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Abstract: (1) Background: Hydroxychloroquine is used to treat malaria and autoimmune diseases,
and its potential use against COVID-19 is currently under investigation. Thus far, information on
interactions of hydroxychloroquine with drug transporters mediating drug-drug interactions is
limited. We assessed the inhibition of important efflux (P-glycoprotein (P-gp), breast cancer resistance
protein (BCRP)) and uptake transporters (organic anion transporting polypeptide (OATP)-1B1,
OATP1B3, OATP2B1) by hydroxychloroquine, tested its P-gp and BCRP substrate characteristics,
and evaluated the induction of pharmacokinetically relevant genes regulated by the nuclear pregnane
X (PXR) (CYP3A4, ABCB1) and aryl hydrocarbon receptor (AhR) (CYP1A1, CYP1A2). (2) Methods:
Transporter inhibition was evaluated in transporter over-expressing cell lines using fluorescent
probe substrates. P-gp and BCRP substrate characteristics were assessed by comparing growth
inhibition of over-expressing and parental cell lines. Possible mRNA induction was analysed in
LS180 cells by quantitative real-time PCR. (3) Results: Hydroxychloroquine did not inhibit BCRP
or the OATPs tested but inhibited P-gp at concentrations exceeding 10 µM. P-gp overexpressing
cells were 5.2-fold more resistant to hydroxychloroquine than control cells stressing its substrate
characteristics. Hydroxychloroquine did not induce genes regulated by PXR or AhR. (4) Conclusions:
This is the first evidence that hydroxychloroquine’s interaction potential with drug transporters is
low, albeit bioavailability of simultaneously orally administered P-gp substrates might be increased
by hydroxychloroquine.

Keywords: hydroxychloroquine; drug-drug interaction; drug transporters; inhibition; induction;
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1. Introduction

Hydroxychloroquine is preferred over its analogue chloroquine due to its lower risk for ocular
toxicity [1,2]. Initially developed against malaria, it is also widely used against several autoimmune
diseases such as rheumatoid arthritis or systemic lupus erythematosus (SLE) [3–5]. Moreover, it also
exerts anti-bacterial, anti-fungal and anti-viral effects, which came to the fore in 2020, when treatment
options against SARS-Cov-2 were evaluated [3,5–7]. Similar to chloroquine, hydroxychloroquine is
thought to be metabolised via the cytochrome P450 (CYP) system, presumably via CYP2C8, CYP3A4,
and CYP2D6 [6,8], but there is no definite data available proving this assumption. Only for CYP2D6
there is data indicating that this enzyme is involved in hydroxychloroquine metabolism and that it is
inhibited by hydroxychloroquine [9,10].

Beyond drug-metabolising enzymes, drug efflux or uptake transporters can also critically influence
the pharmacokinetics of drugs. Iatrogenic enhancement or suppression of drug transporter activity
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can lead to decreased or increased exposure of concurrently administered drugs reducing their efficacy
or increasing the risk for adverse effects [11–14]. Two of the most important drug efflux transporters
mediating drug-drug interactions are P-glycoprotein (P-gp) and breast cancer resistance protein
(BCRP) [11,13]. For instance, P-gp mediates several clinically relevant interactions through its enzymatic
inhibition (e.g., quinidine or clarithromycin) or transcriptional induction (e.g., rifampicin) [11,13].
On the other side, members of the organic anion transporting polypeptide (OATP) family are important
uptake transporters being implicated in many drug-drug interactions. For example, inhibition of
hepatic OATP1B1/OATP1B3 transporters or intestinal OATP2B1 transporters mediate several food- or
drug-drug interactions including the well-known interactions with statins [11,13,15].

So far, there is only sparse information on possible interactions of hydroxychloroquine with drug
transporters. Limited available evidence suggests that hydroxychloroquine might be an inhibitor
of P-gp because it can increase the serum concentrations of the P-gp substrate digoxin [16], but the
underlying mechanism of this interaction has not been clarified yet.

