here, we performed a meta-analysis of all available transcriptome datasets taken from human
cell cultures exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Differentially expressed genes
from different experiments overlapped partially, but there were a number of those genes that were
systematically affected by TCDD. Some of them have been linked to toxic dioxin effects, but we
also identified other attractive targets. Among the genes that were affected by TCDD, there are
functionally related gene groups that suggest an interplay between retinoic acid, AhR, and Wnt
signaling pathways. Next, we analyzed the upstream regions of differentially expressed genes and
identified potential transcription factor (TF) binding sites overrepresented in the genes responding
to TCDD. Intriguingly, the dioxin-responsive element (DRE), the binding site of AhR, was not
overrepresented as much as other cis-elements were. Bioinformatics analysis of the AhR binding
profile unveils potential cooperation of AhR with E2F2, CTCFL, and ZBT14 TFs in the dioxin response.
We discuss the potential implication of these predictions for further dioxin studies.
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1. Introduction

Environmental pollution by industrial emissions, waste incineration, and rocket fuel contributes to
xenobiotics accumulation in the environment; these xenobiotics include a group of dioxin compounds,
of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic representative [1–4]. Dioxins are
one of the most potent anthropogenic poisons; in terms of overall toxicity, they exceed the most potent
chemical poisons. Exposure to dioxins can damage the immune system, developing nervous system,
endocrine system, and reproductive functions [4–6]. There is evidence that the effect of dioxins on
children leads to a decrease in IQ, congenital anomalies, and weight loss in newborns [7].

The generally accepted concept of the dioxin action mechanism on the cells is that it serves as a
ligand for ligand-activated transcription factor (TF) aryl hydrocarbon receptor (AhR). AhR belongs to
the helix-loop-helix basic domain PER-ARNT-SIM (bHLH/PAS) subfamily and regulates the expression
of a large number of genes via dioxin-responsive elements (DREs), also known as xenobiotic-responsive
elements (XREs), and has the consensus 5′-TNGCGTG-3′ [8]. In the inactivated state, AhR is located in
the cytoplasm in a complex with the dimeric chaperone 90 kDa heat shock protein (Hsp90), as well as
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with the AhR-interacting protein (AIP) and with the p23 co-chaperone [9,10]. After binding to dioxin,
the AhR/Hsp90 complex translocates to the cell nucleus, where it decomposes, and AhR (with c p23)
forms an active transcriptional complex with the aryl hydrocarbon receptor nuclear translocator
(ARNT) [11]. ARNT also belongs to the bHLH family and directly binds to DRE [12]. In vivo DNA
footprinting showed that AhR binds to the 5′-CACGCNA/T-3′, and ARNT with 5′-GTG-3′ [13].
The molecular mechanisms underlying the action of dioxin on the cell are still poorly understood.
The key transcription factor mediating the effects of dioxin is known, but the exact mechanisms at the
cellular level are not yet clear and require further research.

To study the cellular response mechanisms to dioxin compounds, we performed a meta-analysis
of all available RNA-seq and microarray human datasets obtained under the action of TCDD. The aim
of the study was to identify the TCDD targets that were systematically affected over multiple datasets.
This helped us to predict novel or poorly studied mediators of the dioxin response.

2. Results

2.1. Identification of TCDD Targets in Humans

We analyzed all available whole-genome datasets obtained under the action of TCDD on different
human cell lines. The individual microarray and RNA-Seq datasets were preprocessed according to similar
protocols to obtain the lists of differentially expressed genes (DEGs) (see Sections 4.1 and 4.2). As TCDD
mildly affected transcription of the genes, we set a mild criterion for false discovery rate (FDR < 0.2).
Twenty datasets that under this criterion yielded more than 100 up- and down-regulated DEGs were
taken for further meta-analysis (Table 1). PCA analysis of these datasets showed a nice clustering of the
transcriptional responses detected in different studies, with a few very specific responses (Figure S1).
Gene ontology (GO) annotation of all individual datasets showed that they are informative enough with
relevant GO terms significantly overrepresented (e.g., “immune system process”, “inflammatory response”,
“anatomical structure morphogenesis”, etc.).

The total number of genes, which were differentially expressed in response to TCDD in at least
one of the datasets, was 8813 of up-regulated and 8575 of down-regulated genes (Figure 1). As the
experimental design significantly varied between the experiments, the DEG lists overlapped partially.
However, many genes changed their expression in response to TCDD systematically. For example,
CYP1A1 and CYP1B1, known as coding enzymes involved in the metabolism of xenobiotics and
associated with the TCDD response [23], were activated in 15 and 16 of the 20 analyzed datasets,
respectively (Table 2).

2.2. Robust TCDD Targets: Known Knowns and Known Unknowns

First, we looked at the genes that responded to TCDD in the most robust way in half of the tested
datasets (10 out of 20). There were 19 such genes, and some of them are known to be associated with the
dioxin response or the AhR pathway (Table 2); for the remaining genes, no associations were found in
the literature (Table 3). TCDD inducible poly(ADP-ribose) polymerase (TIPARP), encoding a negative
regulator of AhR [25], was induced the most robustly—in 17 out of 20 datasets. AhR repressor (AhRR)
is another robust TCDD target that provides for negative feedback—in 15 out of 20 datasets [27].
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Table 1. Summary on the datasets for the studies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) action
on the human cell cultures used in the meta-analysis. Only datasets that passed the quality control
are presented. GEO: Gene Expression Omnibus.

