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Simple Summary: There is a growing interest in using milk mid-infrared (MIR) spectrometry to
obtain new phenotypes to assist in the complex management of dairy farms. These predictive values
can be erroneous for many reasons, even if the prediction equations used are accurate. Unfortunately,
there is no quality protocol routinely implemented to detect those abnormal predictive values in
the database recorded by dairy herd improvement (DHI) organizations, except for fat and protein
contents. However, for financial and practical reasons, it is unfeasible to adapt the quality protocol
commonly used in milk laboratories to improve the accuracy of those traits. So, this study proposes
three different statistical methods that would be easy to implement by DHI organizations to detect
abnormal values and limit the spectral extrapolation in order to improve the accuracy of MIR-based
predictive values.

Abstract: The use of abnormal milk mid-infrared (MIR) spectrum strongly affects prediction quality,
even if the prediction equations used are accurate. So, this record must be detected after or before
the prediction process to avoid erroneous spectral extrapolation or the use of poor-quality spectral
data by dairy herd improvement (DHI) organizations. For financial or practical reasons, adapting
the quality protocol currently used to improve the accuracy of fat and protein contents is unfeasible.
This study proposed three different statistical methods that would be easy to implement by DHI
organizations to solve this issue: the deletion of 1% of the extreme high and low predictive values
(M1), the deletion of records based on the Global-H (GH) distance (M2), and the deletion of records
based on the absolute fat residual value (M3). Additionally, the combinations of these three methods
were investigated. A total of 346,818 milk samples were analyzed by MIR spectrometry to predict the
contents of fat, protein, and fatty acids. Then, the same traits were also predicted externally using
their corresponded standardized MIR spectra. The interest in cleaning procedures was assessed by
estimating the root mean square differences (RMSDs) between those internal and external predicted
phenotypes. All methods allowed for a decrease in the RMSD, with a gain ranging from 0.32% to
41.39%. Based on the obtained results, the “M1 and M2” combination should be preferred to be more
parsimonious in the data loss, as it had the higher ratio of RMSD gain to data loss. This method
deleted the records based on the 2% extreme predictions and a GH threshold set at 5. However, to
ensure the lowest RMSD, the “M2 or M3” combination, considering a GH threshold of 5 and an
absolute fat residual difference set at 0.30 g/dL of milk, was the most relevant. Both combinations
involved M2 confirming the high interest of calculating the GH distance for all samples to predict.
However, if it is impossible to estimate the GH distance due to a lack of relevant information to
compute this statistical parameter, the obtained results recommended the use of M1 combined with
M3. The limitation used in M3 must be adapted by the DHI, as this will depend on the spectral
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data and the equation used. The methodology proposed in this study can be generalized for other
MIR-based phenotypes.

Keywords: milk-component prediction; mid-infrared spectrum; Mahalanobis distance; quality-
assurance system; Holstein cow

1. Introduction

Since the 1980s, milk contents like fat and protein have been predicted using milk mid-
infrared (MIR) spectrometry. Thanks to the high accuracy of the predictive models used,
those phenotypes are included in the equation that defines the milk price paid to farmers
for their production. Due to the direct economic link between those MIR predictions and
farm profitability, most milk laboratories follow a quality-assurance procedure proposed
by the Internal Dairy Federation during what is most commonly called the “ring test”.
During this test, identical sets of modified milk samples (i.e., often 10 milk samples having
a large variation of fat content) are measured using MIR spectrometers in the different
laboratories. The predictive values are then compared to the contents given by certified
reference chemical-measurement methods. This allows for inter- and intra-laboratory
comparisons (i.e., machine differences or operators), as well as the definition of the slope
and the bias corrections used to more accurately calibrate the fat and protein predictions
given by the manufacturer’s equation after the prediction process. Moreover, if the bias and
slope corrections for the considering trait are too strong, the ring test alerts the laboratory
that an adjustment is needed, or a maintenance of the spectrometer is required. A procedure
is also implemented to check the daily (short-term) stability of the instrument between two
ring tests. The ring test has a cost due to the creation and sending of milk samples, the
reference chemical analysis, and the laboratory comparisons. But this cost is the price to
ensure the best predictive values and accuracy for the fat and protein phenotypes predicted
by MIR. In parallel, as the milk laboratories involved in the milk analysis for the milk
payment and the routine recording of dairy cows performance are the same, the ring test
is a great opportunity for dairy herd improvement (DHI) organizations to ensure a high
quality of the fat and protein phenotypes used in their breeding selection programs.

Farms are requiring an increasing amount of highly skilled labor and techniques to
handle complex cow management strategies [1]. Fast and low-cost phenotypes related to
milk production, animal husbandry, animal health, and reproduction are therefore currently
required for dairy farming [2–4]. This explains why these phenotypes are increasingly
being predicted with a fluctuating accuracy by milk MIR spectrometry [4]: fatty acids com-
position [5,6], protein composition [6], mineral contents [7], milk acidity [8], energy status
of cow [9], nitrogen-utility efficiency [10], cow fertility [11,12], methane emissions [13], and
detection of milk adulteration [14]. This means that all of these phenotypes are derived
from the same raw data: the MIR spectrum. For this reason, an increasing number of
DHI organizations record the milk MIR spectrum of each tested cow in their database
in order to perform a specific prediction externally using their own prediction equations.
For instance, the Walloon Breeding Association (Awé, Ciney, Belgium) was the first to
realize this recording. However, compared to the predicted contents of fat and protein,
no quality protocol is currently implemented in milk laboratories (except the alert for
machine maintenance) or in DHI organizations for these new MIR traits. The improvement
of the ring-test procedure to take into account these traits is sometimes unfeasible, as it is
impossible to quantify them using chemical analysis of milk (i.e., methane, energy balance).
Moreover, for traits measurable directly in milk, the high cost of the reference chemical
analysis will dramatically increase the final cost of the ring test, potentially impacting its
large use by milk laboratories or DHI organizations, especially because no direct economic
return for the farmer exists for those traits currently. So, an alternative low-cost and quick
quality protocol must be defined.
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To achieve this objective, it is important to highlight the different factors influencing
the final accuracy of an MIR prediction (i.e., predictive values). First, the prediction
equations itself can provide inaccurate predictive values due to the variability of the
dataset used to build it. From a dataset containing reference data and their corresponding
milk MIR spectra, prediction equations can be developed and easily applied to new milk
spectra to predict the phenotypes of interest. However, the performance of this modeling
can fluctuate with the conditions of application. The stability of the prediction equation,
more often called robustness, is worth considering. For decades, there is no standard
definition of robustness [15]. It is certain that a high accuracy (i.e., a low root mean square
error (RMSE)) coupled with a low RMSE variability under various conditions contribute to
robust prediction equations. Grelet et al. [16] reported that the inclusion of the variability
related to milk spectra, breeds, herds, and diets can notably improve the model’s robustness.
Thomas and Ge [17] also concluded that the validity of a prediction equation depends
partly on the representativeness and the structure of the calibration set used. However, for
practical and financial reasons, it is impossible to include all samples as needed to cover
the entire variability of field data [18]. This could potentially affect the prediction accuracy
for new samples. This means that even if we have a high-quality model, the obtained
predictions can be erroneous due to the spectral extrapolation, as the sample variability
is not taken into account in the calibration set. Consequently, knowing the calibration set
used to develop a prediction equation is of interest to limit the predictive values of samples
that are out of the variability covered by the set. Second, a poor-quality predictive value
can be obtained due to the use of poor-quality spectral data. Unfortunately, there is no
consensus regarding the best strategies to be implemented routinely to address both of
these issues. As mentioned previously, a strategy based on the analysis of traits using a
reference chemical analysis is not feasible for financial or practical reasons. However, a
quality protocol based on statistical procedures applied directly or indirectly on the spectral
data massively available for DHI organizations could be relevant and cost-efficient.