We, therefore, aimed to assess hydroxychloroquine’s inhibitor potential of important efflux
(P-gp and BCRP) and uptake transporters (OATP1B1, OATP1B3, and OATP2B1), which frequently
mediate drug-drug interactions. Secondly, we evaluated possible P-gp and BCRP substrate
characteristics, which could have an impact on the pharmacokinetics of hydroxychloroquine itself.
Thirdly, we examined possible inducing properties of hydroxychloroquine on transporter genes.
Because most inductions are mediated by the nuclear pregnane X receptor (PXR) and some by the aryl
hydrocarbon receptor (AhR), we focused on transporter genes regulated by these transcription factors
(ABCB1 (encoding for P-gp) and ABCG2 (encoding for the breast cancer resistance protein, BCRP)) and
included some CYP genes in this analysis, which serve as prototypical indicators for PXR-regulated
(CYP3A4) and AhR-regulated genes (CYP1A1 and CYP1A2).

2. Materials and Methods

2.1. Materials

Cell culture media, supplements, Hank’s balanced salt solution (HBSS), HEPES,
phosphate-buffered saline (PBS), foetal calf serum (FCS), tetracycline, omeprazole, naringin, rifampicin,
4′,5′-dibromofluorescein (DBF), fumitremorgin C (FTC), the Cytotoxicity Detection Kit (LDH), and the
GenElute™ Mammalian Total RNA Miniprep Kit were purchased from Sigma-Aldrich (Munich,
Germany). The RevertAid™ H Minus First Strand cDNA Synthesis Kit and the Absolute QPCR
SYBR Green Mix were purchased from Thermo Fisher Scientific (Waltham, MA, USA) and dimethyl
sulfoxide (DMSO), Triton X-100, and crystal violet were from AppliChem (Darmstadt, Germany).
Calcein acetoxymethylester (calcein-AM) was purchased from Invitrogen (Karlsruhe, Germany),
pheophorbide A from Frontier Scientific Europe (Carnforth, UK), and 8-fluorescein-cAMP (8-FcA)
from BIOLOG Life Science Institute (Bremen, Germany). LY335979 (zosuquidar) was obtained from
Toronto Research Chemicals (Toronto, ON, Canada) and hydroxychloroquine from Cayman Chemical
(Ann Arbor, MI, USA). Primers were synthesised by Eurofins MWG Operon (Ebersberg, Germany).

2.2. Cytotoxicity Assays

The toxic effects of tested compounds can negatively influence transporter inhibition assays.
We, therefore, tested hydroxychloroquine for its possible cell-toxic effects using the Cytotoxicity
Detection Kit (LDH) that indicates the release of lactate dehydrogenase (LDH). Hydroxychloroquine
had no toxic effects up to 100 µM in all cell lines used.

2.3. P-gp Inhibition Assay (Calcein-AM Uptake Assay)

P-gp inhibition was tested with a calcein assay as published previously [17,18] using two different
cell systems: the L-MDR1 cell line that over-expresses human P-gp and the corresponding parental
cell line LLC-PK1 [19] and the P-gp over-expressing murine monocytic cell line P388/dx [20] and its



Pharmaceutics 2020, 12, 919 3 of 13

parental counterpart cell line P388 as a control. LLC-PK1 and L-MDR1 cells were cultured under
standard cell culture conditions with medium M199 supplemented with 10% FCS, 2 mM glutamine,
100 U/mL penicillin, and 100 µg/mL streptomycin sulphate. To maintain P-gp expression, the culture
medium for L-MDR1 was supplemented with 0.64 µM vincristine. One day before using the cells
for the calcein assay, both cell lines were fed with vincristine-free culture medium. P388 cells were
cultured under standard cell culture conditions with RPMI 1640 medium supplemented with 10%
FCS, 2 mM glutamine, 500 mM β-mercaptoethanol, 100 U/mL penicillin, and 100 µg/mL streptomycin
sulphate. For maintaining P-gp expression, the culture medium for P388/dx contained 0.43 µM
doxorubicin. One day before the inhibition assay, both P388 cell lines were set to the doxorubicin-free
culture medium.