№
GEO

Accession
Number

Library
Strategy Platform

Time and
Concentration

of TCDD
Treatment

Cell Culture Replicates References

1 GSE46874 Microarray
Affymetrix

Human
Gene 1.0 ST Array

30 h, 25 nM HepaRG cells 3 [14]

2

GSE69845 Microarray

Affymetrix
Human
Genome

219U Array

6 h, 1 nM MCF-7 breast cancer cells 3
[15]3 6 h, 10 nM MCF-7 breast cancer cells 3

4 6 h, 100 nM MCF-7 breast cancer cells 3

5

GSE69849 Microarray

Affymetrix
Human
Genome

219U Array

6 h, 1 nM Ishikawa cells 3
[15]6 6 h, 10 nM Ishikawa cells 3

7 6 h, 100 nM Ishikawa cells 3

8 GSE69850 Microarray

Affymetrix
Human
Genome

219U Array

6 h, 100 nM HepaRG 3 [15]

9 GSE122518 Microarray
Illumina

HumanHT-12 v4.0
expression beadchip

24 h, 1 nM HepaRG cells 4 [16]

10

GSE63935 RNA-Seq Illumina HiSeq 2500
48 h, 3 nM

The mixture of cells: combined neural
progenitor cells, endothelial cells,

mesenchymal stem cells, and
microglia/macrophage precursor

2
[17]

11 144 h, 3 nM 2

12
GSE98515 RNA-Seq Illumina HiSeq 1500

6 h, 10 nM MCF-7 breast cancer cells 4 [18]
13 6 h, 100 nM MCF-7 breast cancer cells 4

14

GSE122002 RNA-Seq Illumina NextSeq 500
96 h, 2 nM Mel1 embryonic stem cells (before

differentiation) 2

[19]
15 96 h, 2 nM Mel1 embryonic stem cells (2-days

after of differentiation) 2

16
GSE83886 RNA-Seq Illumina HiSeq 2500 504 h, 2 nM BEAS-2B bronchial epithelial cell 2 [20]

17 504 h, 10 nM BEAS-2B bronchial epithelial cell 2

18
GSE114552 RNA-Seq

Illumina
Genome

Analyzer II

24 h, 10 nM CRL-4003 decidual stromal cells 3 -
19 144 h, 10 nM CRL-4003 decidual stromal cells 2

20 GSE141711 RNA-Seq Illumina HiSeq 2500 24 h, 1 nM HepG2 liver hepatocellular
carcinoma cell 5 [21]

21 GSE90550 ChIP-Seq Illumina HiSeq 2500 24 h, 10 nM MCF-7 breast cancer cells 1 [22]
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Table 2. The most robustly affected genes in response to TCDD that are known to be associated with
either the dioxin response or the AhR pathway. The gene function annotations were taken from the
UniProtKB [24].

Gene Name Full Name Functions
TCDD Response in 20 Datasets Association with

AhR PathwayUp-Regulation Down-Regulation

TIPARP
TCDD inducible

poly(ADP-ribose)
polymerase

Acts as a negative regulator of
AhR by mediating
mono-ADP-ribosylation
of AhR

17 0 [25]

CYP1B1
Cytochrome P450

family 1 subfamily B
member 1

Oxidizes a variety of
structurally unrelated
compounds, including
steroids, fatty acids,
retinoid and xenobiotics

16 0 [23]

ALDH1A3
Aldehyde

dehydrogenase 1
family member A3

Required for the biosynthesis
of retinoic acid in the
embryonic ocular and
nasal regions

15 0 [26]

CYP1A1
Cytochrome P450

family 1 subfamily A
member 1

Oxidizes a variety of
structurally unrelated
compounds, including
steroids, fatty acids,
and xenobiotics

15 0 [23]

AhRR Aryl-hydrocarbon
receptor repressor

Mediates dioxin toxicity and is
involved in regulation of cell
growth and differentiation.
Represses the transcription
activity of AhR

15 0 [27]

NFE2L2 (NRF2)
Nuclear factor

erythroid 2-related
factor 2

Transcription factor that plays
a key role in the response to
oxidative stress: binds to
antioxidant response elements
present in the promoter region
of many cytoprotective genes,
and promotes their expression,
thereby neutralizing
reactive electrophiles

15 0 [28]

RUNX2 Runt related
transcription factor 2

Transcription factor involved
in osteoblastic differentiation
and skeletal morphogenesis

14 1 [29]

SLC7A5 (LAT1)

Large neutral amino
acids transporter
small subunit 1;

L-type amino acid
transporter 1

The heterodimer with SLC3A2
functions as a
sodium-independent,
high-affinity transporter that
mediates uptake of large
neutral amino acids such as
phenylalanine, tyrosine,
L-DOPA, leucine, histidine,
methionine, and tryptophan

14 1 [18]

DKK1 Dickkopf-1

Locally inhibits Wnt-regulated
developmental processes such
as limb development,
somitogenesis, and eye
formation. In adults, Dkk1 is
implicated in bone formation
and bone disease, cancer, and
Alzheimer disease

1 11 [30]

Functional annotation of the DEGs frequently encountered in different datasets (at least in 4 out
of 20 datasets) detected many functionally related groups, highlighting the complexity of the dioxin
response in humans (Figure 2; Tables S1 and S2). We discuss the most representative functional groups
and involved genes below.
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Table 3. The most robustly affected genes in response to TCDD that were not previously known to be
associated with the AhR pathway. The gene function annotations were taken from the UniProtKB [24].
All genes are robustly up-regulated.

