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Abstract

One theory to account for neglect symptoms in patients with right focal damage invokes a release of inhibition of the right
parietal cortex over the left parieto-frontal circuits, by disconnection mechanism. This theory is supported by transcranial
magnetic stimulation studies showing the existence of asymmetric inhibitory interactions between the left and right
posterior parietal cortex, with a right hemispheric advantage. These inhibitory mechanisms are mediated by direct
transcallosal projections located in the posterior portions of the corpus callosum. The current study, using diffusion imaging
and tract-based spatial statistics (TBSS), aims at assessing, in a data-driven fashion, the contribution of structural
disconnection between hemispheres in determining the presence and severity of neglect. Eleven patients with right acute
stroke and 11 healthy matched controls underwent MRI at 3T, including diffusion imaging, and T1-weighted volumes. TBSS
was modified to account for the presence of the lesion and used to assess the presence and extension of changes in
diffusion indices of microscopic white matter integrity in the left hemisphere of patients compared to controls, and to
investigate, by correlation analysis, whether this damage might account for the presence and severity of patients’ neglect,
as assessed by the Behavioural Inattention Test (BIT). None of the patients had any macroscopic abnormality in the left
hemisphere; however, 3 cases were discarded due to image artefacts in the MRI data. Conversely, TBSS analysis revealed
widespread changes in diffusion indices in most of their left hemisphere tracts, with a predominant involvement of the
corpus callosum and its projections on the parietal white matter. A region of association between patients’ scores at BIT and
brain FA values was found in the posterior part of the corpus callosum. This study strongly supports the hypothesis of a
major role of structural disconnection between the right and left parietal cortex in determining ‘neglect’.
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Introduction

Neglect is clinically defined as the impaired or lost ability to

react to or process sensory stimuli when presented in the

hemispace contralateral to a brain lesion due to acute stroke, in

the absence of any remarkable sensory loss [1], [2], [3], [4]. This

condition is frequently observed in the case of an acute/sub-acute

damage affecting the right hemisphere (RH), while, in contrast,

neglect symptoms are rarely observed after damage localized to

the left hemisphere (LH) [5]. According to previous literature,

neglect has an incidence of about 45% in acute strokes of the RH,

and persistent deficits are observed in one third of cases [6].

Despite its clinical relevance, the pathophysiology of neglect is still

poorly understood. Two major hypotheses have been formulated

so far. One is based on the assumption that the RH controls

attention orienting in both left and right hemispace, while the LH

controls the direction of attention in the right hemispace only (i.e.,

‘‘hemispheric specialization’’ hypothesis) [7], [8]. This hypothesis

is supported by the far greater prevalence of neglect following RH

than LH damage, as well as by imaging studies demonstrating a

greater extent of activations in the RH than in the LH during tasks

involving shifts of visuo-spatial attention [9], [10], [11]. Alterna-

tively, Kinsbourne’s theory has proposed a mechanism of

hemispheric rivalry [12]. This second hypothesis assumes that an

asymmetric dynamic balance exists between parieto-frontal

circuits in the two hemispheres, with the RH prevailing over the

LH (i.e., hemispheric competition hypothesis) [12]. Each hemi-

sphere is thought to be responsible for orienting attention toward

the contralateral hemi-space and to control the contralateral

hemisphere trough mechanisms of reciprocal inhibition, with a

right hemispheric prevalence in inhibiting the LH (for a recent

review see Koch et al., [13]). This theory is supported by clinical

evidence that patients with extinction often manifest directional

biases, favoring stimuli that are relatively ipsi-lesional over those

which are relatively contra-lesional within and between visual

fields. In other words, the excessive attention to the right

hemispace (at the expense of the left hemispace) as due to reduced

inhibition of the left hemisphere would lead to clinically detectable

neglect. In support to the hemispheric competition hypothesis, we

have recently demonstrated that the right, but not the left human
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posterior parietal cortex (PPC) exerts a strong inhibitory activity