In brief, the assay was performed in 96-well plates with a final calcein-AM concentration of 0.5 µM
for the LLC cell system and 1 µM for the P388 cell system. Cells were washed with pre-warmed
HBSS supplemented with 10 mM HEPES (HHBSS) and pre-incubated with this buffer for 30 min
and subsequently with the test compound for 10 min (LLC cell system) or 15 min (P388 cell system).
After pre-incubation, calcein-AM was added and the cells were incubated for 60 min (LLC system) or
30 min (P388 cell system) at 37 ◦C on a rotary shaker (Noctua, Vienna, Austria). The corresponding time
points were chosen based on the highest possible measurement range for inhibition. The uptake was
stopped by transferring the plates on ice and washing the cells twice with HHBSS pre-cooled to 4 ◦C.
Subsequently, cells were lysed in 1% Triton X-100 for 15 min. The fluorescence of the calcein generated
within the cells was analysed in a Fluoroskan Ascent fluorimeter (Labsystems, Frankfurt, Germany)
with 485 nm excitation and 535 nm emission filters. Each concentration of hydroxychloroquine
(0.01–100 µM) was tested in octuplet and the experiment was performed in quadruplicate. 200 µM
verapamil was used as a positive control. Possible quenching effects of hydroxychloroquine were ruled
out because no effect on calcein fluorescence was observed in the parental cell lines.

2.4. BCRP Inhibition Assay (Flow Cytometric Pheophorbide A Efflux Assay)

BCRP inhibition was tested by using pheophorbide A as a fluorescent substrate probe in BCRP
over-expressing MDCKII-BCRP cells [21] and its parental counterpart cell line MDCKII. Both cell lines
were cultured under standard cell culture conditions in DMEM containing 10% FCS, 2 mM glutamine,
100 U/mL penicillin, and 100 µg/mL streptomycin sulphate. The assay was conducted as described
previously [22]. In brief, 106 cells were suspended in 400 µL incubation medium (RPMI/2% FCS)
containing 1 µM pheophorbide A and incubated at 37 ◦C on a rotary shaker (Noctua, Vienna, Austria)
for 30 min. After washing the cells with an ice-cold incubation medium, cells were re-suspended in a
medium containing the respective test or control compound and incubated at 37 ◦C on a rotary shaker
for 60 min. This time point was chosen based on the highest possible measurement range for inhibition.
After washing the cells with an ice-cold incubation medium, they were re-suspended in 500 µL ice-cold
PBS/2% FCS and measured immediately. Intracellular fluorescence was quantified in a MACSQuant 10
Analyzer (Milteny, Bergisch-Gladbach, Germany) with the 488 nm laser and the 525 nm bandfilter
for GFP (FITC channel) and the 638 nm laser and the 650 nm bandpass filter for pheophorbide A
(APC channel). In each sample, 30,000 cells were counted. Excluding debris, living cells were gated
in the forward/sideward scatter by using the unstained sample. BCRP-positive cells also express a
green fluorescent protein (GFP) [21] and thus, BCRP-positive cells were additionally gated in the FITC
channel. The inhibitory effect of hydroxychloroquine and the positive control compound (10 µM
FTC) was quantified by calculating the ratio between the median fluorescence with and without the
inhibitor and normalising the effects to those measured in the parental cell line. The experiment was
performed in triplicate on different days. Possible quenching effects of hydroxychloroquine were
ruled out because no hydroxychloroquine effect on pheophorbide A fluorescence was observed in the
parental cell line MDCKII.
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2.5. Flow Cytometric OATP1B1 and OATP1B3 Inhibition Assay

As cell models for human OATP1B1 and OATP1B3, HEK293, a human embryonic kidney cell
line, stably transfected with OATP1B1 (HEK-OATP1B1), OATP1B3 (HEK-OATP1B3), or the empty
control vector (HEK293-VC G418) were used [23,24]. Cells were cultured under standard cell culture
conditions with DMEM supplemented with 10% FCS, 2 mM glutamine, 100 U/mL penicillin, 100 µg/mL
streptomycin sulphate, and 800 µg/mL G418. Inhibition of the OATPs was quantified by flow cytometry
assessing the uptake of 8-FcA into HEK293 cells over-expressing the respective transporter after 10 min
incubation and normalised to the control cell line as described previously [25]. Intracellular fluorescence
was quantified in a MACSQuant 10 Analyzer (Milteny, Bergisch-Gladbach, Germany) with the 488 nm
laser for excitation and the 525 nm bandfilter for emission (FITC channel). Excluding debris, living cells
were gated in the forward/sideward scatter by using the unstained sample. For each concentration
(0.1–100 µM), 30,000 cells were measured and each experiment was performed in triplicate. Rifampicin
(20 µM), a well-known inhibitor of OATP1B1 and OATP1B3, was used as a positive control. Possible
quenching effects of hydroxychloroquine were ruled out because no effect on 8-FcA fluorescence was
observed in the parental cell lines.

