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Abstract

Recently, modulatory effects of static magnetic field stimulation (tSMS) on excitability of the

motor cortex have been reported. In our previous study we failed to replicate these results. It

was suggested that the lack of modulatory effects was due to the use of an auditory oddball

task in our study. Thus, we aimed to evaluate the role of an oddball task on the effects of

tSMS on motor cortex excitability. In a within-subject-design we compared 10 minutes tSMS

with and without oddball task. In one of the two sessions subjects had to solve an auditory

oddball task during the exposure to the magnet, whereas there was no task during exposure

in the other session. Motor cortex excitability was measured before and after tSMS. No mod-

ulation was observed in any condition. However, when data were pooled regarding the

order of the sessions, a trend for an increase of excitability was observed in the first session

compared to the second session. We now can rule out that the auditory oddball task

destroys tSMS effects, as postulated. Our results rather suggest that fluctuations in the

amplitudes of single pulse motor evoked potentials may possibly mask weak modulatory

effects but may also lead to false positive results if the number of subjects in a study is too

low. In addition, there might be a habituation effect to the whole procedure, resulting in less

variability when subjects underwent the same experiment twice.

Introduction

Over the past years, several studies have demonstrated that the application of a focal static

magnetic field (transcranial static magnetic field stimulation, tSMS) can modulate the excit-

ability of the targeted brain area [e.g., 1, 2–6]. Initially, this method was investigated in the

motor system [1]. In their study, a strong permanent magnet was held over the motor region

at subject’s scalp for 10 minutes. Reflecting the instantaneous excitability of the motor system

[7], the amplitude of motor evoked potentials (MEP) evoked by single pulses of transcranial

magnetic stimulation (TMS) was measured before and after tSMS. The result was a decrease in

MEPs for 6 minutes after tSMS, indicating reduced excitability of the stimulated cortical area

[1]. This effect has been replicated in another study, applying tSMS for 15 minutes [2]. An

effect of tSMS on cortical excitability comparable to those evoked by other non-invasive brain
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stimulation methods such as repetitive TMS [8–10] or transcranial direct current stimulation

[11–13], but without the side effects [14, 15] would offer a wide range of possibilities for, i.e.,

treatment of neurological or psychiatric diseases. Therefore, our group decided to replicate the

results of the initial study [1]. Unfortunately, we failed to observe a decrease in MEP ampli-

tudes after tSMS application [16].

Subsequently, it was mentioned [17] that there was a difference between our study [16] and

the former one [1], possibly accounting for the different results. To standardize subject’s cog-

nitive activity during magnetic exposure, we used an auditory oddball task. In contrast, there

was no special task during exposure in other published tSMS studies.

It was suggested that the use of an oddball task could offer an explanation for the difference

in results [17]. Counting mentally could activate the motor cortex due to individual finger

counting habits [18], and these habits might manipulate the structure of mental number repre-

sentations [19]. It has also been observed that productive and perceptive linguistic tasks

increase motor cortex excitability bilaterally, indicating that forming number words mentally

while counting could cause activation in the hand representation of the motor cortex [20].

Activation of the motor cortex without motor output might therefore interfere with neuroplas-

tic modulation induced by static magnetic fields. In a reply to the letter [17], we discussed the

possible effects of the oddball task on the excitability of the motor cortex and also mentioned

its role in controlling subject’s attention [21]. However, we opted for a direct experimental

comparison as the best way to address this question.

Therefore, in the present study we aimed to test the influence of an acoustic oddball task on

the effect of tSMS on motor cortex excitability by directly comparing static magnetic field

stimulation with and without oddball task in a within-subject-design.

Material and methods

Subjects

Unfortunately, in the work of Oliviero et al., 2011 no effect size has been reported. Therefore, we

based our power estimation (G�Power 3.1.7) on the effect size reported more recently [5]. In

their analysis on MEP ratio for the left hand, they observed a significant Time by Group- interac-

tion with an effect size of η2 = 0.163. Together with their sample size of n = 20 (between- group)

and an assumed α-error of 0.05, the power of their results was 0.24. Thus, using those values the

calculated sample size for our experiment was 22. We decided to recruit 24 subjects to achieve

appropriate power. In four cases the experiment could not be completed. Two subjects discon-

tinued the experiment due to an uncomfortable feeling during the experiment. One session had

to be cancelled due to MEP amplitudes being too low, even with high TMS intensities up to 66%

of maximum stimulator output (MSO). One further session had to be cancelled due to technical

difficulties. Therefore, the entire experiment was finished in 20 healthy subjects.