over the contralateral homologous area by a short-latency

connection, using a combined method of trifocal transcranial

magnetic stimulation (TMS) and diffusion MRI [14]. Notably, we

demonstrated that this interaction is mediated by direct transcal-

losal projections located in the posterior portion of the corpus

callosum through callosal fibers crossing the regions IV and V

[14]. These data suggest that this anatomo-functional network

might represent a possible neurophysiological basis for interhemi-

spheric functional asymmetry. However, to be confirmed, this

interpretation requires a direct demonstration that, in patients

with a right parietal lesion and neglect, the posterior part of the

corpus callosum and its projections to the LH are microscopically

damaged (anatomical disconnection) in the absence of macro-

scopic abnormalities. Further, this anatomical disconnection

should be associated with the presence and severity of neglect.

Diffusion imaging provides a unique form of magnetic resonance

imaging (MRI) contrast that enables the diffusional motion of

water molecules to be measured and, as a consequence of the

interactions between tissue water and cellular structures, provides

information about the size, shape, orientation and geometry of

brain structures [15]. Pathological abnormalities that modify tissue

integrity, including microscopic degeneration of white matter

fibres, can result in an altered diffusion coefficient, which can be

measured in vivo using MRI. Diffusion imaging has already been

demonstrated, in several neurological and psychiatric conditions

(e.g., [16], [17], [18], [19]), to be capable of detecting and

quantifying subtle white matter changes. For instance, microscopic

abnormalities have been reported in the normal appearing white

matter of patients with neurodegenerative dementia, and strict

associations with clinical data have been found with patients’

cognitive disabilities [20], [21]. There are many possible methods

to analyze diffusion imaging data. One can choose a set of

anatomical locations a priori, and derive from them quantitative

measures of microscopic integrity, such as fractional anisotropy

(FA) and mean diffusivity (MD) [16]. Alternative and more

intriguing methods of image analysis are the so called voxel-wise

approaches, which do not require any a priori hypothesis on the

anatomical localization of white matter abnormalities. Tract-

Based Spatial Statistics (TBSS) [22], introduced by Smith and

collaborators, is one of the most popular of these methods. It

allows testing for group comparisons of regional FA (i.e., a

quantity that has traditionally been interpreted as an index of

microscopic tissue integrity) as well as for correlations between this

quantity and clinical or neuropsychological variables. The same

procedure can be applied to other diffusion indices, such as MD

(an orientation averaged measure of magnitude of diffusion), axial

diffusivity (Dax, the diffusion coefficient along the direction of

maximum diffusion) and radial diffusivity (Drad, the diffusion

coefficient in the direction perpendicular to the maximum). These

additional quantities can help in the interpretation of the results in

terms of pathological substrate of the FA changes [23 24].

Aim of the current study was therefore to assess the presence of

disconnection between hemispheres in patients with right brain

damage, and its contribution in determining the presence and

severity of neglect.

Materials and Methods

Study subjects
Eleven consecutive patients [F/M = 4/7; mean (SD) age: 59.7

(10.0) years] with clinical and radiological evidence of macroscopic

damage to the right hemisphere, were recruited from the Specialist

Rehabilitation Clinic of Santa Lucia Foundation (Rome, Italy). All

patients had to be right-handed (as assessed by the Edinburg

Handedness Inventory [25]) and to have suffered from an acute

ischemic stroke over an interval of 1–6 months before enrolment.

Exclusion criteria were: a previous history of cognitive decline, the

absence of sensory deficits, and current impairment in cognitive

domains other than visuospatial attention (see below). Major

systemic, psychiatric and neurological illnesses other than stroke

were carefully investigated in all patients by an expert stroke

physician (G.K.) and excluded by standard clinical and laboratory

assessments. Critical for this study, the presence and severity of left-

side neglect was carefully quantified in each patient, as detailed

below. Finally, all patients underwent MRI scanning at 3T, detailed

below, and conventional MRI scans (i.e., dual echo and fluid

attenuated inversion recovery [FLAIR]) were reviewed by an expert

neuroradiologist. Patients were excluded in the presence of any

macroscopic abnormality in addition to the right-hemispheric

lesion. A group of 11 right-handed, age-and sex-matched healthy

volunteers [F/M = 4/7; mean (SD) age: 59.3 (9.3) years] were also

recruited for the study and served as controls. Healthy controls also

underwent anamnestic interview and neurological examination to

exclude major illnesses. On the basis of conventional MRI, subjects

were excluded in the presence of any macroscopic abnormality. The

current study was conformed to the ethical principles of the Helsinki

Declaration, and received approval by the Ethics Committee of

Santa Lucia Foundation. Written informed consent was obtained

from all participants before study initiation.