Gene Name Full Name Functions
TCDD Response in 20 Datasets

Up-Regulation Down-Regulation

IER3
Radiation-inducible

immediate-early gene
IEX-1

May play a role in the ERK
signaling pathway by inhibiting the
dephosphorylation of ERK. Acts
also as an ERK downstream effector
mediating survival

13 0

SECTM1 Secreted and
transmembrane protein 1

May be involved in
thymocyte signaling 12 0

PHLDA1
Pleckstrin homology-like

domain family A
member 1

Seems to be involved in the
regulation of apoptosis 12 0

SLC7A11 (xCT) Cystine/glutamate
transporter

Sodium-independent, high-affinity
exchange of anionic amino acids
with high specificity for an anionic
form of cysteine and glutamate

12 1

RUNX1 Runt-related
transcription factor 1

Forms the heterodimeric complex
core-binding factor (CBF) with
CBFB. The heterodimers bind to the
core site of a number of enhancers
and promoters, including murine
leukemia virus, polyomavirus
enhancer, T-cell receptor enhancers,
etc. Essential for hematopoiesis

11 1

EDC3
Enhancer of

mRNA-decapping
protein 3

Binds single-stranded RNA.
Involved in the process of mRNA
degradation and in the positive
regulation of mRNA decapping

11 0

TPRA1 Transmembrane protein
adipocyte-associated 1

Regulates early mouse
embryogenesis [31] 11 0

TTC39C Tetratricopeptide repeat
protein 39C

Appears to be necessary for proper
MAP Kinase and Hedgehog signal
transduction in developing muscle
cells, as well as muscle cell
differentiation [32]

11 0

VIPR1 Vasoactive intestinal
polypeptide receptor 1

A receptor for VIP. The activity of
this receptor is mediated by G
proteins that activate
adenylyl cyclase

10 0

GAD1 Glutamate
decarboxylase 1 Catalyzes the production of GABA 10 1

Skeletal morphogenesis. There are many TCDD targets associated with skeletal morphogenesis.
DKK1, coding a negative regulator of bone development, is the only down-regulated gene among
the most robust TCDD targets (down-regulated in 11 of 20 tested datasets) (Table 2). Another robust
TCDD target RUNX2 encodes the transcription factor that regulates bone development. Other genes
systematically induced by TCDD and implicated in skeletal morphogenesis are FOSL2, SALL4, MSX2,
ADAM12, BST2, and FAM20C (Table S1). Previously, they were almost never discussed in relation
to dioxin.

Apoptosis, cell proliferation, and cancerogenesis. There is a large set of genes involved in essential
cell processes, such as cell proliferation and apoptosis, that are either up-regulated (e.g., FZD7, MYC, CSK,
ABCG2, GDF15, CABLES1) or down-regulated (e.g., CPA4, PHLDA1, ANKRD1, CRIP2, FN1) (Table S1).
Robust TCDD target BMF (up-regulated in 8 of 20 analyzed RNA-seq datasets), is involved in apoptosis
induction [33]. RUNX1, encoding the transcription factor that is involved in hematopoietic stem cell
proliferation [34], is robustly activated by TCDD (in 11 of 20 datasets, Table 3). Both proliferation
and apoptosis programs are largely affected by TCDD, this may explain the association of dioxin with
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cancerogenesis processes. The relationship between dioxin compounds and cancerogenesis is debated in
the Discussion.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 20 
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Immune system regulators and inflammation response. TCDD robustly activates many regulators
of the immune system associated with particular host defense processes. The most robust responses
detected by the meta-analysis were for SECTM1, IL1R1, CEBPD, LACC1, GADD45A, OAS1, C1S,
COLEC12, GBP2, IER3, and GALNT10.

Retinoic acid. Three of the most robust TCDD targets participate in the metabolism of all-trans-retinoic
acid (RA), a vitamin A derivative and an essential morphogen involved in embryonic development [35]:
ALDH1A3, CYP1A1, CYP1B1 (Table 2) [36–38]. Functional annotation analysis (Figure 2) highlights that
there are many other TCDD targets from this metabolic pathway, e.g., LRAT and DHRS3 (Table S1).
We consider in more detail the crosstalk between RA and TCDD in the Discussion.

2.3. Search for Cis-Elements Associated with Dioxin Response

To identify possible mediators of the dioxin response in addition to AhR/ARNT, we studied
if there are any other DNA motifs systematically overrepresented in the upstream regions of the
TCDD-regulated genes. We performed both unsupervised and supervised searches.

