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Abstract

Background: Several studies have reported gene expression signatures that predict recurrence risk in stage II and III
colorectal cancer (CRC) patients with minimal gene membership overlap and undefined biological relevance. The goal of
this study was to investigate biological themes underlying these signatures, to infer genes of potential mechanistic
importance to the CRC recurrence phenotype and to test whether accurate prognostic models can be developed using
mechanistically important genes.

Methods and Findings: We investigated eight published CRC gene expression signatures and found no functional
convergence in Gene Ontology enrichment analysis. Using a random walk-based approach, we integrated these signatures
and publicly available somatic mutation data on a protein-protein interaction network and inferred 487 genes that were
plausible candidate molecular underpinnings for the CRC recurrence phenotype. We named the list of 487 genes a NEM
signature because it integrated information from Network, Expression, and Mutation. The signature showed significant
enrichment in four biological processes closely related to cancer pathophysiology and provided good coverage of known
oncogenes, tumor suppressors, and CRC-related signaling pathways. A NEM signature-based Survival Support Vector
Machine prognostic model was trained using a microarray gene expression dataset and tested on an independent dataset.
The model-based scores showed a 75.7% concordance with the real survival data and separated patients into two groups
with significantly different relapse-free survival (p= 0.002). Similar results were obtained with reversed training and testing
datasets (p= 0.007). Furthermore, adjuvant chemotherapy was significantly associated with prolonged survival of the high-
risk patients (p= 0.006), but not beneficial to the low-risk patients (p= 0.491).

Conclusions: The NEM signature not only reflects CRC biology but also informs patient prognosis and treatment response.
Thus, the network-based data integration method provides a convergence between biological relevance and clinical
usefulness in gene signature development.
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Introduction

Colorectal cancer (CRC) is the third leading cause of global

cancer mortality [1]. According to stages defined by the American

Joint Committee on Cancer (AJCC), 5-year survival rates are

93.2% for stage I, 82.5% for stage II, 59.5% for stage III, and

8.1% for stage IV CRC patients [2]. Adjuvant chemotherapy

(CTX) for stage III CRC patients has demonstrated survival

benefit; however, 42–44% of patients treated by surgery alone will

not recur in 5 years [3]. On the other hand, although individual

clinical trials have often failed to demonstrate the benefits of

adjuvant CTX for stage II patients, approximately 20% of stage II

patients will recur within 5 years. Hence, it is crucial to develop an

accurate method for stratifying stage II and III CRC patients by

risk of recurrence so that adjuvant CTX can be administered to

high-risk patients, while low-risk patients can forgo these toxic

treatments to avoid potential harm as well as the financial burden.

Based on the direct comparison of microarray data from highly

aggressive and less aggressive CRC tumors, several studies have

reported gene expression signatures that predict recurrence risk in

stage II and III CRC patients [4,5,6,7,8,9], with minimal overlap

of their gene lists [10]. Lack of concordance is a common

observation in gene expression signature studies [11], raising

questions about their clinical implications [12]. However, prog-

nostic models based on several CRC gene expression signatures

have been validated in independent patient cohorts [6,7,8].

Moreover, an early study in breast cancer has demonstrated that

apparently distinct signatures can show a significant agreement in

outcome prediction [13]. It has been suggested that different

signatures may share common biological themes that are not
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apparent on the individual gene level [12]. Therefore, pathway

and network-based methods have been developed in an attempt to

reveal biological mechanisms underpinning concordant prognosis

among distinct gene expression signatures in breast cancer and

prostate cancer [14,15,16,17].

Finding common biological themes underlying gene expression

signatures lessened earlier worries on the biological validity of the

signature genes [18]. Nevertheless, the fact remains that gene

signatures determined by supervised data analysis are strongly

influenced by the subset of patients used for gene selection, and the

membership of a gene in such a signature is not indicative of the

importance of that gene in cancer pathology [19]. Because

different combinations of genes can be selected to build similarly

accurate prediction models [20], an intriguing but unanswered

question is whether limiting genomic space to mechanistically

important genes can produce accurate prognostic models. A

positive answer to this question will lead to better convergence

between biological significance and clinical prognosis, which will

in turn provide insight into novel targeted therapeutic strategies.

In this work, we studied the biological themes underlying

published CRC gene expression signatures. By integrating gene

expression signatures and somatic mutation data on a protein-

protein interaction network, we show that the CRC recurrence

phenotype involves the dysregulation of multiple biological

processes, and each signature only captured a few genes in these

processes. Based on these observations, we hypothesized that

a gene expression signature with mechanistically important genes

inferred from network analysis can better represent underlying

biology and may lead to prognostic models with improved

performance. To this end, we developed Survival Support Vector

Machine (SSVM) models using two independent datasets based on

such a signature and cross-tested their performance. The results

demonstrate that our model can accurately predict CRC re-

currence. Moreover, patient stratification based on predicted risk

of recurrence provides useful information regarding the adjuvant

CTX benefit for CRC patients.

Methods

Published CRC Gene Expression Signatures
Through manual literature review on papers published between

2000 and 2010, we identified from seven papers [4,5,6,7,8,9,21]

eight gene expression signatures that are able to separate stage II

and/or stage III CRC patients into low-risk and high-risk

subgroups. The signature in Jorissen et al. [22] was not included

because the gene expression datasets used for deriving that

signature were used for model development and evaluation in the

current study. The eight signatures included a total of 208 genes.

Genes Mutated in CRC
Using the CanProVar database [23] (http://bioinfo.vanderbilt.

edu/canprovar), we retrieved 549 genes with observed somatic

mutations in CRC samples.