2.6. Flow Cytometric OATP2B1 Inhibition Assay

As a cell model for human OATP2B1, HEK293 cells over-expressing OATP2B1 in the presence
of tetracycline were used [26]. Cells were cultured under standard cell culture conditions with
DMEM/Ham’s F12 medium supplemented with 10% FCS, 4 mM glutamine, 100 U/mL penicillin,
and 100 µg/mL streptomycin sulphate. To generate OATP2B1 over-expression, cells were treated 72 h
before the assay with 1 µg/mL tetracycline.

The inhibition of OATP2B1 was analysed by using the fluorescent substrate DBF (1 µM).
Intracellular fluorescence was quantified after 10 min of incubation in a MACSQuant 10 Analyzer
(Milteny, Bergisch-Gladbach, Germany) with the 488 nm laser for excitation and the 525 nm bandfilter
for emission (FITC channel). Excluding debris, living cells were gated in the forward/sideward scatter
by using the unstained sample. For each concentration (0.1–100 µM), 30,000 cells were measured
and each experiment was performed in triplicate. Uptake in cells with tetracycline induction was
normalised to the uptake in cells without induction. Naringin (1 mM) was used as a positive control.
Possible quenching effects of hydroxychloroquine were ruled out because no effect on DBF fluorescence
was observed in the control cell line.

2.7. Growth Inhibition Assays with Resistant Cell Lines for Assessing P-gp and BCRP Substrate Characteristics

To evaluate whether hydroxychloroquine is a substrate of P-gp or BCRP, growth inhibition assays
were conducted. Cell lines with overexpression of an efflux transporter are more resistant to the
anti-proliferative effects of a compound if this compound is a substrate of the respective transporter
and can be extruded from the cell. Thus, anti-proliferative effects of hydroxychloroquine were assessed
in L-MDR1 cells (with over-expression of human P-gp) in comparison to the effects in the parental cell
line LLC-PK1 and in MDCKII-BCRP cells (over-expressing human BCRP) compared to the parental
cell line MDCKII. Reversal of drug resistance was tested by using the P-gp-specific inhibitor LY335979
(zosuquidar) or the BCRP-specific inhibitor FTC. The assay using crystal violet staining was conducted
and analysed as described previously [27]. Each experiment was performed at least in quadruplicate
with n = 8 wells for each concentration (0.1–500 µM).

2.8. Induction Assay

For induction experiments, the human colon adenocarcinoma cell line LS180 (available at ATCC,
Manassas, VA, USA) was used. This cell line is an established model for investigating gene inductions
mediated by PXR or AhR [25,28]. Cells were cultured under standard cell culture conditions in
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DMEM supplemented with 10% FCS, 100 U/mL penicillin, 100 µg/mL streptomycin sulphate, 0.1 mM
non-essential amino acids, and 2 mM glutamine.

To exclude an anti-proliferative effect potentially flawing the results of the induction assay,
growth inhibition by hydroxychloroquine was investigated in LS180 cells beforehand. Proliferation
was quantified by crystal violet staining and the assays were conducted as described previously [27].
Each concentration was tested in octuplet and each experiment was performed in quadruplicate.
The IC20 for hydroxychloroquine was 22.5 ± 7.3 µM. Thus, to ensure that > 80% of the cells survive,
the maximum concentration tested was set to 20 µM.

For the induction assays, LS180 cells were treated for four days with hydroxychloroquine (1, 2,
10, and 20 µM), rifampicin (20 µM, positive control for PXR-driven genes), omeprazole (150 µM,
positive control for AhR-driven genes), and compound-free medium as a negative control, respectively.
All media were adjusted to the DMSO content of the solution with the highest DMSO content in the
respective experiment (0.1%). The experiment was conducted in quintuplicate. RNA was extracted
immediately after harvesting the cells and stored at −80 ◦C until processing.