2.3.1. Unsupervised Search: No Predetermined Gene Lists and TF Binding Sites

For the unsupervised search, we applied MetaRE [39] software packages to all datasets on TCDD
exposure (see Materials and Methods). In each dataset, we looked for the k-mers that are overrepresented
in the upstream regions of induced or repressed gene sets. The analysis was done with different lengths
of upstream regions, but here we discuss the results taken for (–1500; +1), as the most representative.
MetaRE detected hundreds of motifs frequently encountered in dioxin-regulated promoters under
the stringent threshold for p value < 1 × 10−16 (Figure S2). Known dioxin-responsive elements
(DRE; consensus GCGTG) were not the most overrepresented among identified k-mers. For hepta-
and octamers, the motifs containing GCGTG were significant only under a very mild threshold,
behind hundreds of more significant motifs (the rank of GCGTG/CACGC in the list of detected
potential cis-elements are shown in Table S3). DRE was noticeable under a stringent threshold as
a pentamer for activated or repressed by TCDD genes and as a hexamer only for TCDD-repressed
genes (Table S3). The most significantly overrepresented k-mers for those both induced and repressed
by TCDD was the group of GC-rich motifs that did not match classic DRE consensus (Table S4).
All octamers were GC-rich, with only 9% containing one A/T. We used the TOMTOM tool to analyze
the overrepresented octamers and found significant matches with known TF binding sites. Most of
the GC-rich octamers were recognized as the potential binding sites for specificity protein (Sp1) and
Krüppel-like factor 12 (KLF12) (Table S4, Figure 3).

Previously, an alternative AhR-binding site was shown, which the reporting authors called a
non-consensus XRE (NC-XRE). This site contains repeats of the 5′-GGGA-3′ tetramer [41]. AhR was
shown to recruit Krüppel-like factor 6 (KLF6), form the heterodimeric complex AhR/KLF6, and bind to
NC-XRE [42]. We also found four octamers that harbor a 5′-GGGA-3′ tetramer. TOMTOM identified
them as potential binding sites of SP1, KLF12, Zinc finger protein 281 (ZN281), and CCCTC-binding
factor (CTCFL) (Table S5).

2.3.2. Supervised Search: Robust Dioxin-Responsive Genes and Known TF Binding Sites

In an alternative search, we analyzed promoters of dioxin targets to identify overrepresented known
TF binding sites. For that, we applied the HOMER tool with the Hocomoco database of TF binding sites [40]
as the reference. HOMER recognized (FDR < 0.05) binding sites of 134 and 126 TFs overrepresented in
upstream regions of dioxin-activated or dioxin-repressed genes, respectively (Table S6). Among them,
there are many GC-rich sites, including the binding sites for nine members of the KLF family, Sp1–Sp4 group,
Zinc finger and BTB domain-containing protein 14 (ZBT14), ZNF281, and others (Figure 3, Table S6).
HOMER detected non-GC-rich sites as well, particularly a set of TFs from the E2F family (E2F1–E2F7)
(Figure 3). It is noteworthy that the binding sites of known dioxin response regulators were again not
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highly represented, with AhR sites ranked 60th and 113th and ARNT binding sites ranked 64th and 91st in
up- and down-regulated by dioxin genes, respectively.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 20 
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Together, supervised and unsupervised searches for cis-elements overrepresented in
dioxin-regulated promoters gave us a wide spectrum of potential regulators of the dioxin-response.

2.4. Composite AhR-Binding Elements Analysis

As many motifs unrelated to DRE were found to be enriched in dioxin-responsive promoters,
we asked whether some of them are the binding sites for AhR partners. To test this hypothesis,
we studied if AhR binding sites co-occur with the motifs of AhR’s potential interactors and form
composite elements (CE) of a specific structure. For that, we applied the MCOT Toolbox [43] to the
AhR binding profile [22] with the AhR-binding site as an anchor and a Hocomoco collection for the
partner motif candidates. MCOT detected 43 TFs that were significantly overrepresented in AhR
profile CEs, all of them with full or partial overlaps of the binding sites (Table S7). Among them,
the classical CE of the dioxin response, AhR-ARNT, was detected in the maximal number of peaks
(27% of peaks, p value < 1 × 10−15). In this CE, directly oriented AhR and ARNT binding sites overlap
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by 8nt (Figure S3). Another example, AhR-ZBT14 CEs with inverted orientation and a partially overlap
by 6nt of the binding sites, was present in 1.4% of peaks (p value < 1 × 10−15). ZBT14 has not been
considered as a potential AhR co-regulator previously, however, our study suggests it as a candidate
AhR partner protein.

3. Discussion

3.1. Meta-Analysis of Transcriptomes

We performed a meta-analysis of human transcriptomes exposed to TCDD to find new candidate
genes of the dioxin response. Although the designs of whole-genome experiments on TCDD treatment
varied from study to study—with different cell lines, TCDD dosage, time of treatment, and even
expression profiling technologies—we still were able to detect the common signatures (Figures 1
and 3). For example, TIPARP, encoding a negative regulator of the dioxin response, was induced in the
majority of whole-genome studies, as were CYP1A1, CYP1B1, and ALDH1A3, well-known markers of
cellular response to dioxin (Table 2). In this study, we extended the repertoire of robustly regulated by
dioxin genes and highlighted the molecular trends in the dioxin response. Figures 2 and 4 summarize
this information. We discuss some functionally-related dioxin-responsive groups below.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 20 

 

 
Figure 4. The model of dioxin action on human cells based on the present meta-analysis of 
transcriptome data. 

RA metabolism. Another functional gene group systematically affected by TCDD relates to RA 
metabolism (ALDH1A3, LRAT, CYP1A1, CYP1B1, and DHRS3). Indeed, RA metabolism is 
compromised under dioxin exposure [26,46], however, the crosstalk between RA and TCDD is not 
evident [47]. Most of the identified robust targets have been discussed in the literature before in 
relation to dioxin, except DHRS3. Vitamin A metabolizes in two ways: it is either esterified by LRAT 
and stored or is reversibly oxidized to retinaldehyde by retinol dehydrogenases (DHRS3, in 
particular), and further irreversibly oxidized to RA [48]. It was shown previously that RA excess 
induces cleft palate as does TCDD exposure, and TCDD effects depend on RA signaling [49]. Our 
study predicted DHRS3 and LRAT could be essential mediators of TCDD action on embryonic 
development via the RA pathway. 