Human Protein-protein Interaction Network
Protein interaction data were downloaded and integrated from

BioGRID, MINT, HPRD, REACTOME, DIP and MINT in

2010, as previously described [24]. The protein interaction

network included 94,066 interactions between 11,521 proteins.

Oncogenes and Tumor Suppressor Genes
Known oncogenes and tumor suppressor genes were down-

loaded from CancerGenes [25] and GLAD4U (http://bioinfo.

vanderbilt.edu/glad4u). For each tool, we retrieved two gene lists

using the query terms oncogene and tumor suppressor, re-

spectively.

Gene Expression Data Sets
Two gene expression datasets of primary colorectal tumors

(GSE17536 [8] and GSE14333 [22]) were downloaded from the

Gene Expression Omnibus (GEO) database. Stage I and stage IV

samples were excluded from this study. GSE14333 included some

of the samples from GSE17536, which were removed from

GSE14333 in this study. Clinical and pathological information of

the two datasets is shown in Table 1. Both datasets were generated

on the Affymetrix U133 plus 2.0 array. cel files for the datasets

were normalized using the Robust MultiChip Analysis (RMA)

algorithm [26] as implemented in Bioconductor. The datasets

were processed separately to ensure their independency. Probe set

identifiers (IDs) were mapped to gene symbols based on the

mapping provided by the GEO database. Probe sets that mapped

to multiple genes were eliminated. When multiple probe sets were

mapped to the same gene, the probe set with the largest

interquartile range (IQR) was selected owing to its high variation

across samples. To make expression level comparable across

genes, expression values for each gene were standardized using a Z-

score transformation. In this study, each dataset was used as

a training-set in turn and developed prognostic models were tested

against the other dataset.

Network-based Prioritization
We used a modified version of our previously published

NetWalker algorithm [24] to integrate expression signatures and

publicly available somatic mutation data on a protein-protein

interaction network in order to identify genes of potential

mechanistic importance to the CRC recurrence phenotype

(Figure 1). Netwalker is based on the random walk with restart

technique [27]. Given a network and start probabilities for each

node representing prior information on their relative importance,

the algorithm calculates a final priority score for each node based

on the steady state probabilities. Random walk with restart is

formally defined as the following equation:

ptz1~(1{r)Wptzrp0

Table 1. The microarray gene expression datasets used in the
study.

GSE17536 (N=111) GSE14333 (N=67)

AJCC_STAGE

II 55 37

III 56 30

Recurrence

0 80 54

1 31 13

Adjuvant chemotherapy

0 53 (38II+15III) 44 (33II+11III)

1 57 (16II+41III) 23 (4II+19III)

NA 1 (II) 0

#genes 19468 19468

AJCC, American Joint Committee on Cancer.
doi:10.1371/journal.pone.0041292.t001
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where r is the restart probability, W is the column-normalized

adjacency matrix of the network graph, and pt is a vector of size

equal to the number of nodes in the graph where the i-th element

holds the probability of being at node i at time step t.

Although our previous implementation assigns an equal start

probability to all seed nodes, this modified version allows different

start probabilities for the seed nodes. In this study, we set up the

start probabilities for all genes based on their involvement in the

gene expression signatures and the mutated gene list. Equal total

weight was given to gene expression signature data and mutation

data. For gene expression signature data, relatively higher weight

was given to genes involved in multiple signatures. For mutation

data, relatively higher weight was given to genes with more

variants. Start probability for gene i (p0i ) is formally defined as the

following equation:

p0i ~
si

2 �
Pn

i~1 si
z

ffiffiffiffiffi
mi

p

2 �
Pn

i~1

ffiffiffiffiffi
mi

p

where si is the number of CRC gene expression signatures in

which gene i is a member, mi is the number of known mutation

variants in CRC samples in CanProVar for gene i, and n is the

total number of genes in the protein interaction network.

For the NetWalker algorithm, the restart probability was set to

0.5 and convergence was determined by
Pn

i~1 Dp
tz1
i {pti Dƒ10{4,

where pti is the probability for gene i at the tth iteration.

To assess the statistical significance of the scores for each gene,

we constructed 1000 sets of randomly permuted start probabilities

and generated 1000 sets of random scores. For each gene in the

network, a local p value was estimated by comparing the real score

to random scores from the same gene, and a global p value was

estimated by comparing the real score to random scores from all

genes [24]. Genes with both local and global p values less than

0.05 were considered as significant genes. We named the list of

significant genes a NEM signature because it integrated in-

formation from Network, Expression, and Mutation.

For comparison, we also performed network-based prioritiza-

tion using start probabilities assigned based only on gene

expression signature data or mutation data, respectively, with

corresponding significant gene lists named as NE signature or NM

signature.

Gene Ontology Enrichment Analysis
Gene Ontology (GO) enrichment analysis was performed using

WebGestalt [28]. The default multiple testing correction method

‘‘Benjamini & Hochberg’’ was used for FDR calculation. To

account for the dependent nested GO structure, WebGestalt

presents enriched GO categories in a Directed Acyclic Graph

(DAG) to facilitate quick identification of the major non-redundant

enriched biological themes. We performed a manual investigation

of the enriched DAG and reported the most representative terms

for each branch.

