
Historically, β-thalassemia has been divided into 
three main subgroups based on severity of the clini-
cal phenotype: major (β-TM), intermedia, and mi-
nor. Distinction of the various phenotypes of thalas-
semia is mostly based on clinical parameters, although 
a genotype-phenotype association is established in 
both α- and β-thalassemia syndromes. Nowadays, 
β-thalassemia patients are classified as either transfu-
sion-dependent (TDT) or non–transfusion-depend-
ent (NTDT) according to the severity of phenotype. 
This classification embraces all other forms of thalas-
semia syndromes such as α-thalassemia, hemoglobin 
E/β-thalassemia and combined α- and β-thalassemias 
(4). Diagnosis and management of these disorders 
both in the neonatal period or later using appropri-

Introduction

Thalassemias are inherited hemoglobinopathies 
characterized by impaired or absent production  of one 
of the globin chains of adult hemoglobin (Hb). The 
most common form is β-thalassemia related to a de-
fective production of the β-globin chains causing an 
unbalanced ratio of α-globin to β-globin. 

As a consequence, the unbound free α-globin 
chains precipitate in erythroid precursors, leading to 
ineffective erythropoiesis, chronic hemolytic anemia, 
and compensatory hemopoietic expansion (1,2). More 
than 50,000 children with this disease are born world-
wide each year, adding to the disease burden of this 
condition (3). 
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ate approaches and uniform technology are extremely 
important.

Definitive diagnosis of thalassemia requires a 
comprehensive workup from complete blood count, 
Hb analysis, and molecular studies to identify muta-
tions of globin genes (1,2). The most common muta-
tions that cause β-thalassemia are single nucleotide 
substitutions, small deletions, or insertions within the 
β-globin gene. To date, more 400 identified muta-
tions of the β-globin gene (HBB) or promoter region 
that reduce or prevent the expression of the β-globin 
subunit of hemoglobin (Hb) in erythroid precursors 
(1,2,4).

After birth, HbF synthesis which is composed 
of two α-globin and two γ-globin chains (α2γ2) rap-
idly declines and HbF is gradually substituted by 
the major and minor adult hemoglobin forms, HbA 
and HbA2, respectively. As postnatal red blood cells 
(RBCs) HbF levels drop (less than 1%), children with 
β-TM experience severe microcytic, hypochromic ane-
mia and become dependent on lifelong periodic blood 
transfusions (1,2,5,6). Unfortunately, chronic transfu-
sions result in an increasing iron load (IOL) that lead 
to iron toxicity in vulnerable organs such as the heart, 
liver and endocrine glands, and necessitates daily iron 
chelation therapy (ICT), an expensive and sometimes 
uncomfortable treatment (7,8).  

Deferoxamine (DFO), deferiprone (DFP), and 
deferasirox (DFX) are used to treat IOL in an attempt 
to reduce morbidity and mortality related to organs 
siderosis (5-8). Moreover, the advances in the under-
standing the mechanism of iron toxicity and overload-
ing, and the availability of noninvasive methods to 
monitor iron loading in the liver, heart, and pancreas, 
the life expectancy of  β-TM patients has improved 
significantly in high-income countries. 

Combined oral chelation with DFO and DFP (9) 
in 39/52 β-TM patients with abnormal glucose me-
tabolism, 44% normalized. In 18/52 requiring thyrox-
ine supplementation for hypothyroidism, 10 were able 
to discontinue, and four reduced their thyroxine dose. 
In 14/52 hypogonadal males on testosterone therapy, 
seven stopped treatments. Of the 19/52 females, who 
were hypogonadal on DFO monotherapy, six were 
able to conceive. Moreover, no patients developed 
de novo endocrine complications (9). Combined oral 

chelation with DFP and DFX significantly decreased 
serum ferritin level in children with severe IOL (10). 
A 40-year-old male with β-TM, with refractory severe 
iron overload, was successfully and safely chelated with 
a combination of DFO with DFX (11).