All subjects were right-handed according to a modified version of the Edinburgh Inventory

Scale [22] and were screened for neurological and psychiatric disorders, chronic illnesses, pre-

vious head surgeries, metal implants in the head region and drug abuse. All subjects gave their

written informed consent and were paid for their participation. The study followed the decla-

ration of Helsinki and all experiments were approved by the Ethics Committee of the Univer-

sity of Ulm (231/17).

Measurement of motor cortex excitability

MEPs of the right first dorsal interosseus muscle (FDI) at rest were evoked by monophasic sin-

gle pulses of TMS using a Magstim 200 stimulator (Magstim Co., Whitland, UK), connected to

a figure-of-eight-coil (Double 70mm Alpha Coil, Magstim Co., Whitland, UK).
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To identify the motor „hotspot”of the right FDI, suprathreshold TMS pulses were applied

to the subjects’ left motor cortex. The coil was held tangentially to the scalp with the handle

pointing backwards in an angle of 45˚ to the sagittal plane. The scalp site with the highest MEP

amplitudes was defined as the motor hotspot. To maintain the correct coil position during the

experiment and to retrieve the hotspot in the second session, we used a neuronavigation sys-

tem (PowerMAG View!, MAG & more, Munich, Germany). The hotspot was additionally

marked on the scalp using the pointer for correct positioning of the permanent magnet.

The resting motor threshold (RMT) was measured at the beginning of each session. RMT

was defined as the TMS intensity generating an MEP of about 50 μV in at least 5 out of 10

trials.

MEPs were monitored using single TMS pulses. To minimize anticipation and habituation,

the pulse frequency jittered randomly between 0.125 Hz and 0.2 Hz (inter-stimulus interval:

5–8 sec).

For probing cortico-spinal excitability, we adjusted stimulation intensity to evoke MEPs

with a mean amplitude of about 1mV in the particular subject. 10 single pulses were applied

with a given intensity above RMT. If the mean amplitude was not between 0.8 mV and 1.3

mV, the procedure was repeated with an adjusted stimulation intensity, otherwise the tested

intensity was defined as 1-mV-intensity.

MEPs of the right FDI were recorded using surface electrodes in a belly-tendon montage.

Signals were bandpassed (10–2000 Hz) and amplified using a Toennies universal amplifier

(Erich Jaeger GmbH, Hochberg, Germany), sampled with 5000 Hz and online presented, ana-

lyzed, and stored on a PC for offline-analysis using DasyLab 13.0 (measX GmbH und Co. KG,

Mönchengladbach, Germany).

An acoustic and visual feedback signal was used for online control of relaxation of the FDI

during MEP recording.

Static magnetic field stimulation

For tSMS, we used the same magnet as in previous tSMS experiments [1, 2, 16], a cylindrical

neodymium magnet (NdFeB) of 30 mm height and 45 mm diameter (model S-45-30-N, Super-

magnete, Gottmandingen, Germany). The magnet was held manually on the scalp centered

over the previously identified motor hotspot and tSMS was applied for 10 minutes with the

south pole pointing to the scalp.

Experimental design

The experiment included two sessions for each subject in a randomized order, which were sep-

arated at least by one week. In one session, during tSMS subjects had to perform an acoustic

oddball task, whereas in the other session tSMS was applied without any additional activity of

the subject. In the oddball task, subjects heard a sequence of two beep tones with different fre-

quencies (300 and 500 Hz, 0.2 s each, every 2.5 seconds) through in-ear-headphones, and were

asked to silently count the rare beeps without using their fingers [cf. 16, 23]. The number of

rare beeps was adjusted between 20 and 30 in a 10 minutes train. In both sessions, subjects

were asked to keep their eyes open and remain calm and silent.

In each session, the subjects were seated in a comfortable chair. The motor hotspot was

located as described above before RMT and 1-mV-threshold were determined. Baseline mea-

surement of MEPs (pre tSMS) lasted for 4 minutes. TSMS was then applied for 10 minutes by

an additional experimenter. Post measurement started 1 minute after tSMS treatment and

lasted 10 minutes.
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Data analysis

Statistics were performed using Statistica (V.13, StatSoft GmbH, Hamburg, Germany). Data

were visually inspected for spontaneous motor activity 800ms before and after every MEP.