Indeed, multivariate distance can be calculated between the spectrum to be predicted
and those used in the calibration set in order to limit spectral extrapolation. The Maha-
lanobis distance [19] (also called H distance) is preferable to the Euclidean distance, as
the H distance takes the variability and the internal correlations of samples into consider-
ation [20,21]. However, the Global H (GH) distance is preferred in practice because it is
not affected by the number of variables used to calculate this distance. The GH distance
is defined as the ratio of the squared H distance to the number of variables used [22,23].
A GH value equal to 3 was proposed to eliminate potential outliers [22]. However, in the
case of a multivariate normal model, less than 99% of the population would fall within the
boundary of 3, and the optimal limit of the GH value actually depends on the size of the
calibration set, the number of variables used, and the alpha risk limit adopted [24]. The
high quality of information that can be provided by the calculation of such a distance could
be implemented by milk laboratories or DHI organizations in the future.

To identify potential outliers for a particular trait, experimenters often use the mean ±
3 times the standard deviation if the trait is normally distributed (alpha = 0.3%). If the GH
distance is not available, since the MIR traits are often normally distributed and due to the
high quantity of information available by DHI organizations or milk laboratories, a cleaning
based on these easy-to-compute position statistical parameters is relevant. Moreover, these
potential outliers can be related to a spectral extrapolation during the prediction process or
the use of poor-quality spectral data. This last case could also be detected using the content
of fat given directly by the spectrometer, as this predictive value is routinely adjusted for
bias and slope by milk laboratories during the ring test. Due to this correction and the
high accuracy of the prediction equation used, this predicted content can therefore be
assumed to be a control value. The estimation of a large error between this control value
and the value predicted using an external prediction equation (i.e., without bias and slope
corrections) could highlight the presence of abnormal spectra due to analytical issues or a
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wrong association between the sample and the data. Recently, Dale et al. [25] proposed the
cleaning of an MIR prediction dataset using a threshold of 2% of the relative fat error.

In conclusion, since an increasing number of phenotypes is predicted from milk MIR
spectra externally of the spectrometers, a definition of a quality procedure is needed to
ensure the reliability of these phenotypes. To achieve a realistic context, this study deals
with DHI data collected during routine milk recording. Milk fatty acids and protein
contents were used in this study to illustrate the interest in the cleaning of statistical
approaches previously detailed. However, these proposed procedures can be generalized
to any other MIR phenotypes. So, three data quality checks were tested: the deletion of
1% of extreme high and low predicted values (Method 1), the deletion of records based on
the spectral GH distance (Method 2), and the deletion of records based on the absolute
residual value between the predicted and control milk fat contents (Method 3). Additionally,
combinations of these three methods were investigated.

2. Materials and Methods
2.1. Data

A total of 397,131 milk records were collected from 49,522 Holstein dairy cows be-
longing to 279 herds from 2018 to 2019 in Shijiazhuang (Hebei province, China). All milk
samples were analyzed on four Bentley FTS instruments (Bentley, MN, USA) to predict
the contents (g/dL of milk) of fat and protein that were then corrected using the slope and
bias estimated from ring tests. The spectrometer also predicted the contents of monounsat-
urated fatty acids (MFA), unsaturated fatty acids (UFA), and saturated fatty acids (SFA)
(g/dL of milk) from the generated MIR spectral data using predictive models established
by the manufacturer.

All MIR spectra were standardized following the procedure detailed by Grelet et al. [26]
based on piecewise regressions. Briefly, spectral standardization consists of comparing
the spectral data obtained by different milk laboratories and instruments using the same
milk samples in order to estimate standardization coefficients needed to ensure a high
reproducibility of spectral data between laboratories. For this study, the standardization
procedure was performed two times, in December 2018 and February 2019. The standard-
ization coefficients that were obtained closest to the test date were applied to the recorded
spectral data. The average interval between the spectral measurement and the standard-
ization was 117 days. Based on the standard requirements proposed by the International
Committee for Animal Recording (ICAR) [27], records out of the range of 1.5–9.0% for fat
and 1.0–7.0% for protein were deleted. Only records having a day in milk between 5 and
365 were kept. The average lactation number ranged from 1 to 13 with a mean value of 2.
Finally, the cleaned dataset contained 346,818 records collected from 49,522 Holstein cows.
The average number of records per cow was 7 ± 11.

The contents of fat, protein, MFA, UFA, and SFA predicted by the spectrometer were
compared to those predicted from recorded standardized spectra using external prediction
equations, for which basic information is listed in Table 1.

Table 1. Prediction performances of the external equations used to predict the contents of five milk
components.