Nevertheless, in clinical practice, endocrine 
complications are still observed and have been main-
ly attributed to the poor compliance to ICT, chronic 
liver disease (9) and cost of medication The latter 
figure is even higher in patients of developing coun-
tries. The proportion of non-compliance to ICT was 
24.7% amongst patients with TDT aged 9 years old 
and above, attending three tertiary hospitals in Ma-
laysia (12). Moreover, a meta-analysis showed that 
the non-adherence to DFO ranged from 3.9% to 
29.4%, non-adherence to DFP ranged from 5.1% to 
17.6%, and non-adherence to DFX ranged from 1% 
to 14.7% (13).

In the recent decades, with the improvements of 
transfusion and ICT, the advances in the understand-
ing the mechanism of iron toxicity and overloading, 
and the availability of noninvasive methods to monitor 
iron loading in the liver, heart, and pancreas, the life 
expectancy of  β-TM  patients has improved signifi-
cantly in high-income countries (14). Nevertheless, the 
occurrence of endocrine disorders still persist and have 
been attributed to poor compliance to iron-chelating 
agents and cost of medication The latter figure is even 
higher for patients in developing countries. 

Unlike supportive blood transfusions, hemat-
opoietic stem cell transplantation (HSCT) offers the 
hope of a definitive cure for patients with β-TM (15). 
Advances in transplantation techniques and support-
ive care strategies have resulted in a significant im-
provement in survival of those who have undergone 
treatment. However, HSCT survivors are at risk of 
developing long-term complications, such as endo-
crinopathies. The risk of these complications is influ-
enced by pre-HSCT therapeutic exposures, transplan-
tation-related conditioning, and post-transplantation 
management of graft-versus-host disease (GVHD) 
(16). 

Gene therapy with globin lentiviral vectors and 
genome editing to inhibit the BCL11A gene are cur-
rently under investigation (17). Gene therapy and 
HSCT, however, have limitations, are feasible in a 
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small subset of patients and require pre- transplanta-
tion conditioning.  

Moreover, the recent approval of luspatercept, an 
erythroid maturation agent that binds select TGF-β 
superfamily ligands to diminish Smad 2/3 signaling 
and enhance late-stage erythropoiesis, offers a new 
long-term therapeutic option for adult patients with 
β-TM to reduce red blood cell transfusion burden, 
anemia, and iron overload (17).

The goal of this short review is to summarize and 
update knowledges about long-term growth and en-
docrine changes after HSCT in patients with β-TM 
in comparison to those conventionally treated with 
packed RBC transfusions and iron chelating agents.

Methods

Search Strategy

The search identified articles, published in the last 
30 years, retrieved from PubMed, Google Scholar and 
Research Gate. As keywords, we used Medical Subject 
Headings such as “allogeneic bone marrow transplan-
tation”, “stem cells transplantation”, “conditioning regi-
mens “, “β-thalassemia major“,“transfusion-dependent  
thalassemia“, “children“, “adolescents“,“young adults“, 
“growth“, “endocrine abnormalities“, “hypogonadism“, 
“growth hormone deficiency“, “hypothyroidism“, “dia-
betes mellitus“, “fertility “,“cyclophosphamide“, and 
“busulfan“. Exclusion criteria: all articles included 
publication dates prior to 1990 and related topics not 
listed in the inclusion criteria. 

Inclusion and exclusion article selection

Studies were included if they were published in 
peer-reviewed journals, in English, described

the protocols of conditioning regimens utilized in 
HSCT and were not abstracts or reviews. Titles were 
first screened to eliminate irrelevant articles. Abstracts 
were then reviewed to confirm eligibility, and selected 
articles were processed for full-text analysis. The search 
also included studies cited in relevant articles.

Results

Hemopoietic stem cell transplantation in patients with 
β-TM

In 1980, allogeneic HSCT was introduced as a 
treatment option (18). In the 1980s and early 1990s, 
more than 1,000 β-TM patients were transplanted in 
Pesaro (Italy) and in 900 consecutive unselected pa-
tients transplanted from an HLA-identical sibling do-
nor a 20-year probability of thalassemia- free survival 
was reported in 73% of patients, who were divided into 
three classes based on presence of hepatomegaly, por-
tal fibrosis, and a history of inadequate iron chelation 
(19). 