Skeletal morphogenesis. A notable group of the robust dioxin-responsive genes mediates bone 
development and anatomical morphogenesis (Figures 2 and 4). Among the known dioxin targets, 
there is DKK1, encoding an inhibitor of Wnt signaling [50], that was systematically down-regulated 
by TCDD (Table 2). There is evidence that RA up-regulates DKK1 and DKK2, inactivating the Wnt 
signaling pathway [51]. Thus, the TCDD–DKK–Wnt relationship is further evidence of the interplay 
of the AhR and RA pathways. Another important regulator of skeletal morphogenesis, in particular 
osteoblastic differentiation, is a downstream target of the Wnt signaling pathway, RUNX2 (Table 2) 
[52]. Note that according to the meta-analysis, RUNX2 expression was significantly increased in 14 
out of 20 (and down-regulated in 1 out of 20) RNA-seq datasets. However, in a number of published 
works, it was shown that the expression of this gene is decreased under the TCDD action [29,53]. We 
assume that the contradiction in the experimental data is due to the dysregulation of the RUNX2 
gene: Wnt signaling activates it, while dioxin-induced AhR signaling down-regulates Wnt signaling 
and causes developmental defects [54]. Other genes robustly induced by TCDD are implicated in 
bone tissue maturation: FOSL2, SALL4, MSX2, ADAM12, BST2, and FAM20C. Multiple TCDD targets 
within the same gene network may explain the TCDD effects on craniofacial skeleton development 
[55] and imply that TCDD affects master regulators of bone development. 
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transcriptome data.

Immune response. Exposure of an organism to xenobiotics, in particular dioxin, is a challenge for
the immune system, therefore, it is not surprising that the biggest group of genes robustly induced by
TCDD relate to the host defense processes. Of the most robust TCDD targets, SECTM1 was associated
with immune system response [44], but it was not well-characterized. Some well-studied genes related
to the immune system and systematically affected by TCDD include IL1R1, encoding IL-1 receptor
type 1, and CEBPD, encoding a transcription factor regulating immune and inflammatory responses,
both differentially expressed in 8 of 20 tested datasets (Table S1). PTGES (differentially expressed
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in 5 of 20 datasets), a mediator of prostaglandin synthesis that takes part in inflammation response,
has been shown to be activated by the AhR signaling pathway [45]. Many other genes that are
associated with immune processes and systematically responded to TCDD have not yet been studied
in relation to dioxin, e.g., LACC1, GADD45A, OAS1, C1S, COLEC12, GBP2, IER3, and GALNT10
(Table S1). Although a number of candidate genes responding to dioxin and related to the immune
system processes were found, a meta-analysis of more specific data, e.g., on immune system cells,
is needed to clarify the immune response to TCDD.

RA metabolism. Another functional gene group systematically affected by TCDD relates to RA
metabolism (ALDH1A3, LRAT, CYP1A1, CYP1B1, and DHRS3). Indeed, RA metabolism is compromised
under dioxin exposure [26,46], however, the crosstalk between RA and TCDD is not evident [47].
Most of the identified robust targets have been discussed in the literature before in relation to dioxin,
except DHRS3. Vitamin A metabolizes in two ways: it is either esterified by LRAT and stored or is
reversibly oxidized to retinaldehyde by retinol dehydrogenases (DHRS3, in particular), and further
irreversibly oxidized to RA [48]. It was shown previously that RA excess induces cleft palate as does
TCDD exposure, and TCDD effects depend on RA signaling [49]. Our study predicted DHRS3 and
LRAT could be essential mediators of TCDD action on embryonic development via the RA pathway.

Skeletal morphogenesis. A notable group of the robust dioxin-responsive genes mediates bone
development and anatomical morphogenesis (Figures 2 and 4). Among the known dioxin targets,
there is DKK1, encoding an inhibitor of Wnt signaling [50], that was systematically down-regulated
by TCDD (Table 2). There is evidence that RA up-regulates DKK1 and DKK2, inactivating the Wnt
signaling pathway [51]. Thus, the TCDD–DKK–Wnt relationship is further evidence of the interplay
of the AhR and RA pathways. Another important regulator of skeletal morphogenesis, in particular
osteoblastic differentiation, is a downstream target of the Wnt signaling pathway, RUNX2 (Table 2) [52].
Note that according to the meta-analysis, RUNX2 expression was significantly increased in 14 out of 20
(and down-regulated in 1 out of 20) RNA-seq datasets. However, in a number of published works,
it was shown that the expression of this gene is decreased under the TCDD action [29,53]. We assume
that the contradiction in the experimental data is due to the dysregulation of the RUNX2 gene:
Wnt signaling activates it, while dioxin-induced AhR signaling down-regulates Wnt signaling and
causes developmental defects [54]. Other genes robustly induced by TCDD are implicated in bone
tissue maturation: FOSL2, SALL4, MSX2, ADAM12, BST2, and FAM20C. Multiple TCDD targets within
the same gene network may explain the TCDD effects on craniofacial skeleton development [55] and
imply that TCDD affects master regulators of bone development.