RNA was isolated using the GenElute™ Mammalian Total RNA Miniprep Kit, and cDNA
was synthesized with the RevertAid™ H Minus First Strand cDNA Synthesis Kit according to
the manufacturer’s instructions. mRNA expression was quantified by real-time RT-PCR with the
LightCycler® 480 (Roche Applied Science, Mannheim, Germany) as described previously [29].
Primer sequences are listed in Table 1. PCR amplification was carried out in 20 µL reaction volume
containing 5 µL 1:10 diluted cDNA, 1× Absolute QPCR SYBR Green Mix and 0.15 µM (ABCB1, ABCG2,
CYP3A4, GU) or 0.5 µM (CYP1A1, CYP1A2) primers. The most suitable housekeeping gene for
normalisation in LS180 cells was identified using geNorm (version 3.4, Center for Medical Genetics,
Ghent, Belgium), which determines the most stable reference gene from a set of tested genes in a given
cDNA sample panel [30]. Among a panel of 7 housekeeping genes tested, glucuronidase β (GU) proved to
be the most stable gene in LS180 cells under the selected experimental conditions. Data were evaluated
via calibrator-normalised relative quantification with efficiency correction using the LightCycler®

480 software version 1.5.1.62 (Roche Applied Science, Mannheim, Germany). Results were expressed
as the target/reference ratio divided by the target/reference ratio of the calibrator. The results are
therefore corrected for sample inhomogeneities and variance caused by detection. All samples were
amplified in duplicate and the mean of the technical duplicate was used for further calculation.

Table 1. Primer sequences and annealing temperatures.

Gene Forward Primer 5′-3′ Reverse Primer 5′-3′ A [◦C] Ref.

ABCB1 CCCATCATTGCAATAGCAGG TGTTCAAACTTCTGCTCCTG 60 [29]
ABCG2 AGATGGGTTTCCAAGCGTTCAT CCAGTCCCAGTACGACTGTGACA 57 [29]
CYP1A1 TCCGGGACATCACAGACAGC ACCCTGGGGTTCATCACCAA 65 [31]
CYP1A2 CATCCCCACAGCACAACAA TCCCACTTGGCCAGGACTTC 63 [32]
CYP3A4 TTCAGCAAGAAGAACAA GGTTGAAGAAGTCTCTAAGC 57 [33]

GU TTCACCAGGATCCACCTCTG AGCACTCTCGTCGGTGACTG 61 [34]

A = annealing temperature.

2.9. Statistical Analyses

Data were analysed using GraphPad Prism Version 8.43 and InStat Version 3.06 (GraphPad
Software, San Diego, CA, USA). IC50 values were calculated using the four-parameter fit (sigmoidal
dose-response curves with variable slope). Differences between mRNA expressions were tested using
ANOVA with Dunnett’s post hoc test. Differences between the IC50 values in the growth inhibition
assays were tested with the Kruskal–Wallis test with Dunn’s multiple comparisons posthoc test.
A p-value < 0.05 was considered significant.
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3. Results

3.1. Inhibition of Drug Transporters by Hydroxychloroquine

Hydroxychloroquine did not affect intracellular calcein fluorescence in L-MDR1 cells
(over-expressing P-gp) and the corresponding parental cell line LLC-PK1 excluding potent P-gp
inhibitory effects. We also tested the effects in P388/dx cells compared to P388 cells, because this system
is more suitable to detect weak P-gp inhibitors. In P388/dx cells, but not in the parental cell line P388,
intracellular calcein fluorescence was increased by hydroxychloroquine at concentrations higher than
10 µM clearly indicating weak P-gp inhibition. However, an IC50 value could not be calculated due to
missing plateau effects (Figure 1b).
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Figure 1. P-glycoprotein (P-gp) inhibition assay. Effect of hydroxychloroquine on intracellular calcein
fluorescence in P-gp over-expressing L-MDR1 cells and the corresponding parental cell line LLC-PK1
(a) and in P-gp overexpressing P388/dx and the corresponding parental P388 cells (b). Results are
depicted as mean ± S.D. of four independent experiments with each concentration tested in octuplet.
For clarity, the results of the negative controls are not integrated into the figure: Buffer only yielded
relative fluorescence values of 0.5 ± 0.009 in LLC-PK1 cells, 0.06 ± 0.007 in L-MDR1 cells, 6.2 ± 0.9 in
P388 cells and 1.0 ± 0.2 in P388/dx cells. None of the hydroxychloroquine concentrations tested was
cytotoxic as assessed within the cytotoxicity assay described in 2.2.