Initial experiences with thalassemia patients un-
dergoing allogeneic HSCT were limited to matched 
sibling donors (20). Later, various centers using mod-
ern improved transplantation approaches, and care-
ful patient selection, reported a significant reduction 
of transplantation-related mortality (TRM) in young 
low-risk β- TM transplanted children (21). Nowadays, 
the availability of an international network of volun-
tary stem cell donor registries and cord blood banks 
has significantly increased the odds of finding a suita-
ble HLA matched donor. Although acute and chronic 
GvHD remains the most important complication in 
unrelated HSCT in thalassemia, leading to significant 
rates of morbidity and mortality for a chronic non-ma-
lignant disease (22). For several decades little progress 
has been made in treating GvHD, with corticosteroids 
being the mainstay of first-line therapy. Over the past 
years, intensive pre-clinical research has led to an im-
proved understanding of the pathophysiology of acute 
and to a lesser extend chronic GvHD. This has trans-
lated into the approval of several new agents for the 
treatment of both forms of GvHD (21-23).

Conditioning regimens for hematopoietic stem cell trans-
plantation in patients with β-TM

The purpose of the preparative regimen is two-
fold: to provide adequate immunosuppression to 
prevent rejection of the transplanted graft and to 
eradicate the disease for which the transplant is be-
ing performed. The biological aspects of allogeneic 
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lites including phosphoramide mustard, which binds 
to and crosslinks DNA and RNA, thereby inhibiting 
DNA replication and protein synthesis. This agent, at 
low doses, is also a potent immunosuppressant primar-
ily by depleting T-regulatory cells (34).

Busulfan (Bu)

Busulfan is a bifunctional alkylating agent of the 
alkylsulfonate type; it hydrolyzes in aqueous environ-
ment and releases methanesulfonate groups, leading 
to a reactive carbonium ion that alkylates DNA. Its 
metabolism is complex and not yet completely under-
stood. It is primarily metabolized by the liver through 
conjugation with glutathione, mainly by glutathione-
S-transferase A1 (GSTA1) (35). 

Treosulfan (Treo)

Treo is a water-soluble bifunctional alkylating 
agent and a structural analogue of busulfan. Although 
Treo has structural similarities with Bu, its mechanism 
of alkylation is different. As a pro-drug, it undergoes 
non-enzymatic and pH-dependent conversion into 
active mono and diepoxide derivatives under physio-
logical conditions. Interpatient variability of clearance 
in children is high; between 30 and 68% have been 
reported in population pharmacokinetic studies (36). 
Treo has a strong myeloablative potential and is con-
sidered less toxic than Bu; therefore, it has been con-
sidered in children with malignant and non-malignant 
disorders an appealing alternative to Bu as part of con-
ditioning of HSCT (37,38). 

Thiotepa is often combined with Treo and 
Fludarabine (Flu) or Bu and Flu in a myeloablative 
regimen. Thiotepa is primarily metabolized by the he-
patic system, where it is rapidly bio transformed by 
CYP3A4 and CYP2B6 to its key metabolite, TEPA, 
which is also an alkylating agent (39,40). Thiotepa and 
TEPA are eliminated in urine, but also dermally via 
sweat (39,40). Thiotepa is approved by the European 
Medicines Agency in adults and children, in combi-
nation with other chemotherapeutic agents, as both 
autologous and allogeneic HSCT therapy in hemato-
logical diseases and solid tumors (40). 

HSCT in β-TM are different from those for hema-
tologic malignancies. For many years, the most com-
mon conditioning regimen reported in literature in-
cluded oral busulfan (Bu) at 14 mg/kg followed by 
cyclophosphamide (Cy) given intravenously at 120-
200 mg/kg. The addition of azathioprine, hydroxyu-
rea and fludarabine to the Bu-Cy regimen have made 
an important contribution to improving the results in 
high-risk patients (24). 

In the last decade, new conditioning regimens for 
β-TM patients have been introduced with improved 
results, such as intravenous Bu, or treosulfan associated 
with thiotepa and fludarabine (25-27), and the pre-
ferred graft-versus-host disease (GVHD) prophylaxis 
in the majority of published studies of HSCT from 
matched sibling donors consisted of cyclosporine and 
methotrexate (28).  