Development and Evaluation of SSVM Model
An R implementation of the survsvm available in the survpack

package [29,30] was employed for SSVM model development,

and the Gaussian kernel function was used. The implementation

of SSVM has two parameters c and s, where c is the cost of error
in the predicted sequence of events and s is the parameter of the

Gaussian kernel. In this study, we let each of these parameters vary

among the candidate set {1025, 1024, 1023, 1022, 1021, 100, 101,

102, 103, 104, 105} to form different parameter combinations.

Five-fold cross validation was used and repeated five times to

identify the optimized parameters according to the C-index value

(see below for description). Fully developed SSVM model based on

the optimal parameters was then evaluated in the independent

dataset where an SSVM-based score was derived for each patient.

Survival Analysis
The association between the SSVM-based score and real

prognosis of the patients was evaluated by the C-index values,

Kaplan-Meier survival curves and log-rank test. The C-index is

a probability of the concordance between predicted and observed

survival, withC-index = 0.5 for randompredictions andC-index= 1

for a perfectly discriminating model. Standard Kaplan–Meier

survival curves were generated for patient groups formed based on

the SSVM scores, and the survival difference between groups was

statistically evaluated using the log-rank test.

Results

Enrichment Analysis Failed to Reveal Functional
Convergence of the Signatures
We investigated 8 CRC gene expression signatures (Table 2).

Seven out of the 8 signatures were developed based on the

comparison of recurrent and non-recurrent tumors, in which some

studies included tumors of all stages while others included only

tumors of selected stages. The study by Smith et al. [8] integrated

human tumor data with data from CRC mouse cell line models in

signature development. The study by Barrier et al. [21] used non-

neoplastic mucosa from stage II patients instead of tumors. The t-

test and its variants were used for signature selection in most of the

studies, and different machine learning techniques were employed

for the construction of prognostic models. Despite of the technical

difference in experimental and computational procedures, all

prognostic models were able to separate stage II and/or stage III

patients into low-risk and high-risk groups. Several models have

been validated on a patient cohort independent of the one used for

signature and model development.

Consistent with previous reports [10], we found minimal

overlap among these gene expression signatures at individual

gene level (Figure 2). To test whether these signatures converge at

common biological processes, we performed Gene Ontology (GO)

enrichment analysis for each signature using WebGestalt. Only

two signatures showed enriched biological processes at the

significance level of False Discovery Rate (FDR) less than 0.01

(Figure 2). Signature_3 was enriched in ‘‘translational elongation’’

(9 genes, FDR=3.21e-12) and Signature_5 was enriched in

‘‘immune system process’’ (9 genes, FDR=0.001) and ‘‘cell-cell

signaling’’ (6 genes, FDR=0.0067). Enrichment results from

signatures 3 and 5 suggested that different signatures might be

associated with different biological mechanisms. Moreover, lack of

Figure 1. Outline for deriving the network-based signature and validating its biological and clinical relevance. Published gene
expression signatures and somatic mutation data were mapped to a protein-protein interaction network. Through integrating information from
Mutation, Expression, and Network, a NEM signature was derived using the NetWalker algorithm based on the random walk with restart technique.
Biological relevance of the signature was evaluated based on functional information including Gene Ontology, known cancer genes and signaling
pathways. Clinical relevance of the signature was evaluated by developing a Survival SVM model based on a gene expression dataset and testing in
an independent dataset for its accuracy in prognosis and predicting response to therapy.
doi:10.1371/journal.pone.0041292.g001
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functional concordance for other signatures indicated that

different genes in a signature might represent distinct biological

themes and possibly, noise. To further test whether common

biological themes could be identified by combining all signatures,

we performed enrichment analysis for all 208 genes in the 8

signatures. Enriched biological processes identified included

‘‘translational elongation’’ (10 genes, FDR=4.0e-4) and ‘‘decid-

ualization’’ (4 genes, FDR=0.0049). The former was obviously

contributed primarily by signature_3. Thus, enrichment analysis

failed to reveal functional convergence of the CRC gene

expression signatures. Interestingly, although earlier studies

reported wide concordance between the biological processes

captured by different breast cancer prognostic signatures, a recent

study [31] comparing two machine-learning based breast cancer

prognostic signatures only found statistically significant concor-

dance in cell proliferation.

Integrative Network Analysis Identified Common
Mechanisms Underpinning CRC Recurrence
Previous studies suggest that genes known to be associated

with the same disease phenotype tend to lie close to each other in

a protein-protein interaction network [27,32]. Furthermore,

Chen et al. [16] showed that cancer signature genes are more

likely to be close to known oncogenes and tumor suppressors in

a protein-protein interaction network. Therefore, we used

a network-based approach to integrate these signatures on the

protein-protein interaction network in an attempt to identify

genes of potential mechanistic importance to the CRC re-

currence phenotype. In addition to gene expression alteration,

somatic mutations in mechanistically important genes may also

lead to the same phenotype. Therefore, we further collected 549

genes with somatic mutations in CRC from the CanProVar

database [23] to enhance the network analysis using the

NetWalker algorithm [24]. Both signature gene lists and the

mutated gene list included mechanistically important genes (e.g.

driver mutations and effectors) and other genes (e.g. passenger

mutations and epiphenomena). Moreover, some mechanistically

important genes might be missing in these lists. The NetWalker

algorithm infers genes of potential mechanistic importance based

on the assumption that these genes are likely to form tightly

connected clusters while others tend to be randomly distributed

on the network. Using the signature genes and the mutated genes

as ‘‘seeds’’, the algorithm calculated a score for each gene in the

network based on its overall proximity to all seed genes, where

the proximity is measured by the random walk similarity [27].