Hydroxychloroquine slightly increased intracellular pheophorbide A fluorescence in MDCKII-BCRP
cells but not in MDCKII cells at concentrations ≥ 50 µM indicating weak BCRP inhibition (Figure 2).
In comparison to the positive control FTC, this inhibition was, however, negligible.
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Figure 2. Breast cancer resistance protein (BCRP) inhibition assay. Effect of hydroxychloroquine
on intracellular pheophorbide A fluorescence in MDKC-BCRP cells normalised to MDCKII cells.
Results are depicted as mean ± S.D. with n = 3 biological replicates. None of the hydroxychloroquine
concentrations tested was cytotoxic as assessed within the cytotoxicity assay described in 2.2.

Hydroxychloroquine did not inhibit the uptake transporter OATP1B1, OATP1B3, and OATP2B1:
In contrast to the positive control 20 µM rifampicin (inhibiting OATP1B1 by 80% and OATP1B3
by 90%), hydroxychloroquine did not decrease intracellular 8-FcA concentration in OATP1B1- or
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OATP1B3 over-expressing HEK293 cells, indicating the absence of OATP1B1 and OATP1B3 inhibition.
Moreover, in contrast to the positive control (1 mM naringin, inhibiting OATP2B1 activity by 70%),
hydroxychloroquine did not affect DBF uptake indicating the absence of OATP2B1 inhibition (data
not shown).

3.2. P-gp and BCRP Substrate Characteristics of Hydroxychloroquine

The potency of hydroxychloroquine to inhibit cell growth significantly differed in P-gp
over-expressing cells (L-MDR1) compared to the parental cell line (LLC-PK1) (IC50: 82 ± 10 µM
for LLC-PK1; 427 ± 16 µM for L-MDR1; p < 0.001). L-MDR1 cells were about 5-fold more resistant to
the anti-proliferative effects of hydroxychloroquine (p < 0.01, Figure 3a). Moreover, this resistance was
abolished in the presence of the strong and specific P-gp inhibitor LY335979 (zosuquidar), whereas no
effect was observed in the parental cell line lacking P-gp (IC50: 93 ± 2 µM for LLC-PK1 + LY335797;
90 ± 1 µM for L-MDR1 + LY335979; p > 0.05). Together, this verifies that the increased resistance
of L-MDR1 cells to hydroxychloroquine can be attributed to P-gp over-expression. In summary,
these results clearly indicate that hydroxychloroquine is a substrate of the efflux transporter P-gp.
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Figure 3. Growth inhibition assay. Concentration-dependent effect of hydroxychloroquine on the
proliferation of the P-gp over-expressing cell line L-MDR1, the corresponding parental cell line LLC-PK1
with and without the specific P-gp inhibitor LY335979 (a) and of the BCRP over-expressing cell line
MDCKII-BCRP and the corresponding parental cell line MDCKII with and without the specific inhibitor
fumitremorgin C (FTC) (b). Each curve depicts the results of four experiments with each concentration
tested in octuplet. Data are expressed as mean ± S.D. for n = 32 wells.

In contrast, there was no difference between the potency of hydroxychloroquine to inhibit cell
growth in the BCRP over-expressing cell line MDCKII-BCRP and the parental cell line MDCKII with
or without the potent and specific BCRP inhibitor FTC (Figure 3b; IC50: 89 ± 12 µM for MDCKII;
89 ± 7 µM for MDCKII + FTC; 88 ± 9 µM for MDCKII-BCRP, and 92 ± 5 µM for MDCKII-BCRP + FTC,
p > 0.05). These experiments indicate that hydroxychloroquine is not transported by BCRP.