In conclusion, HSCT has been well established 
for several decades and now offers very high rates of 
cure for β-TM patients who have access to this thera-
py. Outcomes have improved over the last decade, even 
in high-risk patients. This has been possible due to 
better risk stratification, more effective targeted dose 
adjustment of intravenous Bu during conditioning, a 
modified conditioning regimen and continually im-
proving supportive care. Systematic follow-up is need-
ed to measure long term outcomes and an adequate 
management needs to be provided post-HSCT for all 
pre-existing complications particularly iron chelation 
to prevent further organ dysfunction (29-33). 

Pharmacology of alkylating agents 

Alkylating agents are an important component of 
many conditioning protocols for HSCT in both chil-
dren and adults.  With increasing survival rates after 
HSCT, long-term effects represent a major concern 
especially in pediatric HSCT recipients. Toxicity pro-
files of the two major alkylating agents (Cy and Bu), 
are briefly reviewed. 

Cyclophosphamide (Cy)

Cy is a synthetic nitrogen mustard alkylating 
agent, with antineoplastic and immunosuppressive ac-
tivities. In the liver, Cy is converted to active metabo-
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decreases the percentage of cells in late phases. In ad-
dition, it disrupts the expression of genes/proteins im-
portant for spermatogenesis and increases intracellular 
oxidative stress (51).

In male mice, following single injections of Bu at 
15, 30 or 45 mg/kg, regardless of  Bu doses, fertility 
was lost within 4 weeks after treatment, while more 
than 95% spermatogonial stem cells (SSCs) were lost 
within 3 days. Fertility and SSC numbers gradually re-
covered with time, but the recoveries were delayed at 
higher busulfan doses. The loss and restoration of fer-
tility after busulfan treatment are direct consequences 
of SSC loss and expansion (52).

Effects of alkylating agents on growth, bone formation and 
gonads in human

Cyclophosphamide
In human, Cy has a significant reproductive toxicity 

in both males and females. It interferes with spermato-
genesis and oogenesis. Sterility, sometimes reversible, 
can occur in both men and women treated with Cy. This 
toxic effect depends on the dose and duration of therapy. 
Cy causes premature ovarian insufficiency by inducing 
death and/or accelerated activation of primordial fol-
licles and increased atresia of growing follicles. It also 
causes an increase in damage to blood vessels and the 
stromal compartment and increment inflammation (52). 

In males, spermatogenesis is much more likely to 
be disrupted than is testosterone production because 
the germinal epithelium of the testis is more sensitive 
to damage from cytotoxic drugs than the Leydig cells. 
The degree of damage to the germinal epithelium is in-
fluenced by the stage of sexual maturation of the testis. 
In general, the post pubertal testis appears to be more 
susceptible to damage than the prepubertal testis (53). 

Busulfan 

It is generally assumed that Bu/Cy-based con-
ditioning regimens for HSCT do not affect growth, 
although Bakker et al. (54) found in 4/10 non β-TM 
children, without a history of irradiation, an insuffi-
cient secretion of growth hormone (GH). They sug-
gested that Bu crosses blood brain barrier and accord-
ingly might have negative outcome on growth. 

Effects of alkylating agents on growth, bone formation and 
gonads in animal studies 

Cyclophosphamide
In rats, Cy chemotherapy altered survival or pro-

liferation of growth plate chondrocytes and metaphy-
seal osteoblastic cells and reduced heights of metaphy-
seal spongiosa trabecular bone, which may contribute to 
chemotherapy side effects of this drug on bone lengthen-
ing and bone mass accumulation (41). In addition, mice 
treated with Cy for 6 weeks had impaired bone forma-
tion as evidenced by significant reduction of bone mineral 
density (BMD) and decrease in alkaline phosphatase lev-
els compared to mice without chemotherapy. Besides its 
direct effect of inhibiting bone formation it also inhibits 
bone removal, making the resulting bone loss particularly 
difficult to treat with antiresorptive therapy (42).