To assess the statistical significance of the scores, we constructed

1000 sets of random seeds and generated 1000 sets of random

scores. For each gene, we estimated a local p value based on all

random scores of the same gene and a global p value based on

random scores for all genes. A significant global p value indicates

the overall significance of the gene with regard to the input

seeds, while a significant local p value ensures that the

significance is not simply due to network topology [24]. A total

of 487 genes with both local and global p values less than 0.05

were considered as significant genes, including 464 from the

original lists and 23 added by the algorithm (Figure 3A). We

named the list of 487 genes the NEM signature because it

integrated information from Network, Expression, and Mutation.

The list included well-known CRC-related genes, including APC,

CTNNB1, KRAS, TP53, BRAF, among others. It also included

genes with unknown but potential importance in CRC re-

currence. A complete list of the NEM signature genes and their p

values are available in Table S1. To test the robustness of the

method with regard to different input gene expression signature

lists, we removed each expression signature from the seeds, one

at a time, and generated 8 NEM-7 signatures (thus named

because they used only 7 out of the 8 available gene expression

signatures). These experiments altered the total number of input

expression signature genes from 4% (when signature_1 was

removed) to 28% (when signature_2 was removed). The Dice’s

coefficient between the NEM-7 signatures and the original NEM

signature ranged from 0.88 to 0.96, with a mean of 0.93,

suggesting high robustness of the method.

GO enrichment analysis of the NEM signature identified four

major biological processes with significant enrichment (Table 3),

including ‘‘signal transduction’’ (186 genes, FDR=7.07e-11), ‘‘cell

proliferation’’ (71 genes, FDR=3.03e-8), ‘‘programmed cell

death’’ (75 genes, FDR=1.83e-9), and ‘‘developmental process’’

(158 genes, FDR=3.98e-9). Although these processes are broad

and not necessarily cancer-specific, they are consistent with the

hallmarks of cancer [33]. Except for Signature_1, all other

expression signatures included a small number of genes in some or

all of these biological processes (Table 3). Moreover, all these

biological processes were significantly enriched in all of the NEM-

7 signatures.

Next, we calculated the ratios of known oncogenes and tumor

suppressor genes in the union of published gene expression

signatures, the somatic mutation gene list, and the NEM signature,

based on annotations from two different resources, CancerGenes

and GLAD4U. Because many of the known oncogenes and tumor

suppressor genes are identified based on somatic mutation, it was

not surprising that the somatic mutation gene list had a higher

percentage of these genes than the gene expression signatures.

However, it was interesting to see that the NEM signature had the

highest percentage of known oncogenes and tumor suppressor

genes (Figure 3, B–C). To better understand the involvement of

the NEM signature genes in cancer-specific pathways, we mapped

them to the cancer pathway map curated by KEGG. As shown in

Figure S1, the gene list mapped to nearly all of the cancer-related

pathways, with a clear enrichment in the Wnt signaling pathway,

the TGF-beta signaling pathway, and the ErbB signaling pathway,

the most important pathways that are deregulated in CRC [34]. In

summary, the NEM signature showed significant enrichment in

four biological processes closely related to cancer pathophysiology

and provided good coverage of known oncogenes, tumor

suppressors, and CRC-related signaling pathways, thus demon-

strating a high relevance to CRC biology.

The NEM Signature-based Prognostic Models Effectively
Predicted CRC Recurrence
To test whether the NEM signature with genes centered on

functionally important networks can predict CRC recurrence, we

developed prognostic models using these genes as features and

evaluated performance of the models in independent patient

cohorts.

First, we trained a SSVM prognostic model using gene

expression dataset GSE17536 and tested its performance on an

independent data set GSE14333. Among the 487 genes in the

NEM signature, only the 467 genes in the dataset were used to

train the model. Five-fold cross validation was used and repeated

5 times to optimize the parameters for the SSVM algorithm, and

a full model based on the complete dataset was developed using

the optimal parameters. For testing in GSE14333, SSVM scores

were calculated for individual samples, with a higher score

indicating higher risk and shorter survival time. The calculated

SSVM scores and the real survival data showed 75.7% concor-

dance (C-index= 0.757). Based on the SSVM scores, the patients

were separated into two groups, a ‘‘low-risk’’ group with below-

Network-Based Colorectal Cancer Gene Signature

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e41292



T
a
b
le

2
.
Ei
g
h
t
p
u
b
lis
h
e
d
C
R
C
g
e
n
e
e
xp

re
ss
io
n
si
g
n
at
u
re
s.

ID
A
rr
a
y

S
a
m
p
le

ty
p
e

M
e
th

o
d

S
ig
n
a
tu

re
si
z
e

S
ig
n
a
tu

re
ID

ty
p
e

U
n
iq
u
e
g
e
n
e
s

In
d
e
p
e
n
d
e
n
t

e
v
a
lu
a
ti
o
n

R
e
fe
re
n
ce

S
ig
_
1

H
u
m
an

1
9
K
O
lig

o
ar
ra
y

(U
M
N
J)

St
ag

e
II
co
lo
re
ct
al

tu
m
o
rs

(6
re
cu
rr
e
n
ce

+1
0
d
is
e
as
e
-f
re
e
)

G
e
n
e
s
id
e
n
ti
fi
e
d
b
y
b
o
th

t-
te
st

an
d
Fi
sh
e
r
te
st

8
G
e
n
e
B
an

k
ID

8
N
o

B
an

d
re
s
e
t
al
.
[4
]