Assessment of visuospatial neglect
The Behavioural Inattention Test (BIT) [26] was used to

determine the presence and severity of hemispatial neglect. This is

a comprehensive battery of tests for the evaluation of visuo-spatial

deficits, which includes both conventional (BIT-C) and behav-

ioural scales (BIT-B). The conventional tests include: 1) line

crossing, 2) letter cancellation, 3) star cancellation, 4) figure and

shape copying, 5) line bisection, and 6) representational drawing.

The behavioural tests assess specific aspects of daily life activities,

and include: 1) picture scanning, 2) telephone dialling, 3) menu

reading, 4) article reading, 5) telling and setting the time, 6) coin

sorting, 7) address and sentence copying, 8) map navigation and

card sorting. The cut-off scores of normality for the conventional

and behavioural tests are 129 (0–146, maximum score 146) and 67

(0–81, maximum score 81), respectively. Patients are classified as

suffering from neglect when their score is below the cut-off score in

either or both the BIT-C and BIT-B.

MRI acquisition
Brain imaging was obtained in a single session using a head-only

3.0T MR scanner (Siemens Magnetom Allegra, Siemens Medical

Solutions, Erlangen, Germany). The acquisition protocol included

the following sequences: 1) dual-echo turbo spin echo [TSE]

(TR = 6190 ms, TE = 12/109 ms); 2) FLAIR (TR = 8170 ms,

TE = 96 ms); 3) 3D Modified Driven Equilibrium Fourier

Transform (MDEFT) scan (TR = 1338 ms, TE = 2,4 ms, Ma-

trix = 25662246176, in–plane FOV = 2506250 mm2, slice thick-

ness = 1 mm); 4) Diffusion weighted twice-refocused SE EPI

(TR = 7000 ms, TE = 85 ms, maximum b factor = 1000 smm22,

isotropic resolution 2.3 mm3). This sequence collects 7 images

with no diffusion weighting (b0) and 61 images with diffusion

gradients applied in 61 non-collinear directions.

MRI image analysis and statistics
Lesion assessment. For each patient, lesions were outlined

on the MDEFT scans, using a semi-automated local thresholding

contouring software (Jim 4.0, Xinapse System, Leicester, UK,

Corpus Callosum Disconnection in Neglect
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http://www.xinapse.com/; accessed 2012 Sep 28). A binary lesion

mask was obtained for every subject by setting all voxels within the

lesion to 1 and the background to zero. The MDEFT scans were

then normalised to standard space using tools from the FMRIB

software library (FSL, www.fmrib.ox.ac.uk/fsl/; accessed 2012

Sep 28). First, the brain extraction tool (bet) was used to strip off

the skull from every subject’s MDEFT scan. Next, FLIRT [27]

was used to compute the affine transformation that matches this

skull-stripped image to the MNI brain atlas provided with FSL.

Then, FNIRT [28] was used to compute the deformation field that

warps the original MDEFT to the atlas, setting as starting estimate

the affine transformation computed by FLIRT. Finally, the non-

linear transformation was applied to the lesion binary mask. The

masks from all subject were added and translated into a

percentage unit to obtain a visual representation of the anatomical

location of the lesions in the patient cohort (Figure 1). Lesion

volumes were calculated from each patient’s scan and correlated

with the corresponding scores obtained at BIT, using the

Spearman’s Rank correlation test.