In mice, Cy treatment (100 mg/kg/day) for 7 days 
led to osteoporosis through inhibition of osteoblas-
togenesis as shown by decreasing the number and dif-
ferentiation of bone mesenchymal stem cells (MSCs) 
and reducing the formation and activity of osteoblasts. 
In addition, Cy suppressed the osteoclastogenesis by 
reducing the maturation and activity of osteoclasts. Au-
thors suggested that the effect of Cy on bone formation 
might play a dominant role in its detrimental effects on 
bone remodeling (43).

The negative effects on the gonads of mice consist 
of irreversible follicle loss and permanent impairment of 
oocyte quality (44) and high gonadotoxic effects when 
administered before the initiation of spermatogenesis 
(45, 46). Multidose regimens of Cy did not eliminate 
the stem spermatogonia but resulted in cell loss and re-
sidual damage (47).

Decapeptyl ameliorates cyclophosphamide-in-
duced reproductive toxicity in male Balb/C mice (48). 
In addition, when GH-deficient rats were treated with 
GH, it was demonstrated to have a protective effect on 
the count and motility of spermatids following treat-
ment with Cy (49).

Busulfan 

In animals, Bu is known to have a detrimental ef-
fect on differentiating spermatogonia (50). In mice, Bu 
disrupts spermatogenesis by interrupting meiosis that 
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endocrine complications these important factors shall 
be conjointly interpreted (7,8). 

Soliman et al. (61), described the prevalence of 
growth and endocrine abnormalities in adolescents and 
young adults with β-TM reported, after 2020, from 10 
countries (Figure 1).  Growth impairment and growth 
hormone deficiency (GHD) occurred from 31% to 49 
%, hypogonadism and delayed or absent puberty from 
35% to 57 %, primary hypothyroidism from 4% to 29 
%, dysglycemia (impaired glucose tolerance and diabe-
tes mellitus) from 5% to 17% and hypoparathyroidism 
from 1.2% to 10.5% of patients.

Recently, a meta-analysis of 74 studies, published 
from 1978 to 2019, on the prevalence of growth im-
pairment was reported in patients with β-TM treated 
with conventional protocols (blood transfusion and iron 
chelation therapy). Studies from the following countries 
were included: Asia (71.6%), Europe (16.2%), Africa 
(6.7%), America (2.7%), Oceania (1.3%), and Mul-
ticenter (2.7%) (62). The overall mean age of the par-
ticipants was about 14 years. The pooled prevalence of 
short stature was 48.9% and was higher in males (61.9%) 
compared to females (50.9%). The pooled prevalence of 
growth retardation was 41.1% and was higher in males 
(51.6%) versus females (33.1%). The pooled prevalence 
of GHD was 26.6% (62).

Short stature was defined when the patient height 
is more than two standard deviations below the mean for 
age, gender, and ethnicity, growth retardation was when 
the height of the subject was lower than the mid-paren-
tal-height (MPH) and GHD was defined when the peak 
of GH after provocative test was below 5 ng/mL (62).

In another meta-analysis of 44 studies, conducted 
by He et al. (63) including 16,605 patients, aged from 2 
to 28 years, was reported that the prevalence of impaired 
fasting glucose, impaired glucose tolerance and diabetes 
mellitus were 17.2%, 12.4%, and 6.5%, respectively

In general, it was highly recognized that the high 
prevalence of growth retardation and endocrinopa-
thies in patients with β-TM was primarily due to iron 
overload which induce oxidative damage to different 
organs including endocrine glands (pituitary, thyroid, 
pancreas and parathyroid) and the liver (leading to in-
sulin resistance and low IGF1 secretion) (61-69). 

Various combination schemes have been devel-
oped in order to maximize treatment efficacy, tolera-

In human, the preparative regimen including Bu 
is associated with damage to the testicular function in 
as much as 83% of patients. In prepubertal children, 
Sanders et al. (55) and Thibaud et al. (56) reported 
that Bu induced a complete ovarian failure with ex-
tremely rare spontaneous recovery. Moreover, Sanders 
et al.(55) demonstrated that Bu administered at my-
eloablative doses was associated with increased levels 
of luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH) as well as ovarian failure (57).