S
ig
_
2

A
ff
ym

e
tr
ix

H
G
-U
1
3
3
A

N
o
n
-n
e
o
p
la
st
ic

m
u
co
sa

fr
o
m

st
ag

e
II
p
at
ie
n
ts

(1
0

re
cu
rr
e
n
ce

+1
4
d
is
e
as
e
-f
re
e
)

G
e
n
e
s
w
it
h
th
e
la
rg
e
st

ab
so
lu
te

t-
st
at
is
ti
cs

in
t-
te
st

7
0

P
ro
b
e
se
t
ID

5
8

N
o

B
ar
ri
e
r
e
t
al
.
[2
1
]

S
ig
_
3

A
ff
ym

e
tr
ix

H
G
-U
1
3
3
A

St
ag

e
II
co
lo
re
ct
al

tu
m
o
rs

(2
5

re
cu
rr
e
n
ce

+2
5
d
is
e
as
e
-f
re
e
)

G
e
n
e
s
w
it
h
th
e
la
rg
e
st

ab
so
lu
te

t
st
at
is
ti
cs

in
t-
te
st

3
0

P
ro
b
e
se
t
ID

2
6

N
o

B
ar
ri
e
r
e
t
al
.
[5
]

S
ig
_
4

H
u
m
an

3
2
,4
8
8
-e
le
m
e
n
t

cD
N
A
ar
ra
y
(T
IG
R
)

A
d
e
n
o
m
a
+
St
ag

e
II-
IV

tu
m
o
rs

(4
8
p
o
o
r
p
ro
g
n
o
si
s
+3

0
g
o
o
d

p
ro
g
n
o
si
s)

G
e
n
e
s
co
n
si
st
e
n
tl
y
se
le
ct
e
d

b
y
th
e
t-
te
st

in
LO

O
C
V

4
3

G
e
n
e
B
an

k
ID

2
4

Y
e
s

Es
ch
ri
ch

e
t
al
.
[6
]

S
ig
_
5

A
ff
ym

e
tr
ix

H
G
-U
1
3
3
A

St
ag

e
I-
II
co
lo
re
ct
al

tu
m
o
rs

(2
6
re
cu
rr
e
n
ce

+2
9
d
is
e
as
e
-f
re
e
)

G
e
n
e
lis
t
th
at

g
e
n
e
ra
te
d
th
e

b
e
st

p
re
d
ic
ti
o
n
m
o
d
e
l
(3
-N
N
*

cl
as
si
fi
e
r
m
o
d
e
l)
in

LO
O
C
V

1
9

G
e
n
e
sy
m
b
o
l

1
9

Y
e
s

Li
n
e
t
al
.
[7
]

S
ig
_
6

H
u
m
an

3
0
K
O
lig

o
ar
ra
y
(M

W
G
B
io
te
ch
)

St
ag

e
I–
IV

co
lo
re
ct
al

tu
m
o
rs

(4
7
re
cu
rr
e
n
ce

+1
0
2
d
is
e
as
e
-f
re
e
)

G
e
n
e
lis
t
th
at

g
e
n
e
ra
te
d
th
e

b
e
st

p
re
d
ic
ti
o
n
m
o
d
e
l
(S
V
M

m
o
d
e
l)
in

LO
O
C
V

2
2

G
e
n
e
sy
m
b
o
l

2
2

Y
e
s

Li
n
e
t
al
.
[7
]

S
ig
_
7

A
ff
ym

e
tr
ix

M
o
u
se

G
e
n
o
m
e
4
3
0
2
.0
;

H
G
-U
1
3
3
P
lu
s
2
.0

M
o
u
se

ce
ll
lin

e
m
o
d
e
ls
o
f
C
R
C

(i
n
va
si
ve

vs
n
o
n
-i
n
va
si
ve
,

3
re
p
lic
at
e
s
e
ac
h
);
St
ag

e
I-
IV

tu
m
o
rs

(1
9
h
ig
h
ri
sk

+3
6
lo
w

ri
sk
)

G
e
n
e
s
d
if
fe
re
n
ti
al
ly

e
xp

re
ss
e
d

b
e
tw

e
e
n
in
va
si
ve

an
d
n
o
n
-

in
va
si
ve

ce
ll
lin

e
s
an

d
sh
o
w
e
d

th
e
sa
m
e
d
ir
e
ct
io
n
o
f
ch
an

g
e

in
h
ig
h
ri
sk

p
at
ie
n
ts

3
4

G
e
n
e
sy
m
b
o
l

3
4

Y
e
s

Sm
it
h
e
t
al
.
[8
]

S
ig
_
8

A
ff
ym

e
tr
ix

H
G
-U
1
3
3
A

St
ag

e
II
co
lo
re
ct
al

tu
m
o
rs

(3
1

re
cu
rr
e
n
ce

+4
3
d
is
e
as
e
-f
re
e
)

U
n
su
p
e
rv
is
e
d
cl
u
st
e
ri
n
g

se
p
ar
at
e
d
sa
m
p
le
s
in
to

tw
o

g
ro
u
p
s;
u
n
iv
ar
ia
te

co
x
m
o
d
e
l

an
d
t-
te
st

w
e
re

u
se
d
to

se
le
ct

g
e
n
e
s
fr
o
m

e
ac
h
g
ro
u
p
an

d
th
e
n
co
m
b
in
e
d

2
3

P
ro
b
e
se
t
ID

2
1

N
o

W
an

g
e
t
al
.
[9
]

LO
O
C
V
:
Le
av
e
O
n
e
O
u
t
C
ro
ss

V
al
id
at
io
n
;
N
N
:
N
e
ar
e
st

N
e
ig
h
b
o
r;
SV

M
:
Su

p
p
o
rt

V
e
ct
o
r
M
ac
h
in
e
;
T
IG
R
:
T
h
e
In
st
it
u
te

fo
r
G
e
n
o
m
ic

R
e
se
ar
ch
;
U
M
N
J:
U
n
iv
e
rs
it
y
o
f
M
e
d
ic
in
e
o
f
N
e
w

Je
rs
e
y.