DTI and TBSS image processing. Diffusion data were

processed using tools from FSL. After eddy currents correction the

diffusion tensor was estimated in a voxel-wise fashion [29], and FA

maps were derived for every subject. Maps of FA, MD, Dax and

Drad were obtained.

FA maps were then fed into TBSS [22] to obtain a projection of

all subjects’ FA data onto a mean FA tract skeleton. Usually the

skeleton is obtained by aligning every subject’s FA image into a

common space using non-linear registration, and then averaging

the normalised images to create a mean FA map, which is finally

thinned so that the FA skeleton represents the center of all tracts

common to the group. Each subject’s FA data is then projected

onto the skeleton and voxel-wise statistics is carried out within the

skeleton. The projection is achieved by searching perpendicular to

the local skeleton structure for the maximum value in the subject’s

FA image. This maximum value is assumed to represent the

nearest relevant tract centre. To avoid that the presence of lesion

of the right hemisphere could affect the correct reconstruction of

the skeleton, the TBSS pipeline was modified as follows. First, all

FA images were affine registered to the FA template provided with

FSL, masking out the lesion, which was outlined on b = 0 images.

Once in standard space, the same portion of the right hemisphere

(MNI coordinate x.18 mm) was removed from the images of all

subjects. Note that in order to avoid edge effects along the

midsagittal section of the corpus callosum, part of the right

hemisphere (MNI coordinate x,18), unaffected by the lesions, was

Figure 1. Lesion distribution. The damage evident in MRI images was reconstructed for each studied patient and plotted using MRIcro software.
A T1-weighted template comprising 12 axial slices was used to demarcate lesions for every patient. The colour scale indicates the percentage of
overlapping lesions across patients.
doi:10.1371/journal.pone.0048079.g001

Table 1. Clinical assessment of visuospatial neglect.

Mean (SD) score Mean (SD) score

BIT-C total score 11.1 (26.5) BIT-B total score 56.4 (20.9)

BIT-C subtests BIT-B subtests

Line crossing 32.3 (5.9) Picture scanning 3.1 (2.6)

Letter cancellation 32.0 (4.3) Telephone dialling 7.1 (2.7)

Star cancellation 43.7 (15.3) Menu reading 6.4 (3.8)

Figure and shape copying 2.1 (1.3) Article reading 5.9 (4.3)

Line bisection 5.7 (3.1) Telling and setting the time 7.4 (1.7)

Representational drawing 2.3 (0.5) Coin sorting 6.3 (3.1)

– Address and sentence copying 7.6 (2.4)

– Nap navigation 7.1 (3.1)

– Card sorting 5.4 (2.5)

BIT-C = conventional scale of the Behavioural Inattention Test; BIT-B = behavioural scale of the Behavioural Inattention Test. See text for further details.
doi:10.1371/journal.pone.0048079.t001
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included in the analysis. The left hemisphere FA maps obtained

through this procedure were transformed back into native space,

and TBSS was performed as normal, but using a half-brain

(including sagittal slices with x,18) template. The same transfor-

mation and projection were applied to MD, Dax and Drad maps.

The healthy controls underwent an identical procedure in order to

minimise any bias.

Statistical analysis. All TBSS voxel-wise statistics was

carried out on the skeletonized images using the FSL tool

‘‘randomise’’, which is based on permutation tests (500 iterations).

A between-group comparison was first performed to identify

regional FA, MD, Dax, and Drad differences, between patients

and healthy controls. According to the specific processing, the

analysis included all voxels in the left hemisphere and in the

medial part of the corpus callosum. Then, in these same brain

voxels, voxel-wise associations were investigated between patients’

regional diffusion indices and total neuropsychological scores

reported at BIT-C and BIT-B. For both, between-group

comparison and correlation analyses, statistical significance was

computed using permutation tests. A correction for multiple

Figure 2. TBSS results in patients vs. controls: fractional anisotropy; radial diffusivity, and mean diffusivity. (A) Red voxels represent
the areas where fractional anisotropy (FA) values of patients are significantly reduced with respect to those of healthy controls, overlaid onto the
group-averaged FA image. FA values are significantly reduced in the corpus callosum and its projections on the parietal white matter. (B) Blue voxels
indicate the areas of increased radial diffusivity in patients. The same sections as in panel A are shown to ease the comparion with FA results. (C)
Green voxels indicate tracts where MD was increased in patients. Again, the same sections as in panels A and B are shown. L = left; x,y,z, indicate the
MNI coordinates.
doi:10.1371/journal.pone.0048079.g002