Cell proliferation, apoptosis, cancerogenesis. Wnt-signaling also contributes to the regulation
of cell proliferation, apoptosis, and cancerogenesis. One of the members of this regulatory chain
is protein yippee-like 3 (YPEL3), which is down-regulated in 7 of 20 analyzed datasets (Table S1).
YPEL3 suppresses the Wnt/β-catenin signaling and its further regulation of downstream genes [56].
Another promoter of cancerogenesis that was identified by our meta-analysis as a robust dioxin target
is the transcription factor RUNX1 (Table 3). RUNX1 up-regulation has previously been shown after
exposure to cytotoxic agents; upon overexpression, RUNX1 reduced proliferation, promoted apoptosis,
and augmented the DNA damage response in bone marrow cells [34]. Interesting, RUNX1 also has
relatively high expression in the thymus (SRP056969 in SRA). In addition, we identified other robustly
down-regulated genes that participate in the regulation of proliferation, apoptosis, and cancerogenesis,
including FN1, PHLDA1, ANKRD1, CPA4, CRIP2, MYC, FZD7, CSK, CABLES1, ABCG2, GDF15,
and others (Table S1, Figure 4). Thus, our analysis of genes robustly activated by TCDD supports the
idea that dioxin does not induce cancerogenesis per se, but dysregulates cell proliferation and apoptosis,
as well as the immune system, which could cause cancer.

3.2. Transcriptional Regulation

Another approach we used in the study was the analysis of cis-regulatory regions of
dioxin-responding genes. Surprisingly, the well-known dioxin responsive element was not overrepresented;
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instead, many GC-rich motifs were detected as being highly enriched in promoters of dioxin-
responsive genes. To study what these motifs are, we compared them with known TF binding
sites and analyzed AhR-binding regions in more detail. In Table 4, we summarize the information
derived by MetaRE, Homer, and MCOT tools for the most prominent potential regulators of the
dioxin response, and we discuss some of these potential regulators below. Namely, we detected
E2F2 and ZBT14 as potent AhR co-regulators in the dioxin response, with ZBT14 predicted in every
search performed. In addition, Sp1, KLF12, and ZNF281 were detected by MetaRE and HOMER,
but not MCOT. Thus, they still might be major regulators of the dioxin response, but probably without
heterodimerization with AhR on DNA.

Table 4. Summary table for known and predicted transcriptional regulators of dioxin transcriptional
response. Binding sites of these transcription factors (TFs) were found to be significantly overrepresented
in promoters and AhR peaks of TCDD-responsive genes. Three tools were used in the analysis:
(1) MetaRE for an unsupervised search over multiple datasets of dioxin-regulated genes (stringent
criterion was applied p < 1 × 10−16); (2) HOMER for the search of known TF binding sites within
promoters of genes that are robustly regulated by dioxin (FDR < 0.05); (3) MCOT for the search of
potential TF partners to AhR based on the co-occurrence of binding sites (p value < 1 × 10−15).

TF Binding Sites
Upstream Regions of Dioxin−Regulated Genes Composite Elements in

AhR-Binding Regions

MetaRE HOMER MCOT

AhR + * + +
ARNT − + +
E2F2 − + +

KLF12 + + −

CTCFL + + −

Sp1 + + −

ZBT14 + + +
ZNF281 + + −

* found as an overrepresented pentamer in up- and down-regulated genes and as overrepresented hexamers in
down-regulated genes.

Sp/KLF regulators. Different members of the Sp/KLF family were among the top matches detected by all
applied algorithms. The family consists of Sp1–9 and Sp1-related KLF1–18 that have highly conserved DNA
binding domains recognizing GC-rich sequences (GGGGCGGGG and GGTGTGGGG) [57]. Among them,
two TFs were predicted the most robustly: Sp1 and KLF12 (Table 4). Sp1 is a known mediator
of the dioxin response: This TF activates AhR transcription [58], and AhR recruits Sp1 to regulate
CYP1A1 [59]. Transcription factors Sp1 and Sp3 also enhance AhRR [60]. This gene encodes a
protein that binds to AhR ligands and DNA binding sites and suppresses the effect of activated AhR.
Thus, Sp1/Sp3 negatively regulate AhR-mediated cell response through AhRR activation. There is also
a link between the dioxin response and KLF6–AhR in the non-canonical signaling pathway where it
forms a heterodimeric DNA-binding complex with KLF6 for participation in cell cycle regulation [61].
We also predicted that KLF12 is involved in the dioxin response, although there is no evidence in the
literature. Therefore, it can be a prospective target to study further, as KLF12 is an essential regulator of
embryo development, affecting the attachment of the embryo to the endometrial epithelium through
the regulation of the leukemia inhibitory factor (Lif ) gene [62]. KLF12 also plays a role in cancerogenesis
and cell proliferation [63,64].

ZNF281 transcription factor. ZNF281 binding sites were overrepresented in dioxin-responsive and
AhR binding regions. ZNF281 is a Krüppel-type zinc-finger transcriptional regulator with elevated
expression levels in the placenta, adult kidney, liver, and lymphocytes [65]. It has not been studied
in relation to dioxin thus far, but its role in the regulation of molecular and physiological processes
suggest ZNF281 as a prospective target. It mediates DNA reparation processes [66], cell proliferation,
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migration, invasion, and metastasis of colorectal cancer by inhibiting the Wnt/β-catenin pathway [67],
regulates neuronal differentiation [68], and induces the inflammatory response [69].