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
0
4
1
2
9
2
.t
0
0
2

Network-Based Colorectal Cancer Gene Signature

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e41292



median scores and a ‘‘high-risk’’ group with above-median scores.

As shown in Figure 4A, the high-risk group had significantly worse

relapse-free survival (hazard ratio [HR], 7.47; 95% confidence

interval [CI], 1.64–34.0; P= 0.002) than the low-risk group. The

relapse free survival at 3 years was 96.9% for the low-risk group

compared with 69.3% for the high-risk group.

A recent study suggests that most random gene expression

signatures are significantly associated with breast cancer outcome

Figure 2. Minimal overlap among published CRC gene expression signatures. Each circle represents one gene expression signature with
the number in the parentheses indicating the signature size. The callouts annotate enriched biological processes, numbers of genes involved in the
processes, and corresponding False Discovery Rates for the significance of enrichment.
doi:10.1371/journal.pone.0041292.g002

Figure 3. Cancer-relevance of the published gene expression signatures, mutated genes, and the NEM signature. (A) Overlap among
the published gene expression signatures (208 genes), mutated genes (549 genes), and the NEM signature (487 genes). (B) The percentage of
oncogenes and tumor suppressor genes in the published gene expression signatures (a), mutated genes (b), and the NEM signature (c), as annotated
by CancerGenes. (C) The percentage of oncogenes and tumor suppressor genes in the published gene expression signatures (a), mutated genes (b),
and the NEM signature (c), as annotated by GLAD4U.
doi:10.1371/journal.pone.0041292.g003
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[35]. Therefore, we repeated our analysis using 10 sets of

randomly selected 487 genes. When the models trained on

GSE17536 were tested on GSE14333, they got a median C-index

of 0.546 and a median P value of 0.568. Thus, random gene

signatures do not seem to work in CRC prognosis.

One consideration is that 487 genes might be too many for

practical clinical implementation. Therefore, we tried different

cutoff values in the network-based prioritization process to alter

the number of selected genes. Using different p value cutoffs

including 0.005, 0.01, and 0.1, we identified 45, 105 and 810

Table 3. Number of genes associated with the enriched GO terms for the NEM signature.

Signature ID Signature size Signal transduction Cell proliferation Programmed cell death Developmental process

NEM signature 487 186 71 75 158

Sig_1 8 0 0 0 0

Sig_2 58 9 6 3 9

Sig_3 26 6 2 2 4

Sig_4 24 7 1 2 3

Sig_5 19 7 5 3 6

Sig_6 22 3 0 0 1

Sig_7 34 5 5 3 11

Sig_8 21 2 1 0 3

doi:10.1371/journal.pone.0041292.t003

Figure 4. Testing the GSE17536-derived SSVM prognostic models on GSE14333. Kaplan-Meier survival curves for patient subgroups
identified in GSE14333 using models developed based on GSE17536 with different gene sets. (A) The NEM signature based on network analysis with
the seed nodes including 208 genes in published signatures and 549 mutated genes, N = 487; (B) The NE signature based on network analysis with
the seed nodes including 208 genes in published signatures, N = 546; (C) The NM signature genes based on network analysis with the seed nodes
including 549 mutated genes, N= 435; (D) the union of 208 genes in published signatures and 549 mutated genes, N= 753; (E) 208 genes in
published signatures, N = 208; (F) 549 mutated genes from CanProVar, N = 549.
doi:10.1371/journal.pone.0041292.g004

Network-Based Colorectal Cancer Gene Signature

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e41292



genes, respectively. Using parameters selected based on cross-

validation results, three SSVM models were developed on

GSE17536 and tested on GSE14333 respectively. As shown in

Figure S2, the performance of the 810 gene model was

comparable to that of the 487 gene model, while the 105 and

45 gene models showed little prediction power. Therefore, further

reducing the genomic space seems problematic, possibly due to the

underlying complexity of CRC.

Because the NEM signature integrated information from

mutations, gene expression signatures, and the protein-protein

interaction network, we tried to dissect their individual contribu-

tion to the observed performance. Network signatures derived

using the same network prioritization method but based on either

the gene expression signatures alone (NE signature with 546 genes,

Figure 4B) or the mutated genes alone (NM signature with 435

genes, Figure 4C) did not result in comparable performance as

that from the NEM signature (Figure 4A). Specifically, the C-index

for the NEM signature-based model was 27% higher than that for

the NE signature-based model and 13% higher than that for the

NM signature based model. On the other hand, all three models

derived from network signatures (Figure 4A–C) performed better

than their counterparts without network-based prioritization

(Figure 4D–F). For example, the C-index for the NEM

signature-based model was 28% higher than that for the model

based on the union of all gene signatures and mutated genes.