Trait (g/dL of Milk) N 1 Mean ± SD 2 Cross-Validation

RMSE * R2

Fat 1799 3.93 ± 1.00 0.0086 0.9999
Protein 4305 3.36 ± 0.41 0.0200 0.9976

Monounsaturated fatty acids 1793 1.08 ± 0.34 0.0581 0.9705
Saturated fatty acids 1790 2.69 ± 0.74 0.0719 0.9904

Unsaturated fatty acids 1788 1.24 ± 0.37 0.0648 0.9698

* RMSE = root mean square error. 1 N is the number of samples used in the calibration set. 2 SD is the
standard deviation.
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2.2. Data-Cleaning Techniques

A total of three different methods were tested in this study to clean the MIR-based
predicted phenotypes. Their relevancy was assessed by estimating the improvement of the
relationship between the manufacturer’s and predicted values, measured by calculating
the RMSD using the following formula:

RMSD =

√
n

∑
i = 1

(EXTtrait − INTtrait)
2/n (1)

where n is the total number of observations of the considered trait, EXTtrait is the content pre-
dicted externally using the prediction equation, and INTtrait is the manufacturer’s prediction.

As the MIR predictive values were nearly normally distributed based on their esti-
mated skewness and kurtosis values (Table 2), and as the dataset was large and representa-
tive of the studied dairy population (i.e., more than 300,000 records), the first data-cleaning
method consisted of removing extreme MIR external predicted values based on the ob-
served 1% and 99% quartile values (Method 1). The fixed thresholds used to clean the
dataset for all predicted traits are given in Table 3.

Table 2. Descriptive statistics of manufacturer’s and externally predicted phenotypes (g/dL of milk)
and their relationships.

N = 346,818 Parameters Fat Protein MFA 1 SFA 1 UFA 1

Manufacturer’s values

Mean 3.93 3.41 0.85 2.58 0.92
SD 2 1.10 0.42 0.32 0.76 0.38
CV 3 27.99 12.32 37.65 29.46 41.30

Minimum 1.01 1.01 0.04 0.10 0.01
Maximum 8.99 6.99 4.61 8.00 5.19
Skewness 0.65 0.40 1.59 0.79 1.44
Kurtosis 1.52 2.62 6.00 2.12 5.07

Externally predicted values

Mean 3.94 3.53 1.13 2.62 1.28
SD 1.10 0.47 0.42 0.75 0.46
CV 27.92 13.31 37.17 28.63 35.94

Minimum 0.72 0.52 −5.62 0.13 −6.44
Maximum 9.92 7.10 5.26 7.32 5.66
Skewness 0.69 0.28 1.22 0.72 1.12
Kurtosis 1.63 1.88 5.56 1.80 5.39

Prediction relationship 4 RMSD 0.173 0.187 0.327 0.199 0.397
r 0.99 0.95 0.94 0.97 0.94

1 MFA = monounsaturated fatty acids; SFA = saturated fatty acids; UFA = unsaturated fatty acids. 2 SD = standard
deviation. 3 CV = coefficient of variation. 4 Root mean square difference (RMSD) and correlation value (r) between
manufacturer’s and externally predicted values.

Table 3. Characteristics of the dataset obtained after a cleaning using the externally predicted values
observed at the 1% and 99% quartiles as thresholds (Method 1).

Traits
Threshold

N Data loss (%)
g/dL of milk

GainRMSD
2 (%)

1% 99% Mean SD RMSD 1

Fat 1.59 7.35 339,909 1.99 3.93 0.99 0.17 1.29
Protein 2.49 4.78 339,941 1.98 3.52 0.42 0.185 0.97
MFA 3 0.35 2.51 339,708 2.05 1.12 0.36 0.319 2.62
SFA 3 1.06 4.92 339,852 2.00 2.61 0.68 0.195 1.95
UFA 3 0.4 2.78 339,892 2.00 1.27 0.40 0.389 2.16

1 RMSD = root mean square difference between manufacturer’s and externally predicted phenotypes. 2 Gain = dif-
ference expressed in % between RMSD estimated before and after cleaning with Method 1. 3 MFA = monounsatu-
rated fatty acids; SFA = saturated fatty acids; UFA = unsaturated fatty acids.

The second data-cleaning technique tested in this study was based on the calculation
of the GH distance between a considered sample spectrum and the average spectrum cal-
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culated from the calibration set used to build the external prediction equation (Method 2).
This was done to observe if this spectral record was not too distant from the calibration
set. This distance was calculated for all spectral records by first calculating the H distance
and then by standardizing this distance using the number of variables used [28]. As many
spectral data points are highly correlated with each other, a reduction of the spectral di-
mensionality was needed to inverse the (co)variance matrix required to calculate the H
distance. So, a principal component analysis was performed on the first-derived standard-
ized spectra in the calibration set. A first derivation using a gap of 5 was applied to the
standardized spectra in order to correct the baseline drift. Then, the obtained eigenvectors
were applied to the recorded spectral data in order to resume their spectral information
into new variables called principal components (PCs). The number of PCs was fixed to
cover 95% of the calibration spectral variability. The GH value between a recorded sample
spectrum and the calibration average spectrum was calculated using the following formula:

GH =
(
(x − µ)TS−1(x − µ)

)
/nPC (2)

where x is the PC scores of the spectrum to be predicted, µ is the mean of PC scores
estimated from the calibration set, S corresponds to the (co)variance matrix between
PC scores estimated from the calibration spectra, and nPC is the number of principal
components used. Other formulas exist to calculate the GH distance by introducing factors
related to the number of samples used in the calibration set (e.g., n/n−1 [29]), but we
decided to use a simplified formula, as the number of samples used in the calibration
set was large. Therefore, the additional factor was close to 1. As the squared differences
between internally and externally predicted values were not normally distributed, Kruskal–
Wallis nonparametric tests and pairwise two-sample Wilcoxon comparisons were used to
assess the significance of observed squared differences from GH thresholds ranging from
1 to 10. Moreover, the correlation coefficient between GH distances and those squared
differences was also estimated in order to observe the strength of their linear relationship.