ZBT14 transcription factor. ZBT14 binding sites are not only enriched with dioxin-responsive genes,
but also with a notable number of AhR binding peaks (AhR–ZNF281 CE) with an overlap (Table S7),
suggesting that ZBT14 cooperates with AhR in the regulation of some genes. ZBT14, also known
as ZFP161, ZNF478, and ZF5 in mice, is ubiquitously expressed and known to regulate many essential
regulators such as c-myc, X-mental retardation 1 (FMR1) gene, Klf9, Foxp1, and others [70–74]. In a
breast cancer study, it was demonstrated that a decreased ZFP161 level was associated with a poor
clinical forecast [75]. It was also postulated that ZBT14 is a player in some metabolic and inflammation
processes because it is involved in the regulation of Interleukin-6 (Il6) and Lif in skeletal muscle [76].

E2F2 transcription factor. E2F2 binding sites were also found to be associated with the AhR-mediated
dioxin response (Table 4). E2F2 participates in the regulation of cell proliferation and post-injury tissue
repairs [77]. However, it was also shown to be associated with cancerogenesis, e.g., nasopharyngeal carcinoma,
colon cancer, and others [78,79]. The link between this TF with the dioxin response and AhR signaling
has been shown previously [80]. E2F2 negatively regulated the AhR pathway in T-lymphocytes after
TCDD exposure. Here, we suggest the mechanism of this regulation: through CE of specific structures
(Table S7) for which E2F2 and AhR either compete or cooperate with each other.

Transcriptional repressor CTCFL. CTCFL (or CCCTC-binding factor or BORIS (brother of the
regulator of imprinted sites)) regulates testis-specific expression in spermatogenesis and is known
to be a cancer antigen [81]. Recently it was supposed that CTCFL promotes regulatory chromatin
interactions and therefore associates with cancerogenesis [82]. Here, we suggest that CTCFL can
compete or cooperate with AhR on CE of particular dioxin-responsive genes.

3.3. Future Research

In this work, we focused on the robust responses and set aside the specific responses detected under
particular conditions. The datasets used for the meta-analysis were obtained at different concentrations
(from 1 to 100 nM), durations of TCDD exposure (from 6 h to 3 weeks), and cell cultures (cancer, embryonic,
liver-derived lines, etc.) (Table 1). Identifying the specific responses, e.g., cell-type-specific, is an important
task, but it requires more whole-genome datasets being available for meta-analysis. For example,
when comparing the transcriptional responses in different studies, we see that most of the transcriptomes
cluster together, but there are some specific responses (Figure S1). We cannot study specific responses
through meta-analysis until we have more of such cases. Although many genes were highlighted as
associated with the response to dioxin, many of them may be involved not in the primary, but the secondary
response to TCDD. AhR can trigger a cascade of responses, inducing the functioning of a number of
other transcription factors that directly regulate the transcription of identified robust genes. In addition,
as we identified many known regulators of developmental processes, cell cycle, and differentiation as
TCDD-responsive genes, their response to dioxin can partially explain the harmful effects of dioxin on the
developing nervous, endocrine, and reproductive systems.

Here, we also predicted a number of TFs involved in the transcriptional response to dioxin (Table 4).
Identified TFs can act independently or, as was proposed in this work, through heterodimerization
or competition with AhR. Table 4 suggests that there might be three modes of AhR action in the
TCDD response: (1) direct from the DRE located close to the transcription start site; (2) cooperative
with other TFs whose binding sites are located in the upstream regions or link the distal enhancers with
the transcription start site; and (3) indirect via AhR targets or AhR-independent regulators. All these
questions require further experimental studies to understand the dioxin response and the ways to
prevent its harmful effects.
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4. Materials and Methods

4.1. Datasets

We searched all publicly available transcriptome studies on dioxin action on humans in Gene
Expression Omnibus (GEO) using keywords “dioxin” and “human” and found twelve series of microarray
datasets (GSE7765, GSE14553, GSE16160, GSE24193, GSE34249, GSE35034, GSE46874, GSE69844, GSE69845,
GSE69849, GSE69850, GSE122518) and seven series of RNA-Seq datasets (GSE63935, GSE80953, GSE83886,
GSE98515, GSE122002, GSE114552, GSE141711). After processing the datasets (see Section 4.2) we selected
9 microarrays (from 5 series) and 11 RNA-Seq (from 6 series) datasets. The processed ChIP-Seq dataset for
AhR GSE90550 was taken from GEO. Additional details are given in Table 1.

4.2. Data Processing and Identification of Dioxin-Responsive Genes

We used R software version 4.0.2 and Bioconductor version 3.11 to process transcriptomics data.
In the first step, we processed each individual dataset independently. The raw expression data were
normalized with RMA and TMM algorithms for microarray and RNA-seq datasets, respectively [83,84].
To identify DEGs between control and TCDD-treated samples, we used the package limma [85] for
microarray and edgeR [84] for RNA-seq datasets. The significance of expression changes in the
microarray data were estimated by t-test and in the RNA-seq data by quasi-likelihood F-test. The raw
p values were corrected by the Benjamini–Hochberg multiple testing procedure to adjust the FDR.
FDR ≤ 0.2 was set as the criterion for DEGs irrespective of to the fold-change level. Datasets in
which the number of activated or repressed DEGs were greater than 100 were included in the further
meta-analysis (Table 1).