These results suggest that network-based prioritization facilitates

achieving the observed performance, and both expression

signatures and mutated genes provide complementary information

Figure 5. Testing the GSE14333-derived SSVM prognostic models on GSE17536. Kaplan-Meier survival curves for patient subgroups
identified in GSE17536 using models developed based on GSE14333 with different gene sets. (A) The NEM signature based on network analysis with
the seed nodes including 208 genes in published signatures and 549 mutated genes, N = 487; (B) The NE signature based on network analysis with
the seed nodes including 208 genes in published signatures, N = 546; (C) The NM signature genes based on network analysis with the seed nodes
including 549 mutated genes, N= 435; (D) the union of 208 genes in published signatures and 549 mutated genes, N= 753; (E) 208 genes in
published signatures, N = 208; (F) 549 mutated genes from CanProVar, N = 549.
doi:10.1371/journal.pone.0041292.g005

Table 4. Univariate and multivariate Cox proportional hazard
regression analyses of relapse-free survival in GSE14333.

Univariate Multivariate

p value HR (95% CI) p value HR (95% CI)

Age 0.552 1.02 (0.97–1.07) 0.693 1.00 (0.96–1.06)

Gender (M or F) 0.951 1.04 (0.34–3.18) 0.792 0.85 (0.27–2.74)

AJCC STAGE (II, III) 0.012 4.52 (1.24–16.46) 0.012 5.51 (1.46–20.85)

NEM signature score 0.002 7.47 (1.64–34.0) 0.007 9.40 (1.86–47.63)

AJCC, American Joint Committee on Cancer; F, female; M, male; NEM signature
score was based on SSVM models developed in GSE17536.
doi:10.1371/journal.pone.0041292.t004
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during the network-based prioritization. Thus, information from

all three sources plays important roles in deriving the biologically

and clinically relevant signature.

The network analysis only added 23 genes to the NEM

signature, suggesting that the main effect of the analysis was to

filter out noisy or functionally irrelevant genes. However, it is of

particular interest whether the 23 added genes contributed to the

good performance of the NEM signature. To answer this question,

we removed the 23 genes from the NEM signature and repeated

the analysis. The new model based on the remaining genes showed

deteriorated performance (P = 0.121; HR=2.47, 95% CI= 0.76–

8.02; C-index= 0.632). Thus, the 23 genes added by the network

analysis indeed contributed to the prognostic performance of the

NEM signature.

To further evaluate the effectiveness of the NEM signature, we

reversed the training and testing datasets by training on gene

expression dataset GSE14333 and testing on gene expression

dataset GSE17536. Analogous results were obtained as shown in

Figure 5. Scores derived from the NEM signature-based model

and the real survival data showed 68.1% concordance (C-

index = 0.681) and separated the patients into two groups with

significantly different relapse-free survival (hazard ratio [HR],

2.71; 95% confidence interval [CI], 1.27–5.79; P= 0.007). The

relapse free survival at 3 years was 82.9% for the low-risk group

compared with 63.5% for the high-risk group. All three models

derived from network signatures (Figure 5A–C) attained a better

C-index than their counterparts without network-based prioriti-

zation (Figure 5D–F). Two out of the three also resulted in a better

P value. The NEM signature-based model performed the best

among all models. These results confirmed that the NEM

signature-based prognostic models could effectively predict CRC

recurrence.

Prognostic Value of the NEM Signature Score Compared
to Clinical Variables
Univariate and multivariate Cox proportional hazards re-

gression analyses were applied to GSE14333 to evaluate the

prognostic value of the NEM signature score in combination with

clinical variables including patient age at diagnosis, gender and

AJCC stage, where the NEM signature score for the samples were

derived from the NEM signature-based model developed on

GSE17536. In the univariate analysis, the NEM signature score

and AJCC stage were significantly associated with relapse-free

survival (p=0.002 and p=0.012, respectively). In the multivariate

analysis, the NEM signature score and AJCC stage still maintained

the significance (p=0.007 and p=0.012, respectively) (Table 4).

According to the log-rank p values, the NEM signature score was

more significantly associated with relapse-free survival than AJCC

stage. Thus, the NEM signature score contributed more in-

formation about recurrence than standard clinical and pathologic

covariates.

NEM Signature Score-based Risk Stratification Provided
Insight into the Response to Adjuvant CTX
Finally, we tested whether the NEM signature score-based risk

stratification could provide insight into the benefit from adjuvant

CTX. This analysis was limited to stage III colon cancer patients

with adjuvant CTX information. Stage II patients were excluded

because very few of them received adjuvant CTX. Rectal cancer

patients were excluded to avoid potential confounding effects of

treatment differences. According to the NEM signature-based

prognostic models, 31 patients (10 from GSE14333 and 21 from

GSE17536) were assigned to the low-risk group and 48 patients

(13 from GSE14333 and 35 from GSE17536) were assigned to the

high-risk group. Interestingly, 81% (25 out of 31) of patients in the

low-risk group received adjuvant CTX compared to 67% (32 out

of 48) in the high-risk group. As shown in Figure 6A, adjuvant

CTX was significantly associated with prolonged survival of

Figure 6. NEM signature score-based risk stratification informs response to adjuvant chemotherapy (CTX). (A) Kaplan-Meier survival
curves for high-risk patients in GSE17536 and GSE14333, with (CTX) and without (NO CTX) adjuvant CTX; (B) Kaplan-Meier survival curves for low-risk
patients in GSE17536 and GSE14333, with and without adjuvant CTX.
doi:10.1371/journal.pone.0041292.g006
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patients in the high-risk group (hazard ratio [HR], 0.32; 95%

confidence interval [CI], 0.13–0.75; P= 0.006), with a 67%

relapse free survival rate at 3 years for patients received CTX

compared to 25% for patients did not receive adjuvant CTX. In

contrast, adjuvant CTX was not beneficial to patients in the low-

risk group (hazard ratio [HR], 2.07; 95% confidence interval [CI],

0.25–17.3; P= 0.491), with a 80% relapse free survival rate at

3 years for patients who received adjuvant CTX as compared to

83% for patients did not receive CTX (Figure 6B). Although this

result needs to be further evaluated in additional patient cohorts

with larger sample size, we concluded based on available data that

the NEM signature score-based risk stratification could provide

useful information on potential benefit from adjuvant CTX.