The third method tested in this study was derived from the procedure proposed by
Dale et al. [25]. As explained in the Introduction section, milk samples with known contents
of fat and protein are analyzed using MIR spectrometry by many milk laboratories during
the ring tests. This allows the estimation of bias and slope needed to correct the prediction
of fat and protein contents done using milk MIR spectrometry. Therefore, those corrected
predictions can be assumed to be similar to the reference values measured by a reference
chemical analysis. This means that the calculation of the absolute difference between
this assumed control fat content and the content predicted externally using a prediction
equation could be relevant for cleaning the prediction dataset. As the fat content predicted
externally is not corrected by applying the slope and bias, this quantification is directly
influenced by the quality of the spectral data. So, the working hypothesis of Method 3 is
that the absolute fat residual difference could be used to detect poor-quality spectra due to
an instrumental issue, an analytical issue, or a wrong association between the sample and
the data. Four absolute fat residual thresholds (0.08, 0.10, 0.30, and 0.40 g/dL of milk) were
tested, and the obtained squared differences between the manufacturer’s and externally
predicted contents were compared using Kruskal–Wallis nonparametric tests and pairwise
two-sample Wilcoxon comparisons.

Finally, using a similar statistical approach, the interest in combining these cleaning
methods was also studied.

3. Results
3.1. Comparison between Manufacturer’s and Externally Predicted Phenotypes

The average values of externally predicted fat, protein, and fatty acids contents were
higher than those obtained directly from the Bentley spectrometers (Table 2). The maximum
values of the externally predicted phenotypes were also higher for all traits except for SFA.
However, the coefficient of variation (CV) stayed within the same range for all studied
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traits, as did the standard deviation (SD) values. Moreover, the relationships between
the studied traits were good, as high correlation coefficients were obtained between the
manufacturer’s and externally predicted phenotypes (i.e., ≥0.94; Table 2), even if they were
inferior to the square root of the cross-validation R2 listed in Table 1. However, even if
the error was higher, the prediction performance was better for the traits predicted with a
higher accuracy by MIR spectrometry like fat, protein, and SFA.

3.2. Deletion of Extreme Predicted Phenotypes (Method 1)

Method 1 consisted of cleaning the raw dataset by deleting records that were out of
the range estimated using the externally predicted values observed at the 1% and 99%
quartiles as thresholds. The impact of this deletion on the dataset is shown in Table 3. The
loss of data in each trait was always around 2%, and the SD of externally predicted traits
decreased due to the deletion of extreme values. Method 1 allowed an RMSD decrease of
around 1% for fat and protein traits, and around 2% for fatty acids traits (Table 3). This was
expected for UFA and MFA, as these traits presented a large range of variation (Table 2).

3.3. GH-Based Data-Cleaning (Method 2)

The estimated GH distances varied between traits (Table 4) due to the use of different
calibration sets to build the external prediction models (Table 1). These calibration sets dif-
fered based on their size and their spectral representativeness. The eigenvectors estimated
using the PC analysis were different between traits. Consequently, the PC scores used to
estimate the GH distances were also different. A large majority of samples (i.e., more than
79%) had a GH lower than or equal to 3. A higher proportion of samples had a GH greater
than 5 for MFA and UFA. This means that the models used to predict those fatty acids
were less adapted for some Chinese samples even if, on average, the GH distances stayed
below 3 (Table 4). In other words, the presence of extremely high GH distances highlighted
the presence in the dataset of samples having a spectrum largely different than the ones
used in the calibration set.

Table 4. Descriptive statistics of Global-H (GH) distances and their correlation coefficient (r) with the
squared differences between the manufacturer’s and externally predicted traits (e2).

Traits
GH Distance GH ≤ 3 3 < GH ≤ 5 GH > 5 r

Mean SD Max (%) (%) (%) (GH,e2)

Fat 1.84 2.66 182.5 86.61 8.27 5.12 0.35
Protein 1.90 4.11 182.6 86.36 7.99 5.65 0.07

Monounsaturated
FAs 1 2.37 3.23 211.3 79.73 11.42 8.85 0.48

Saturated FAs 1.78 2.48 170.3 87.52 7.84 4.64 0.47
Unsaturated FAs 2.37 3.23 209.7 79.70 11.46 8.85 0.47

1 FAs = fatty acids.

The correlation values between the GH distance and the squared differences between
the manufacturer’s and externally predicted traits were moderately positive and ranged
between 0.35 and 0.48 (Table 4), except for protein, for which a correlation coefficient of 0.07
was obtained. This low correlation could signify that the prediction of this milk component
was less affected by the spectral extrapolation.

As there was no agreement regarding the GH threshold, we decided to study the
prediction relationship between the manufacturer’s and externally predicted traits after
applying different GH thresholds ranging from 1 to 10. Data loss for the different studied
traits ranged from around 1%, when a GH threshold was set at 10, to around 72% when
set at 1. When the GH threshold was lower than 4, the data loss for each trait was higher
than 10%. As the squared differences between the manufacturer’s and externally predicted
traits were not normally distributed, Kruskal–Wallis nonparametric tests and pairwise two-
sample Wilcoxon comparisons were performed to compare those values. No differences
(p > 0.05) of squared differences for all studied traits were observed between groups based
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on a GH limitation of between 7 and 8, or between 9 and 10 (except MFA and UFA). Globally,
the average squared differences decreased significantly (p < 0.05), from GH limitation at 7
to GH limitation at 1 for all studied traits.

If we applied a GH threshold equal to 5, which corresponds to an acceptable data
loss (less than 10%), a significant decrease of the root mean square difference, and a value
recognized in the literature as an appropriate threshold to detect outliers, the decrease of
RMSD ranged from 1.29% for protein to 8.88% for fat (Table 5). The low gain observed
for the protein content was related to the low correlation that existed between the GH
distance and the squared differences (Table 4). Indeed, there was a correlation value of
0.75 between the gain and the correlation values between GH distance and the squared
differences. However, the number of discarded data also had an influence, but its intensity
was weak (correlation of 0.15 between the gain and the percentage of data loss). The
highest RMSD was observed for the fat and fatty acids contents. It is also interesting to
note that the SD values for externally predicted traits were closer to those estimated using
the manufacturer’s traits shown in Table 2. By applying a GH threshold set at 5, the RMSD
gains estimated for all studied traits were higher than the ones observed when applying
Method 1.

Table 5. Characteristics of the dataset obtained after a cleaning based on a Global-H (GH) distance set at 5 (Method 2).