In the second step, we compared the lists of DEGs to identify the robust TCDD targets. The number
of experiments in which the gene must be detected as DEG to be included in the list of systemically
induced genes was equal to four experiments (p value = 0.016). The threshold was estimated from a
binomial distribution with the probability of the gene being DEG by chance equal to 0.05.

4.3. Functional Annotation of Dioxin-Responsive Genes

Functional annotation was made using the topGO R package with default settings, and the Fisher
exact test was used for significance estimation. Annotations between genes and GO terms were
retrieved from org.Hs.eg.db R package.

4.4. Motif Discovery in Promoters and Peaks of Dioxin-Responsive Genes

R package MetaRE [39] was used to identify overrepresented cis-elements in upstream regions.
Upstream regions of 19,815 Homo sapiens genes (those with expression unambiguously detected by
the microarrays) were taken from GENCODE Release v27. We performed the study for (−500; +1),
(1000; +1), (−1500; +1), and (−2000; +1) lengths of upstream regions. As the results were comparable
with a higher overrepresentation of classic DREs in (−1500; +1) regions, here we discuss the results
only for the latter.

As the foreground, we used upstream regions of genes that significantly changed their expression
in response to TCDD, and as the background, the upstream regions of genes that did not change
their expression. MetaRE output sequences were compared with known transcription factor binding
motifs from the HOCOMOCO v11 core database (http://hocomoco11.autosome.ru/ [40] with the
TOMTOM tool [86] using the euclidean distance. The hits with an E-value < 0.05 were considered as
significant matches.

HOMER v4.10 known motif enrichment [87] was performed on upstream regions. The search of
known motifs was performed against the HOCOMOCO v11 core motif library. Up- and down-regulated
dioxin-responsive genes were analyzed separately.

http://hocomoco11.autosome.ru/


Int. J. Mol. Sci. 2020, 21, 7858 14 of 20

4.5. The Search of Potential AhR Interacting Partners

We used the MCOT tool [43] to identify pairwise TF interactions in AhR-binding regions. As the
anchor motif, we took the AhR position-weighted matrix (PWM) from the HOCOMOCO collection.
PWMs for the rest of the TFs from this collection were screened for potential partner motifs that
co-occurred with AhR. The spacer length for CE was taken between 0 and 29. The significance of CE
enrichment was estimated by the adjusted p value < 1 × 10−15.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/21/
7858/s1.
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Abbreviations

ABCG2 ATP-binding cassette sub-family G member 2
ADAM12 Disintegrin and metalloproteinase domain-containing protein 12
AhR Aryl hydrocarbon receptor
AhRR Aryl-hydrocarbon receptor repressor
AIP AhR-interacting protein
ALDH1A3 Aldehyde dehydrogenase 1 family member A3
ANKRD1 Ankyrin repeat domain-containing protein 1
ARNT Aryl hydrocarbon receptor nuclear translocator
BMF Bcl-2-modifying factor
BST2 Bone marrow stromal antigen 2
C1S Complement C1s subcomponent
CA9 Carbonic anhydrase 9
CABLES1 CDK5 and ABL1 enzyme substrate 1
CE Composite element
CEBPD CCAAT/enhancer-binding protein delta
COLEC12 Collectin-12
CPA4 Carboxypeptidase A4
CRIP2 Cysteine-rich protein 2
CSK Tyrosine-protein kinase CSK
CTCFL CCCTC-binding factor
CYP1A1 Cytochrome P450 family 1 subfamily A member 1
CYP1B1 Cytochrome P450 family 1 subfamily B member 1
DEG Differentially expressed genes
DHRS3 Short-chain dehydrogenase/reductase 3
DKK1 Dickkopf-1
E2F2 Transcription factor E2F2
FAM20C Extracellular serine/threonine protein kinase FAM20C
FDR False discovery rate
FN1 Fibronectin
FOSL2 Fos-related antigen 2
FZD7 Frizzled-7
GADD45A Growth arrest and DNA damage-inducible protein GADD45 alpha
GALNT10 Polypeptide N-acetylgalactosaminyltransferase 10
GBP2 Guanylate-binding protein 2
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GDF15 Growth/differentiation factor 15
GEO Gene Expression Omnibus
GO Gene Ontology
Hsp90 90 kDa heat shock protein
IER3 Radiation-inducible immediate-early gene IEX-1
IL1R1 Interleukin-1 receptor type 1
KLF Krüppel-like factor
LACC1 Laccase domain-containing protein 1
Lif Leukemia inhibitory factor
LRAT Lecithin retinol acyltransferase
MSX2 Homeobox protein MSX-2
MYC Myc proto-oncogene protein
NC-XRE Non-consensus XRE
NDRG1 N-myc downstream-regulated gene 1 protein
OAS1 2′-5′-oligoadenylate synthase 1
PHLDA1 Pleckstrin homology-like domain family A member 1
PTGES Prostaglandin E synthase
PWM Position-weighted matrix
RA All-trans-retinoic acid
RUNX1 Runt-related transcription factor 1
RUNX2 Runt related transcription factor 2
SALL4 Sal-like protein 4
SECTM1 Secreted and transmembrane protein 1
Sp1 Specificity protein 1
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TIPARP TCDD inducible poly(ADP-ribose) polymerase
TF Transcription factor
XRE Xenobiotic-responsive elements
YPEL3 Protein yippee-like 3
ZN281 Zinc finger protein 281
ZBT14 Zinc finger and BTB domain-containing protein 14
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