3.3. Induction of PXR and AhR Regulated Genes by Hydroxychloroquine

Possible inductions of PXR-regulated (ABCB1, CYP3A4, ABCG2) and AhR-regulated (ABCG2,
CYP1A1, CYP1A2) genes by hydroxychloroquine were tested in LS180 cells. As expected, the positive
control rifampicin (PXR ligand) significantly up-regulated the prototypical PXR-driven genes CYP3A4
and ABCB1 and also slightly the ABCG2 gene regulated by both, PXR and AhR, which was however not
relevant compared to the profound effects of the positive control omeprazole. Omeprazole (AhR ligand)
significantly up-regulated mRNA expression of the AhR-regulated genes ABCG2, CYP1A1, and CYP1A2.
In contrast, hydroxychloroquine had no significant effect on the expression of any of these genes
(Figure 4).
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Figure 4. Effects of hydroxychloroquine (HCQ) on mRNA expression in LS180 cells compared to
untreated medium control after 4 days of incubation. Rifampicin (20 µM) served as a positive control
for pregnane X (PXR)-driven genes (CYP3A4, ABCB1 and ABCG2) and omeprazole (150 µM) served as a
positive control for AhR-driven genes (ABCG2, CYP1A1, CYP1A2). Expression data were normalised to
the medium control and the housekeeping gene glucuronidase β. Data are expressed as mRNA changes
± S.D. for n = 5 biological replicates. Data were analysed using ANOVA with Dunnett’s post hoc test
compared to the medium control. ** p < 0.01.

4. Discussion

Hydroxychloroquine is licensed for the treatment and prophylaxis of malaria and the treatment
of various autoimmune diseases. In addition, it is explored and considered for the treatment of
several bacterial, fungal, and viral infections including COVID-19 [3,5–7,35]. The pharmacodynamic
interaction potential of hydroxychloroquine is mainly restricted to its well-known QT-prolonging
and pro-arrhythmic effects [3,4,7]. In contrast, its pharmacokinetic drug-drug interaction potential
has never been studied in detail, although hydroxychloroquine has been on the market for decades.
So far, isolated case reports suggest that hydroxychloroquine increases digoxin plasma concentrations
through inhibition of P-gp [16], but whether hydroxychloroquine actually inhibits this important
efflux transporter has never been investigated. We, therefore, had a closer look at the possible
transporter-based drug-drug interaction potential of hydroxychloroquine and focused on transporters
frequently implicated in such pharmacokinetic interactions.

Hydroxychloroquine represents a drug with a very high volume of distribution (5522 L in
blood; 44,257 L in plasma) and due to its accumulation in blood cells, quantification of whole blood
concentrations rather than plasma concentrations is recommended [36,37]. At steady-state (400 mg/day),
blood concentrations up to 9 µM have been measured [38] and in SLE patients the proposed target blood
concentration is 1000 ng/mL (=3 µM) [39]. Thus, evaluating hydroxychloroquine concentration in the
µM range seems appropriate and the effects of hydroxychloroquine concentrations in theµM range must
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be considered clinically meaningful. Due to the accumulation in tissue/cells, the average intracellular
concentration at steady-state is postulated to be 1 mM and even 80 mM within lysosomes [37,40].
Interestingly, the mainly plasma membrane-located drug transporter P-gp is also present in the
lysosomal membrane actively sequestering P-gp substrates into lysosomes [41]. Our data for the first
time indicate that hydroxychloroquine is a P-gp substrate: cells with P-gp over-expression were much
more resistant towards this compound than the corresponding parental cells and this resistance was
abolished in the presence of the specific P-gp inhibitor LY335979 (Figure 3a). Thus, hydroxychloroquine
accumulation in lysosomes might not only be driven by low lysosomal pH, but also by active transport
via P-gp. Moreover, based on the assumption that hydroxychloroquine is a P-gp substrate, diminished
intracellular concentration of hydroxychloroquine might also have contributed to the poor response in
SLE patients with high P-gp activity in the cell membrane of leucocytes. These patients received a
combination of prednisolone and hydroxychloroquine and originally the poor response in patients
with high P-gp activity was attributed to corticosteroid resistance [42].