Traits N Data Loss (%)
g/dL of Milk

GainRMSD
2 (%)

Mean SD RMSD 1

Fat 329,064 5.12 3.89 1.01 0.159 8.88
Protein 327,230 5.65 3.52 0.42 0.185 1.29

Monounsaturated fatty acids 316,128 8.85 1.1 0.37 0.303 7.79
Saturated fatty acids 330,739 4.64 2.59 0.70 0.188 5.97

Unsaturated fatty acids 316,128 8.85 1.25 0.40 0.376 5.72
1 RMSD = root mean square difference between the manufacturer’s and externally predicted values. 2 Gain = difference expressed in %
between RMSD estimated before and after cleaning using Method 2.

3.4. Data Cleaning Based on the Absolute Fat Residual Limit (Method 3)

The strategy in Method 3 consisted of applying a limitation based on the absolute
value of the difference between the fat content externally predicted and the one quantified
by the Bentley spectrometer and then corrected using the slope and bias estimated after ring
tests (i.e., assumed control fat content). This strategy should allow detecting spectra with
poor quality. Indeed, the squared differences for fat contents were positively correlated
with all studied traits (0.13 for protein and 0.40 for the remaining studied traits). This
moderate relationship could support the potential interest in using absolute fat differences
to detect abnormal spectra. Compared to the study of Dale et al. [25], in which data loss
was equal to 30% due to the threshold (≤2% relative error fat value), the current study
proposed to use the absolute residual between the predicted and assumed control fat
contents to clean the dataset. Several limitations were tested, and they ranged from 0.08 to
0.40 g of fat per dL of milk. The data loss was equal to 55.93%, 47.31%, 8.88%, and 3.47% for
the thresholds set at 0.08, 0.10, 0.30, and 0.40 g/dL of milk, respectively. The significance
of the squared differences between internally and externally predicted phenotypes were
assessed based on Kruskal–Wallis nonparametric tests and pairwise two-sample Wilcoxon
comparisons. From these results, we can conclude that the stricter the absolute fat residual
limitation, the greater the data loss and the better the RMSD gain, except for protein. More
specifically, in most cases, the squared differences decreased (p < 0.05) from the group
cleaned using a limit set to 0.40 g/dL of milk to the group with a limitation of 0.30 g/dL of
milk. The loss of data using this last fat residual limitation was less than 10% (Table 6).
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Table 6. Characteristics of the dataset obtained after a cleaning based on an absolute fat residual
limitation set at 0.30 g/dL of milk (Method 3).

N = 316,025
g/dL of Milk

GainRMSD
2 (%)

Mean SD RMSD 1

Fat 3.88 1.06 0.125 38.82
Protein 3.53 0.46 0.184 1.49

Monounsaturated fatty acids 1.1 0.38 0.304 7.52
Saturated fatty acids 2.58 0.73 0.185 7.64

Unsaturated fatty acids 1.24 0.42 0.373 6.35
1 RMSD = root mean square difference between the manufacturer’s and externally predicted values. 2 Gain = dif-
ference expressed in % between RMSD estimated before and after cleaning using Method 2.

When a threshold of 0.30 g/dL of milk was applied to clean the dataset, the RMSD
gain ranged from 1.49% for protein to 38.82% for fat. The higher improvement observed
for fat is obvious because this trait was directly involved in the cleaning process proposed
in Method 3. However, even if high correlation values exist between fat and fatty acids, the
RMSD gain for fatty acids was not as high as the one observed for fat. The lowest gain was
reached by the protein content. However, even if low, this improvement was better than
the ones observed based on Method 1 and Method 2. This was also confirmed for the other
studied traits except for MFA, for which Method 2 provided a slightly better improvement.

3.5. Comparison of the Three Tested Data-Cleaning Methods

In this study, we tested three different techniques to clean an MIR-predicted dataset,
and we concluded that all of them allowed for a decrease of the squared differences between
the manufacturer’s and externally predicted phenotypes. Method 3 had the highest RMSD
gain except for MFA. However, these methods can be combined during a quality procedure.
Highlighting the best combination of methods will depend on the aim. In this study, we
proposed two different aims. The first was to highlight the method offering the highest
RMSD gain. The second was based on a compromise by selecting the model that offered a
high RMSD gain and a low data loss. To achieve this, we calculated the ratio between the
gain and the data loss expressed both in percentage. All results about method combinations
are listed in Table 7.

The method combinations offering the highest RMSD gain were “M2 or M3” for fat
and UFA and “M1 or M2 or M3” for the remaining traits. So, the combination of Methods
M2 and M3 seems to be crucial. This combination allowed the detection of samples for
which the prediction could be hazardous due to a spectral extrapolation, as well as the use
of spectral data with poor quality. By comparison with “M2 and M3” or “M1 and M2 and
M3”, it seems important to discard not only a record that fulfils the condition of M2 or M3,
as the RMSD gain was higher.

The method combinations offering the best compromise between the number of
samples discarded (i.e., N loss in Table 7) and the RMSD gain were: “M1 and M2” (i.e.,
higher gain:loss). For protein, the combination “M1 and M2 and M3” provided a slightly
better result. So, the combination “M1 and M2” seems to be important. This means that to
achieve the best gain:loss ratio, we need to conserve samples for which the prediction values
were not extreme and the GH distance was lower than 5 to avoid spectral extrapolation.
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Table 7. Interest of using the three studied data-cleaning methods and their combinations to clean the raw dataset.