Comparing ovarian function in two groups of 
girls who received Bu versus those who did not receive 
Bu in the conditioning regimen showed that those 
treated with Bu had a significantly higher incidence of 
ovarian failure (100% vs 27%; P= 0.002). Among the 
11 girls who did not receive Bu eight were prepubertal 
compared to five out of 10 in the Bu-treated group. In 
addition, ovarian toxicity of  Bu was also severe and 
permanent and displayed irreversible reduction of re-
serve primordial follicles in the ovaries (58,59).

In males, Bu administration resulted in a perma-
nent, more severe atrophy of the testicles that included 
detrimental effect on testicular histology, manifested 
by obliteration of the typical morphology of the semi-
niferous tubules and spermatogenic milieu. Zini et al. 
(60), reported that Bu interrupt DNA synthesis in 
sperm cells and lead to reduced sperm motility.

Growth and endocrine changes in patients with β-TM: 
conventional therapy versus after HSCT

Growth and endocrinopathies in patients with β-TM on 
conventional therapy:

The prevalence and severity of hypogonadism and 
short stature in β-TM varies among studies, depending 
on patients’ age, genotype, transfusion frequency and 
starting age, compliance, and efficiency of iron chela-
tion therapy. Intensive combined chelation has been 
shown to improve patients’ iron load and consequently 
prevent, decrease or reverse multiple endocrine com-
plications associated with transfusion iron overload 
including abnormal glucose metabolism, hypothyroid-
ism, and hypogonadism. However, there is progressive 
increase of endocrinopathies in these patients related 
to age (longevity) and with increased hepatic iron 
overload. Therefore, in assessment of the prevalence of 
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plications in 99 β-TM patients who successfully re-
ceived HSCT. The median duration of clinical follow up 
was 12 years. After transplantation, 11% of patients de-
veloped thyroid dysfunction, 5% diabetes, and 2% heart 
failure. Hypogonadism was present in 56% of females 
and 14% of males. Female patients who reached a spon-
taneous puberty after HSCT were significantly younger 
at transplantation than those who experienced delayed 
puberty (median age 2.5 vs 8.7 years). Fertility was pre-
served in 9/27 females, aged 20 years or older,  and 2 
other patients became pregnant following oocyte dona-
tion.  Moreover, male β-TM patients who underwent 
allogeneic HSCT had lower fertility potential, mainly 
in sperm parameters compared with patients treated 
with blood transfusion and chelation (82). 
Health-related quality of life (HRQoL) measurements 
in β-TM patients have shown that HSCT was asso-
ciated with improved health, activity, and emotional 
well-being compared to patients on conventional 
treatment chronic (80,89,90). The improvements were 
not as robust when HSCTs were performed in older 
β-TM patients with advanced disease or in the pres-
ence of chronic GVHD (83).

However, it must be kept in mind that when we 
interpreted the data of all these studies, there were 

bility and compliance and to prevent the development 
of iron-load complications (7,8, 61-69). Irregular use 
of chelating drugs was associated with a higher risk of 
iron tissue damage, regardless of the type of chelating 
agent. Additionally, combined chelating iron agents 
significantly decreased the prevalence of endocrine 
disorders when compared with monotherapy (65-68). 

Growth and endocrinopathies after HSCT in patients 
with β-TM: 

After HSCT a variable occurrence of growth and 
endocrine long-term consequences very reported from 
different centers (Table 1). In one study (73), a strict 
correlation was observed between age at time of trans-
plant and final adult height. The patients whose age at 
transplant was <7 years had a less impaired growth rate 
than did patients who were >7 years. Moreover, great-
est loss in height was observed in subjects who had 
higher serum levels of transaminases and ferritin and 
these biochemical parameters were strictly correlated 
to the final adult height. The mean final adult height, 
in subjects who received HSCT after 7 years of age, 
failed to achieve their full genetic potential. 