Our data also indicate that hydroxychloroquine inhibits P-gp at extracellular concentrations
exceeding 10 µM. Together with the assumption that it is a P-gp substrate, this inhibition is most likely
competitive. Recently, another mechanism for P-gp inhibition has been demonstrated: in cancer cells,
hydroxychloroquine inactivates P-gp located in lysosomes by increasing lysosomal pH (after 12 h
of incubation), thus sensitising cells to chemotherapeutic P-gp substrates such as doxorubicin [43].
However, the calcein assay applied in our study measures short-term effects (total incubation time
only 45 min in the P388 cell system); thus, it can be excluded that the effect observed can be attributed
to a (sub-acute) increase in lysosomal pH. In fact, direct P-gp inhibition may also have contributed to
the observed increased sensitivity of cells towards doxorubicin described previously [43]. In addition,
the clinical interaction between the prototypical P-gp substrate digoxin and hydroxychloroquine also
argues for P-gp inhibitory potential of hydroxychloroquine: Two case reports demonstrated increased
plasma concentrations of digoxin during concurrent therapy with hydroxychloroquine [16], indicating
intestinal P-gp inhibition. According to the formula published by Zhang and co-workers [44], after a
dose of 200/400 mg hydroxychloroquine, intestinal concentrations are expected to reach nearly 2/4 mM,
which is obviously high enough for potent P-gp inhibition and thus increased absorption and potential
toxicity of digoxin. Whether P-gp inhibition by hydroxychloroquine is clinically relevant for other
P-gp substrates with a narrow therapeutic index (e.g., dabigatran etexilate) remains to be investigated.

Beyond efflux transporters, several uptake transporters can also mediate drug-drug interactions,
especially members of the OATP family [11,45]. Previous data demonstrated weak inhibition of organic
anion transporters (OATs) by hydroxychloroquine, but no inhibition of organic cation transporters
(OCTs) and organic cation/carnitine transporters (OCTNs) [46]. Our data expand these findings and
clearly rule out that hydroxychloroquine (up to 100 µM) inhibits OATP1B1, OATP1B3, and OATP2B1,
underlining previous data on OATP1B1 [46]. In contrast, the latter study found weak inhibition
of OATP1B3 and OATP2B1 (about 20% at a concentration of 10 µM). However, this discrepancy
to our data might be explained by the usage of other cell lines, other substrates, and the lack of
normalisation to a parental cell line as performed in the previous study. Moreover, there are no reports
on clinically relevant interactions with OATP1B3 or OATP2B1 substrates, rendering relevant inhibition
of these transporters by hydroxychloroquine unlikely. Interestingly, hydroxychloroquine seems to be a
competitive inhibitor of OATP1A2 and inhibits the uptake of the OATP1A2 substrate all-trans-retinol
in vitro [46]. The authors of this finding postulated that this inhibition might contribute to the retinal
degeneration observed in patients under hydroxychloroquine therapy.

Apart from inhibition, induction of drug transporters or drug-metabolising enzymes can cause
substantial drug-drug interactions, which are frequently mediated by the nuclear receptor PXR and
sometimes by AhR [13,47,48]. We, therefore, investigated whether hydroxychloroquine induces typical
genes regulated by these transcription factors. Because the mRNA expression of none of these genes
was significantly influenced, hydroxychloroquine is not a PXR or AhR ligand and unlikely acts as a
perpetrator in drug-drug interactions based on transcriptional induction mediated by PXR or AhR.
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Limitations: (1) We did not test the metabolites of hydroxychloroquine, which might also contribute
to its drug-drug interaction potential. (2) We limited ourselves to the investigation of drug transporters
most relevant for drug-drug interactions. (3) In the induction experiment, we restricted the analysis
to marker genes of induction mediated by PXR or AhR. (4) We used the growth inhibition assay for
assessing substrate characteristics. Although this is an indirect assay not measuring the transport
itself, obtained data are congruent, unambiguous and clearly indicate that hydroxychloroquin is a
P-gp substrate.

5. Conclusions

Our data suggest that hydroxychloroquine is a substrate and weak inhibitor of P-gp. In contrast, it is
not a substrate of BCRP and does not inhibit this efflux transporter or the uptake transporters OATP1B1,
1B3, and 2B1. Moreover, genes regulated by PXR or AhR are not induced by hydroxychloroquine.
Taken together, this in vitro study for the first time demonstrates that the transporter-based interaction
potential of hydroxychloroquine appears to be low. Only P-gp mediated interactions should be
studied in more detail in clinical studies, particularly if the oral bioavailability of a compound is
significantly restricted by this transporter (e.g., dabigatran etexilate). Until clinical relevance is known,
administration of hydroxychloroquine and P-gp substrates should be separated in time by hours and,
as a precaution, hydroxychloroquine should not be administered until absorption of the P-gp substrate
is largely complete.
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