Traits Parameters M1 1 M2 1 M3 1 M1 and M2 M1 and M3 M2 and M3 M1 and M2 and M3 M1 or M2 M1 or M3 M2 or M3 M1 or M2 or M3

Fat
GainRMSD

3 (%) 1.29 8.88 38.82 38.82 1.70 8.39 1.40 8.88 38.77 41.39 41.08
N loss 4 (%) 1.99 5.12 8.88 0.76 0.33 2.30 0.26 6.35 10.54 11.69 12.85
Gain:loss 5 0.65 1.73 4.37 51.23 5.09 3.64 5.48 1.40 3.68 3.54 3.20

Protein
GainRMSD (%) 0.97 1.29 1.49 1.49 0.35 0.66 0.32 1.60 2.21 2.22 2.54

N loss (%) 1.98 5.65 8.88 1.41 0.36 1.42 0.29 6.22 10.50 13.11 13.61
Gain:loss 0.49 0.23 0.17 1.06 0.97 0.47 1.12 0.26 0.21 0.17 0.19

MFA 2
GainRMSD (%) 2.62 7.79 7.52 7.52 1.74 4.69 1.62 7.96 8.77 11.36 11.42

N loss (%) 2.05 8.85 8.88 0.93 0.57 2.98 0.48 9.97 10.36 14.75 15.78
Gain:loss 1.28 0.88 0.85 8.07 3.07 1.58 3.38 0.80 0.85 0.77 0.72

SFA 2
GainRMSD (%) 1.95 5.97 7.64 7.64 2.27 3.34 0.65 6.63 9.29 10.99 11.60

N loss (%) 2.01 4.64 8.88 0.58 1.02 2.13 0.15 6.07 10.63 11.38 12.71
Gain:loss 0.97 1.29 0.86 13.22 2.22 1.57 4.20 1.09 0.87 0.97 0.91

UFA 2
GainRMSD (%) 2.16 5.72 6.35 6.35 1.57 3.82 1.48 5.74 7.18 8.74 8.67

N loss (%) 2.00 8.85 8.88 0.92 0.56 2.95 0.47 9.92 10.32 14.77 15.76
Gain:loss 1.08 0.65 0.72 6.87 2.82 1.29 3.17 0.58 0.70 0.59 0.55

1 M1 = Method 1; M2 = Method 2 with a GH limitation set at 5; M3 = Method 3 with an absolute residual fat difference set at 0.30 g/dL of milk. 2 MFA = monounsaturated fatty acids; SFA = saturated fatty acids;
UFA = unsaturated fatty acids. 3 Gain = difference expressed in % between the root mean square difference between manufacturer’s and externally predicted values estimated before and after cleaning with the
considered method. 4 N loss = the percentage of samples discarded using the tested cleaning procedure. 5 Gain:loss = the ratio of the GainRMSD to N loss.
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4. Discussion

As mentioned in the Introduction, an increasing number of phenotypes are being
predicted from milk MIR spectrometry to develop management and breeding tools for
dairy farmers. Unfortunately, for financial and practical issues, it is not possible for milk
laboratories or DHI organizations to routinely analyze a set of reference samples. Therefore,
adapting the ring tests developed to ensure the quality of the MIR predictive values of
fat and protein contents is not feasible. So, this study proposed to test different statistical
approaches easily implementable in practice at a low cost and a large scale to clean the
DHI database related to MIR-based predictive values. To achieve this objective, three
methods were tested and combined. By predicting the MIR phenotypes on a large scale,
the obtained dataset can be assumed as representative of the studied dairy cow population
and, therefore, useful to identify extreme values. As the majority of MIR-predicted traits
are normally distributed, the thresholds to consider a record as an outlier can be based
on the 1% and 99% quartiles. This was the principle applied in Method 1 to clean the
DHI dataset. Even if this method presents the advantages of being easy to implement and
robust thanks to the definition of the threshold for a large database based on individual
cow measurements, this method automatically forced the deletion of around 2% of extreme
records without knowing the reasons, potentially leading to a decrease in the existing
variability for the studied trait. However, knowing the origin of the extreme values could
be interesting to confirm the outlier status. So, incorrect MIR predictive values can be
obtained due a spectral extrapolation related to a prediction process applied to samples
for which the spectral variability was not taken into account in the calibration set used to
build the predictive model. To solve this issue, the calculation of the GH distance between
the average calibration spectrum and the spectrum of the sample to predict is useful. This
is the basic of Method 2. The greater the GH distance, the more the prediction can be the
result of spectral extrapolation. However, this method has the inconvenient of requiring the
(co)variance matrix of the calibration set and is not able to identify predictive values made
on poor-quality spectra (i.e., samples for which an important slope and bias correction was
applied on fat and protein predictions). So, a third method was proposed in this study to
achieve this objective that was based on the absolute residual fat difference. If the difference
estimated between the corrected fat prediction content and the one predicted directly from
the spectral data was high, the probability that the spectrum has a poor quality was high.
In conclusion, this means that Method 1 is a rough method to clean a database compared to
Method 2 and Method 3 which focus more on a potential origin of prediction uncertainty.

Ideally, to compare those methods, we need a set of reference values. However, for
financial and practical reasons, this was unrealistic. Moreover, when the milk analysis is
available, its cost limits the size of the dataset, which is often no more representative of
the studied dairy cow population. For instance, this is the case for the calibration set used
to build MIR predictive models. Indeed, in order to increase the variability needed in the
calibration set to develop a robust model, the samples are not selected randomly, but their
selection is controlled to ensure a good covering of the existing variability of the studied
trait. Consequently, in this study, we decided to use the records directly provided by the
spectrometers: the contents of fat, protein, and the major groups of milk fatty acids. Fat
and protein predictions were assumed to be control values, as these values were corrected
based on the slope and bias estimated by the milk laboratory after ring tests. Moreover,
it is known that the prediction equations to quantify these traits are very accurate (Table
1). For fatty acids, the accuracy of the prediction equations used in the spectrometers was
unknown. However, it is known that this accuracy is higher for the equations predicting
SFA compared to the ones quantifying MFA or UFA (Table 1). Fortunately, the FA predictive
values provided by the used Bentley spectrometers were within the expected range. Indeed,
although few previous Chinese investigations have been conducted into the analysis of
milk-fat composition from Holstein cows based on a large-scale MIR spectral database, the
contents obtained in the current study were within the expected range for Chinese Holstein
cows [30,31]. Using the same technology to predict the fatty acids contents, Bastin et al. [32]
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reported average contents of MIR-predicted MFA, SFA, and UFA equal to 1.13, 2.79, and
1.31 g/dL of milk produced by Holstein cows. Those contents were slightly higher than
the values obtained in the current study. On the other hand, the contents of MFA, SFA, and
UFA obtained in the current study were lower than those reported by Soyeurt et al. [5] (i.e.,
1.44, 2.95, and 1.65 g/dL of milk) and Fleming et al. [33] (1.00, 2.97, and 1.16 g/dL of milk
from Holstein, Brown Swiss, and Jersey cows, respectively).