Gonadal damage has been commonly reported in 
both sexes. Rahal et al. (85) evaluated long-term com-

Figure 1. Prevalence (%) of short stature and endocrine complications, reported in 10 different countries after year 2000,  in patients 
with β-TM.
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Table 1. Growth and endocrine disorders in patients with β-TM who underwent HSCT (Ref.70-88)

Author name, Ref. and 
Patients’s age

Study design 
and Sample size

Growth 
retardation

Gonadal 
dysfunction

Thyroid
disorder

Comments

Ponte et al., 
1991 (70).
1.9 -18 yrs at HSCT.

Longitudinal-
8  

7/8 children had 
decreased growth 

velocity after HSCT.

- - 1/8 patient (with normal 
ferritin) had normal growth 

after HSCT.
De Sanctis et al., 1991 
(71).
9.3 -17.2 yrs.

Prospective -
30 (15 boys and 

15 girls)

- 12 girls and 15 
boys presented 

hypogonadotropic 
hypogonadism. 

- -

De Simone et al., 1995 
(72).
N.A.

Longitudinal -
N.A.

Worsening of 
growth in patients 

> 7 yrs.

- - 16 had impaired GH secretion. 

De Simone et al., 2001 
(73).
N.A. 

Longitudinal -
47

Subjects who 
received HSCT< 

7 yrs did not reach 
the genetic target 

height.

- - -

De Sanctis et al., 2002 
(74).
N.A.

Retrospective-
68 (30 males)

In all but 3 
ex-thalassaemic 

females an 
improvement of 

standing height was 
observed.

66% females and 
38% of males had 
abnormal puberty. 
68% had gonadal 

dysfunction. 

- -

Li et al., 2004 (75).
N.A.

Longitudinal -
32

40% had Ht-SDS < 
-2 before HSCT
15% had Ht-SDS 
<-2 after HSCT.

Gonadal failure was 
universal in girls, 
but boys were less 

affected.

- 1/10 developed GH deficiency. 
One patient developed diabetes 

mellitus.

Valchopapadopoulou et 
al., 2005 (76).
N.A.

Prospective-
25 (12 males)

- 14 (1 male and 13 
females).

- 100% of the post-menarcheal 
females exhibited amenorrhea.

Di Bartolomeo et al., 
2008 (77).
Median age 9 yrs (range: 
11 months to 28 yrs).

Prospective -
115

- - - Ten spontaneous pregnancies 
were recorded (4 women - age 
at HSCT: 14, 14,13.17 yrs and 
2 partners of male patients- age 
at HSCT:17 and 24 yrs). The 
births resulted in 10 normal 

babies.
Khalil et al., 
2012 (78).
1.1-32 yrs at HSCT.

Retrospective-
47

52% had final Ht-
SDS < -2 after 

HSCT.

Gonadal failure 
in 80% of females 
and 36% of males. 

11% HT. 9% DM.

Poomthavorn et al., 2013 
(79).
Median age13.2 yrs 
(range:5.9-25.8yrs).

Prospective-
47

- 29 patients (62%) 
presented gonadal 

dysfunction.

- -

La Nasa et al.,
2013 (80). 
Mean age 34 yrs  (range 
21-48 yrs ).

Cross sectional-
109

- - - Pregnancy: 14% women (n=6), 
17% partners of male patients 

(n=11).

Aldemir-Kocabaş 
et al., 2014 (81).
Mean age 12.4 ± 5.4 yrs.

Longitudinal-
41

The height SDS 
were better in 
patients whose 

age was < 7 yrs at 
HSCT.

14.6% low FSH, 
LH, testosterone or 

estradiol.

10% HT The risk of gonadal 
insufficiency was significantly 

lower in patients who underwent 
HSCT <7 years of age.
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much better today than it was at first. Various approach-
es have been developed for HSCT preparation and con-
ditioning: intravenous busulfan, targeted intravenous 
busulfan, treosulfan, thiotepa, and fludarabine, as well as 
intensive pre-transplant transfusion-chelation regimens 
(91). Nevertheless, with increasing numbers of long-
term survivors, delayed complications, often presenting 
years after HSCT, are becoming a concern. Late sequala 
may arise as a result of the disease for which transplan-
tation was performed or from toxicity associated with 
the wide variety of conditioning regimens (70-88). 