Discussion

A major conclusion from this study is that accurate prognostic

models can be developed using mechanistically important genes

inferred from our network analysis. Although the NEM signature

was not directly selected for optimizing prediction performance,

prognostic models based on the signature effectively predicted

CRC recurrence and provided useful insight into patient response

to adjuvant CTX.

The network-based approach used for the NEM signature

development has two distinct advantages. First, it provides

a knowledge-driven method for reducing feature space dimen-

sionality. Owing to the large number of genes and small sample

size, reducing the gene dimensionality is a necessary step in

microarray based classification studies. Existing methods usually

select genes to optimize prediction performance in the training

dataset (e.g. through cross-validation); in contrast, our approach

selects genes based on their functional importance inferred from

network analysis. Therefore, gene selection in existing methods

depends on the training data, whereas in our approach, it is

knowledge-driven and independent of the training data. Although

functionally important genes do not necessarily show expression

change in a specific tumor sample, expression alteration among

these genes are most likely to cause downstream phenotype

changes. Secondly, the network-based signature provides bi-

ological insight about the disease. The NEM signature showed

significant enrichment in four important biological processes

related to cancer pathology. It also provided good coverage of

known oncogenes, tumor suppressors, and CRC related signaling

pathways. Although a biological explanation is not strictly

necessary for a successful prediction model [36], such information

may help identify potential new targets for drug development in

follow-up studies.

Our analysis also offers biological explanations for the small

overlap of the published CRC gene expression signatures and the

lack of biological interpretation for these signatures (Figure 7A).

Enrichment analysis of the NEM signature suggests that the CRC

recurrence phenotype is the result of dysregulation of multiple

important biological processes. Individual signatures only include

a small number of components related to one or a few of these

mechanisms, thus demonstrate minimal gene-level concordance.

Moreover, although each signature carries information on gene

expression changes in the important mechanisms, these critical

changes have been mixed with multitude of secondary or adaptive

changes, thus prevent the identification of the common biological

themes in GO enrichment analysis. Because gene expression

alterations exert their effects primarily by changing the levels and

activity of proteins and their participating networks, network-

Figure 7. Protein interaction network as a model for data integration. (A) Individual gene expression signatures only include a small number
of components related to one or a few of critical mechanisms, thus demonstrate minimal gene-level concordance. (B) Molecular alterations at
different levels eventually exert their effects through altered protein and network activity.
doi:10.1371/journal.pone.0041292.g007
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based analysis provides an effective approach to distinguish genes

of potential mechanistic importance from gene showing secondary

or adaptive changes. In addition to gene expression change, other

alterations at DNA, mRNA, and protein levels can all lead to

protein function alteration and, in turn, network dysregulation

(Figure 7B). Therefore, the network-based prioritization provides

a common framework that can be used to integrate genomic,

transcriptomic, and proteomic data sets relevant to a common pre-

defined cancer phenotype in order to highlight biological

mechanisms underlying the phenotype of interest and pinpoint

important genes for gene signature development. Such a signature

can be used for the development of gene expression-based

prognostic models, as described in this study. Moreover, with

the availability of matched expression and mutation data from the

same patients, one can use such a signature to build more powerful

models based on both gene expression and mutation status of the

genes.

Notwithstanding its great potential, the network-based signature

development approach is limited by the quality of currently

available data. Although the performance of the NetWalker

algorithm has been demonstrated to be robust against false positive

and false negative interactions in the protein-protein interaction

network [24], we believe that the growing effort in protein-protein

interaction network studies and concomitant increase of network

coverage and quality should improve the prioritization result. The

somatic mutation data used in the study was downloaded from our

previously developed CanProVar database that integrated cancer

related mutations from various resources [23]. We found that only

approximately 25% of the mutations were supported by two or

more data sources, suggesting a high ratio of false positives and

false negatives of the dataset. Ongoing large-scale cancer genome

projects, such as the Cancer Genome Project (CGP) of the Sanger

Institute and The Cancer Genome Atlas (TCGA) project of the

NCI and NHGRI could rapidly increase the coverage and quality

of the somatic mutation data. Almost all of the gene signatures

used in this study were developed based on the comparison of

microarray data from highly aggressive and less aggressive CRC

tumors. Recently, new CRC signatures have been published based

on the same approach [22,37], unsupervised analysis of CRC

subtypes [38], or model system based mechanistic analysis [39]. It

would be useful to add these signatures to our network-based

prioritization to refine our NEM signature.

Because of high heterogeneity, stage II and III CRC patients

can significantly benefit from an accurate risk evaluation model.

Genomic markers currently used to support decision-making in

CRC treatment include the microsatellite instability (MSI) that is

associated with lack of efficacy of adjuvant CTX, and KRAS

mutations that are predictive of lack of effectiveness of epidermal

growth factor receptor (EGFR) inhibitors. Both of these are only

useful as negative markers and cannot predict the subset of

patients who will benefit from adjuvant CTX [40,41]. Our model

provides insight into both negative and positive responses to

adjuvant CTX and therefore could support clinical decision

making after further evaluation in patient cohorts with larger

sample size.
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