The fat, protein, SFA, MFA, and UFA were predicted both by the Bentley spectrometers
and external prediction equations (Table 1). Even if the prediction accuracy of Bentley
spectrometer to predict the contents of those traits was unknown, good relationships
between those predictions were observed, with correlation coefficients higher or equal to
0.94 (Table 2). The higher squared differences between those predictions compared to the
cross-validation RMSE, a traditional parameter to measure the accuracy of a prediction
model [34], can be attributed to several reasons. First, the calibration dataset used to build
the external prediction models did not contain samples collected on the studied Chinese
dairy cow population. Therefore, the spectral variability of some samples were not taken
into account, leading to an uncertainty in the prediction due to the spectral extrapolation.
Second, the spectra were standardized to be expressed on a FOSS basis in order to apply
the available external prediction equations. This could introduce an additional uncertainty.
Third, even if the contents of fat and protein were assumed to be a control value, all records
were not analyzed using reference chemical analysis. The bias and slope correction cannot
perfectly correct all predictions. However, the aim of this study was not to validate the
prediction equations used in the spectrometer or applied externally. Therefore, the error
shift was not so problematic, as this study focused on the changes of the RMSD value
following the cleaning procedures. Even if the RMSD values listed in Table 2 were higher
than the RMSE values mentioned in Table 1, the high correlations between the predicted
traits, as well as their similar CV (Table 2), are sufficient to confirm the interest in using
those data to conduct the proposed research and realize their representativeness due to the
large individual data acquisition. The higher SD observed for the traits predicted externally
compared to the ones provided by the spectrometer were due to the presence of outliers
in the dataset. Indeed, Næs et al. [35] noted that if the new sample to be predicted was
beyond the capacity of calibration models, the accuracy was impaired accordingly.

For all traits, the cleaning methods decreased the RMSD and allowed the SD values
for the externally predicted phenotypes to be closer to the ones estimated from the manu-
facturer’s predictive values (Tables 3, 5 and 6). These SD decreases confirmed that a part of
the variability observed in the raw data was related to several outlier records. However,
all proposed cleaning methods did not discard the same records. For instance, less than
1% of records were considered as outliers for the three methods used. About 1% of the
records had M1 and M2 or M1 and M3 in common. Close to 3% of records had M2 and
M3 in common. Method 1 was a rough cleaning procedure that deleted 2% of the extreme
predictions. Therefore, this method can keep outliers in the dataset if more than 2% of
records are outliers. Following the considered traits and from the results listed in Table 7,
Method 2 had between 25% and 46% of its discarded samples in common with Method 3.
It was less than 25% for Method 1.

This moderate relationship between Method 2 and Method 3 can be easily explained.
Method 2 discarded the samples out of the spectral range present in the calibration set. A
GH limit of 3 was proposed by Mark and Tunnell [36], as three standard deviations from
the center of a group was considered to be the boundary. In the case of a multivariate
model, a threshold of 3 may be unjustifiable for the dataset and the number of wavelengths
used [24]. A threshold of around 4 was proposed by Ritchie et al. [37] based on the
distribution of samples. In our study, this GH threshold was set at 5 to limit the data losses
(i.e., lower than 6% except for MFA and UFA; Table 5) and to significantly decrease the
RMSD. Method 3 detected spectra data with poor quality. Therefore, samples with poor
spectral data must have had a high GH distance. So, the samples discarded by Method 2
and Method 3 certainly had a very poor spectral quality. The existence of these abnormal or
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extreme spectra could be related to different factors that can be associated, for instance, with
instrument failure, incorrect milk sampling, an analytical issue, or poor milk conservation
between the sampling and analysis period. The remaining samples discarded by Method 3
were related to samples for which the spectral data was only far from the one present in the
calibration, but the spectral data did not seem to have a poor quality. For instance, these
abnormal or extreme spectra could be related to specific cows showing a unique spectral
pattern and therefore special milk composition. This could have a potential negative impact
on a breeding program, as those cows could potentially be interesting. However, this was
not observed in this study. The average loss of records for a specific cow was equal to 0.91
(i.e., less than 1 record per cow). The most probable reason could be related to a different
farm management and context. Indeed, it is known that the milk composition can be
influenced by many factors related to the animal or to the farming system. In this last issue,
the feeding system has a major impact on the milk-fat composition. The external prediction
equations used in this study were not developed using Chinese samples. Therefore, the
milk spectral data could be not fully considered. However, a large part of the spectra used
in this study had a GH lower than 3 (Table 4), which means that those spectra were within
the spectral range of the calibration set, even if the studied records were not included in
the prediction equations. This also indirectly showed that globally, the milk composition
of studied samples was similar to the samples included in the calibration set, which were
collected in Europe. However, even if only 5 to 9% of samples were discarded based
on a GH threshold set at 5 (Table 5), samples in the dataset with an uncovered spectral
variability remained. This was especially true for the models that predicted the contents of
MFA and UFA, which are known to be influenced by feeding, but also the heat stress and
the body condition score [38–40]. This finding suggests an interest in specifically collecting
these kinds of samples to improve the robustness of the fatty acids prediction models.
However, the finding could not conclude whether the accuracy could be improved as
the gas-chromatographic fatty-acid profiles were not available for these samples, which
had a GH distance out of the desired range. The percentage of samples discarded using
a GH threshold was similar to previous results. For instance, based on drug samples,
Morozova et al. [41] found 77.3% of spectra with a H distance (also GH distance, as GH is
obtained by dividing the squared H distance by the number of variables) less than 3, 18.2%
of spectra with a H distance between 3 and 4, and 4.5% of spectra greater than 4. Based on
a GH threshold equal to 3, Soyeurt et al. [42] deleted 3.9% of the raw data. This is lower
than the data loss observed in this study using the same threshold, which ranged from
12.48% to 20.27%. This could be related to the fact that the calibration sets used to build the
prediction equations did not consider the records included in the current study, leading to
a potentially higher number of records considered as outliers, but related to a spectral milk
variability that was not considered in the prediction equations. However, as mentioned
previously, the main part of the data had a GH lower than 3.