Considerable growth and endocrine abnormali-
ties have been detected in β-TM patients after HSCT.  
Growth retardation and short final stature occurred to 
a greater extent in patients transplanted after the age 
of 7 years (72,73). Similar results were reported, re-
cently, by Rahal et al. (85). 

some limitations, such as: (a) endocrine complica-
tions were not systematically investigated indicating 
the need for systematic tracking; (b) some studies only 
reported small patient numbers, which makes it diffi-
cult to assess the possible influence of transplantation; 
(c) different combinations of conditioning agents may 
have influenced the patient’s outcome;  and (d) due to 
the constantly evolving field and improvement of the 
transplant procedures over time, some of the regimens 
and procedures in the reported studies are already 
amended or revised/renewed.

Conclusions 

HSCT technologies have improved substantially 
during recent years, and their outcome is likely to be 

Table 1. Growth and endocrine disorders in patients with β-TM who underwent HSCT (Ref.70-88)

Author name, Ref. and 
Patients’s age

Study design 
and Sample size

Growth 
retardation

Gonadal 
dysfunction

Thyroid
disorder

Comments

Chaudhury et al., 
2017 (82).
Median age at HSCT 
5.5 yrs.

Retrospective-
176

Mean SDS for 
height and weight 

were low at baseline 
and remained low 

after HSCT. (79%).

Hypogonadism 
occurred most 

frequently in older 
transplanted patients.

- Hypogonadism was 
significantly higher in recipients 
≥ 7 years at the time of HSCT 
and in those with pre-existing 

morbidity.
Caocci et al., 2017 (83).
Median age at HSCT 12 
yrs (range: 1-45 yrs).

Multicentric 
-258

- - - Pregnancy: 6 women and 6 
partners of male patients.

Hamidieh et al., 
2018 (84).
10.8 ± 3.9 yrs.

Prospective-
20 (6 females)

8 low IGF-1. - - HSCT did not appear to have 
an overall positive or negative 

effect after  3 months of 
observation.

Rahal et al., 2018 (85).
Age range:3.1-11.2 yrs 
at HSCT.

Retrospective 
multicenter- 

99 
(54 females)

The median Ht-
SDS for final height 
was of −1.4 in males 
and −1.1 in females.

Hypogonadism was 
present in 56% 

of females and 14% 
of males.

11% HT 5% had diabetes and 36% of 
adults was overweight

See et al., 2018 (86)
Age range:1-30 yrs

Retrospective-
40

Mean height 
decreased of -0.84 

SDS

55% gonadal 
dysfunction.

7.5% HT Diabetes: 2 cases
Pregnancy: 1 patient

Ntali  et al., 2018 (87).
Median age at HSCT 13 
yrs (range:3–17 yrs).

Retrospective-
11(5 males)

- 18.18% HH. 45.5% HT 72% had osteopenia/ 
osteoporosis.

Two women conceived
spontaneously while on HRT 

and their pregnancies were both 
uneventful.

Rostami et al., 2020 (88).
Age range :16 -41 yrs.

Cross 
sectional - 
43 males

- Hypogonadism was 
documented in 36.6% 

patients.

- Lower fertility potential.

Legend= HT: primary hypothyroidism; Ht-SDS: height -standard deviation score; GH: growth  hormone; HH: hypogonadotropic 
hypogonadism; DM: diabetes mellitus; HRT: hormone replacement therapy.
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In females, egg or embryo cryopreservation are 
established approaches but are not achievable for many 
children and adolescents. Recently, the harvesting and 
cryopreservation of ovarian tissue represents a novel 
surgical option that allows for the possibility of fertil-
ity preservation to be extended to children of all ages. 
These procedures appear to be safe and do not add to 
transplant-related morbidity (100-102).

In conclusion, the growing data on these disor-
ders in the post-transplant setting highlight the need 
for more research and evidence-based guidelines. Af-
ter HSCT we recommend an annual assessment of 
growth, pubertal development, endocrine, sexual, and 
reproductive functions is recommended. Additionally, 
a regular surveillance, early diagnosis, treatment, and 
follow-up in a multi-disciplinary specialized setting 
are suggested to optimize the patient’s quality of life.
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