Figure 3. TBSS results in patients vs. controls: axial diffusivity. Red voxels indicate tracts where axial diffusivity (Dax) was found to be
increased in patients compared to healthy subjects. These results are overlaid onto the group-averaged FA image. Changes were mainly located
within the corona radiata, an area of crossing fibres, where the interpretation of changes in axial and radial diffusivity can be challenging. L = left; x, y,
z, indicate the MNI coordinates.
doi:10.1371/journal.pone.0048079.g003

Corpus Callosum Disconnection in Neglect

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e48079



comparisons was obtained using the threshold-free cluster

enhancement (TFCE) method [30]. P-values were accepted as

significant if inferior to 0.05 after TFCE correction.

Results

Assessment of neglect
According to the criteria defined in the methods section, all

patients were demonstrated to suffer from hemispatial neglect. As

reported below, 3 patients were excluded from the analysis due to

the poor quality of their MRI data (motion artifacts). From the

remaining 8 patients, 1 reported scores above the cut-off normality

in the BIT-B subtest only, 2 in the BIT-C subtest only, and 5 in

both subtests. A detailed description of patients’ performance at

BIT is summarized in Table 1.

MRI
Three out of 11 patients were excluded from image analysis for

the poor quality of their MR images due to motion artefacts.

According to the exclusion criteria, none of the patients who

entered the analysis had any detectable macroscopic abnormality

in the left hemisphere. None of the healthy controls’ MRI scan

revealed any macroscopic abnormality.

Lesion assessment. Figure 1 summarises the lesion data,

which are presented here for completeness. Neglect patients

typically had substantial lesions centred on right perisylvian

structures, similar to many previous studies of neglect.

Correlation analysis between patients’ lesion volumes and BIT

scores did not return significant results (p = 0.6).

TBSS. The patient group compared to controls revealed a

widespread reduction of regional FA in most of the left hemisphere

tracts, with a predominant involvement of the corpus callosum and

its projections towards the parietal WM (Figure 2A).

Widespread increases in Drad and in MD were also found in

patients, located in the same tracts where FA was reduced and

beyond (Figure 2B and 2C, respectively).

Areas of increased Dax were also found in patients, mainly

located within the corona radiata (Figure 3).

No significant increases in FA, nor decreases in any of the other

indices were observed.

Voxel-wise correlation analysis revealed a direct association

between the patients’ BIT scores and regional FA in a cluster

located in the posterior portion of the corpus callosum, as shown in

the top panel of Figure 4. Randomise provides the p-values but not

the corresponding correlation coefficients. In order to have an

estimate of the latter, we extracted, subject by subject, the mean

FA of the significant cluster and computed post-hoc the Pearson

correlation coefficient between this mean value and the BIT score.

The bottom panel of Figure 4 shows the corresponding scatter

plot. The correlation coefficient was 0.91. No associations were

observed between the BIT scores and any of the other diffusion

indices explored.