Concerning the samples discarded by Method 2, only between 25% and 46% of those
samples were in common with Method 3 (results derived from Table 7). This means that
the majority of the samples discarded by Method 3 were kept by Method 2. As the RMSD
gain was the highest for nearly all traits (Table 7), we can assume that this cleaning, even
if stricter, provided a beneficial effect. These samples presented spectral data considered
as poor-quality, but their spectral profile was not extreme, as the GH distance was lower
than 5. The average GH distance for those samples was equal to 2.20, with minimum and
maximum values of 0 and 5.00, respectively. Consequently, as Method 2 and Method 3
reflected different outlier origins, it was logical to observe an additional improvement of
RMSD gain by combining these methods with the “or” logical disjunction (Table 7).

For protein, SFA, and MFA, a slight improvement was obtained by adding the
Method 1 using an “or” logical disjunction to Method 2 and Method 3 (Table 7). This
means that Method 1 and Method 3 were not able to detect fully all outliers. However,
the improvement was low compared to the “M2 or M3” combination, leading to the high-
lighting of a poor contribution of Method 1. However, the cleaning procedures having the
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highest gain:loss ratios were combinations involving Methods 1 and 2 using an “and” logi-
cal disjunction (Table 7). Only for the protein content, adding Method 3 in this combination
improved slightly the gain:loss ratio. Method 1 and Method 2 both dealt with extreme
values, the first based on the predictions, and the second based on spectral data. The
selection of a cleaning procedure based on this ratio represents an optimization between
the data loss and the RMSD gain. The “M1 and M2” combination allowed the detecting of
samples with an extreme predictions and a GH distance higher than 5. This means that
samples out of the spectral range covered by the set used to build the prediction models,
but having a reasonable prediction, were kept in the dataset. Indeed, the samples kept
in Method 1 but not in Method 2 had an average GH ranging from 7.02 to 9.08, with a
minimum value of 5.10 and a maximum value of 113.00 for all studied traits. In other words,
this implies that we accepted the spectral extrapolation during the prediction process if
the prediction is between a realistic range. This working hypothesis is acceptable, as the
correlation values between GH distance and the squared residuals were moderate for fat
and fatty acids and low for protein (Table 4). The positive correlation found in this study is
in agreement with the findings of Whitfield et al. [24], who reported that the H distance
was directly proportional to the absolute residuals between the predicted and reference
values. The GH-based cleaning deleted less than 1% of raw records, which is largely lower
than the “M2 or M3” combination, which discarded from 11 to 15% (Table 7).

Depending on the aim of the deletion of potential outlier samples (lower RMSD gain or
higher gain:loss ratio), the selected cleaning method was not the same. However, Method 2
is the common denominator. This reveals a high interest in measuring the GH distance
for all samples to predict. Practically, this means that simultaneously providing the GH
distance of the spectrum to be predicted with the prediction could be relevant to indirectly
inform customers about the potential accuracy of the given phenotype. However, the GH
calculation requires the mean PC spectrum, the eigenvectors, and the (co)variance matrix
between calibration PC scores. This information could be provided by the manufacturer
or the creator of the equation. Currently, they are reluctant to provide this information
because they do not want to communicate the calibration set. However, the milk labora-
tories and DHI organizations do not need the dataset, but only the average PC spectrum,
the eigenvectors, and the covariance matrix, which should not be confidential. Some
international institutions like the International Committee for Animal Recording (ICAR) or
the International Dairy Federation (IDF) could pressure the model’s providers to obtain
this information. However, if it is impossible to find, a cleaning based on the deletion of 1%
of extreme high and low predicted values estimated from a large spectral database is still
of interest, combined with Method 3 (Table 7).

The protein content was the trait that was less affected by the data cleaning. Indeed,
the RMSD gain ranged from 0.32 to 2.54% (Table 7). This low improvement could be
explained by the fact that this trait was less impacted by the spectral extrapolation. Of
course, the correlation values between the GH distance and the squared differences between
the manufacturer’s and externally predicted phenotypes were low (Table 4). Moreover, this
trait also presents a low variability compared to the other studied traits (i.e., CV of 12%
vs. 30–40% for the other traits; Table 2). It could be supposed that Method 3 as based on
fat content, which is correlated with fatty acids, could be more profitable for these traits
compared to the protein. But Method 3 considered alone also offered the best improvement
in the protein content, highlighting an interest in using this cleaning process for traits that
are less correlated with the fat content as well.

The choice of the fat content to develop the cleaning criteria of Method 3 was related
to the fact that this trait is always adjusted for the slope and bias by the milk laboratory
conducting routine ring tests, and presents a natural large variability (Table 2). So, in
the DHI database, this trait can be assumed to be closer to the real reference value. By
comparing this assumed control value to the one predicted using the external prediction
equation, it was possible to detect spectral abnormal values that can lead to erroneous
MIR predictive values. So, from the results obtained in this study, a fat limitation of
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0.30 g/dL of milk seems to be preferable in order to increase the chance to gain accurate
predictions without losing much data. However, the limitation must be adapted to the
spectral database used, as this will depend on the spectral data and the equation used.

5. Conclusions

This study confirms that spectral outliers are generated within the framework of DHI,
as the current corrections for the slope and bias used in the milk laboratories to ensure high
prediction quality for fat and protein contents had no effect on the spectral data. Moreover,
some spectral outliers that were different from the spectra constituting the calibration
dataset were also identified. So, there is a need to define a quality procedure for MIR
phenotypes, especially as the amount of traits predicted by this technology is growing
rapidly. Three methods were tested and combined in this study. To be more parsimonious
in the data loss, the results recommended to prefer the “M1 and M2” combination, which
involved the deletion of the 2% extreme predictions + samples with a GH higher than 5.
However, to ensure the lowest squared differences between manufacturer’s and externally
predicted phenotypes, the “M2 or M3” combination, in which M3 consisted of deleting
samples with an absolute fat residual higher than 0.30 g/dL of milk, must be applied on the
DHI dataset. Both of those combinations involved Method 2 confirming the high interest
of calculating the GH distance for all samples to predict. However, if it is impossible to
estimate the GH distance due to a lack of relevant information to compute this statistical
parameter, we recommend the use of Method 1 combined with Method 3 (i.e., M1 or M3).
The limitation used in Method 3, which was set to 0.3 g/dL of milk, must be adapted to
the spectral database used, as this will depend on the spectral data and the equation used.
The methodology proposed in this study can be applied to find the best threshold for the
considered database, and could be implemented on any MIR-based phenotypes.
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