Discussion

We recruited here a group of patients who suffered from an

acute stroke of the RH and presented with symptoms of neglect. A

detailed clinical assessment of neglect, based on the BIT,

confirmed the presence of neglect in all recruited patients, with

different degrees of severity. According to inclusion criteria, none

of the patients had any macroscopic abnormality in the left

hemisphere, as assessed on the T2 and FLAIR scans. Conversely,

despite the absence of lesions, TBSS analysis was able to

demonstrate subtle changes in the FA values along several WM

tracts of the left hemisphere in patients. Wallerian degeneration is

a well-described phenomenon, consisting of anterograde degener-

ation of axons and myelin sheaths after proximal axonal or cell

body injury [31], [32]. In our patients, this reduction of FA fits

with the expected evolution of the stroke lesion, which affected a

proportion of neurons projecting from the right to the left

hemisphere through the corpus callosum. Further analyses of Drad

showed that this parameter was increased within and beyond the

tracts where FA was found to be reduced. Conversely, Dax was

found to be increased only in the corona radiata, an area where

the crossing of several white matter pathways (corpus callosum,

cortico-spinal tract, superior longitudinal fasciculus) is known to

occur. Although changes in Drad and Dax have been associated

with myelin and axonal damage, respectively [23 24], caution

should be exercised when interpreting these indices in areas of

crossing fibres [33]. Given these observations, we can therefore

conclude that our data support the hypothesis that the main

damage occurring in the left hemisphere of these patients is

dominated by demyelination in the context of Wallerian

degeneration phenomena. While the occurrence of Wallerian

degeneration in one hemisphere can be expected in cases of

macroscopic damage in the other hemisphere, an intriguing result

of this study is that FA changes in the ‘‘healthy’’ hemisphere also

accounted for the severity of neglect symptoms observed in our

patients. Moreover, no association could be found between

patients’ severity of neglect symptoms and the volumetric

assessment of the macroscopic lesions. When we performed the

correlation analysis with the severity of neglect symptoms assessed

by the BIT, TBSS analysis returned a well localized area of the

Figure 4. Correlation between patients’ FA and BIT scores. In
top panel it is illustrated the region of the posterior corpus callosum ,
whose fractional anisotropy (FA) value correlates with patients’
performance at Behavioural Inattention test (BIT). In the bottom panel,
the FA values extracted from that region are plotted, patient by patient,
against their correspondent performance obtained at BIT. The post-hoc
R value (Pearson correlation coefficient) was 0.91.
doi:10.1371/journal.pone.0048079.g004
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posterior portion of the corpus callosum, which is known to

transfer white matter fibers between the two homologues parietal

cortices. The FA reduction is interpreted here as axonal

demyelination/loss and, as a consequence, structural disconnec-

tion, correlated, without any a priori hypothesis on its anatomical

location, with patients’ performance at the BIT. This finding is

strongly consistent with the hypothesis that neglect follows a

disinhibition of parietal-frontal circuits of the left intact hemi-

sphere (due to the release of right hemisphere control) in patients

with neglect, as suggested by previous evidence based on TMS

experiments [34]. We believe that the current finding provides

novel anatomical evidence in support for a critical role of this

inter-hemispheric network in neglect. On the other hand, against

the ‘‘hemispheric specialization’’ theory of neglect [7], [8], no

association could be found between patients’ clinical severity and

the volumetric assessment of their macroscopic lesions. Moreover,

the data reported in the current study are not only interesting for

clarifying the pathophysiology of neglect. There is a growing body

of evidence that non-invasive brain stimulation techniques such as

repetitive TMS or transcranial direct current stimulation (tDCS)

may be used for therapeutic purposes [35]. For instance, relatively

to neglect treatment, we recently reported that theta-burst

stimulation, a form of rTMS, is able to accelerate recovery from

neglect symptoms in stroke patients over a time window of few

weeks [36]. In this context, but also in other clinical conditions of

focal brain damage, the identification of the most critical networks

producing specific symptoms may represent the target for

neurophysiological treatments. This is particularly relevant in

neurorehabilitation, for which non-invasive brain stimulation

might contribute to improve the final outcome of the protocols

currently in use.

Main limitation of the current study, which has to be considered as

explorative, is the small sample size. Future studies on larger

populations of patients are needed to confirm and extend our

preliminary findings. On the other hand, the results presented here

were obtained in a completely data-driven fashion, suggesting that

the effect we observed in 8 patients only is likely to be rather strong.

In conclusion, this study provides new anatomical evidence

supporting the notion that changes in right-left balance between

the posterior parietal cortices rather than an isolated involvement

of the right hemisphere can be critical for the occurrence of

neglect symptoms, such as those explored by the BIT.
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