MEPs with obvious pre-innervation were excluded. If the excluded data of one subject was

above 7% of the subject’s total data, the subject was excluded entirely, leading to the exclusion

of two subjects due to numerous pre-innervation. Thus, data of 18 subjects were used for the

analysis. Peak-to-peak amplitudes of MEPs of each session were summarized in 2 pre- and 5

post time points, thus each time point reflects the mean amplitude of all MEPs of 2 minutes.

Mauchly’s sphericity test was applied for repeated-measure data and in case of violation

Greenhouse-Geyser correction was used.

Raw data of the 18 subjects included in the analysis can be seen in S1 File.

Results

18 subjects (8 male, mean age 22.78 ± 2.4 years) entered the final analysis.

Main analysis

Mean RMT was 36.9 ± 5.3% of maximum stimulator output (MSO) in the sessions with and

37.1 ± 5.7%MSO in the sessions without oddball task. A paired t-test showed that there was no

significant difference in RMT between the two sessions (t = 0.36, p = 0.73), but a high correla-

tion as revealed by correlation analysis (r = 0.89, p<0.001).

Mean TMS intensity to generate MEP amplitudes of about 1 mV was 50.6 ± 9.4% MSO in

sessions with and 51.6 ± 10.4% MSO in sessions without oddball task. There was no significant

difference between the two sessions (t = 0.77, p = 0.45), but a high correlation (r = 0.87,

p<0.001).

In sessions with oddball task, raw baseline MEP amplitude was 1.08 ± 0.49 mV at time

point pre1 and 1.13 ± 0.61 mV at time point pre2. In sessions without oddball task, raw baseline

MEP amplitude was 1.07 ± 0.39 mV at time point pre1 and 1.11 ± 0.44 mV at time point pre2.

There was no difference in MEP amplitudes between the two baseline time points of each ses-

sion (with oddball task: t = 0.87, p = 0.40; without oddball task: t = 0.58, p = 0.57). Thus, we

averaged MEPs of the two baseline time points for each session as premean value. There was no

significant difference in premean MEP amplitudes between sessions with and without oddball

task (t = 0.07, p = 0.94). However, there was no correlation between premean MEP amplitudes

of the two sessions (r = 0.03, p = 0.92).

MEP amplitudes were then normalized for each subject with respect to the premean MEP

amplitude of each session, respectively.

Data were analyzed using a two-factor analysis of variance (ANOVA) with the within-fac-

tors SESSION (with, without oddball) and TIME (1–7). There was no significant effect for any

factor (SESSION: F(1,17) = 0.04, p = 0.84; TIME: F(6,102) = 1.02, p = 0.42) and no interaction

(F(6,102) = 0.27, p = 0.95). For graphical illustration of the main analysis see Fig 1.

Analysis with respect to session order

To investigate whether the order of the sessions has an impact on our results, we analyzed the

data again, sorted by session order.

Mean RMT was 36.5 ± 5.8% of maximum stimulator output (MSO) in the first sessions and

37.5 ± 5.2%MSO in the second sessions. A paired t-test showed that there was no significant

difference in RMT between the two sessions (t = 1.73, p = 0.10), but a high correlation as

revealed by a correlation analysis (r = 0.91, p<0.001).
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Mean TMS intensity to generate MEP amplitudes of about 1 mV was 51.2 ± 10.7% MSO in

the first sessions and 50.9 ± 9.1% MSO in the second sessions. There was no significant differ-

ence between the two sessions (t = 0.22, p = 0.83) but a high correlation (r = 0.87, p<0.001).

In the first sessions, raw baseline MEP amplitude was 1.04 ± 0.48 mV at time point pre1 and

1.12 ± 0.63 mV at time point pre2. In the second sessions, raw baseline MEP amplitude was

1.10 ± 0.40 mV at time point pre1 and 1.12 ± 0.40 mV at time point pre2.

There was no difference in MEP amplitudes between the two baseline time points of each

session (first session: t = 1.04, p = 0.31; second session: t = 0.27, p = 0.79). Thus, we summa-

rized the two baseline time points for each session as premean value. There was no significant

difference in pre mean MEP amplitudes between the first and the second sessions (t = 0.15,

p = 0.88). However, there was no correlation between premean MEP amplitudes of the two ses-

sions (r = 0.03, p = 0.92).

Normalized MEP data were then analyzed using a two-factor ANOVA with the within-fac-

tors SESSION (first, second) and TIME (1–7). There was no significant effect for any factor

(SESSION: F(1,17) = 3.90, p = 0.06; TIME: F(6,102) = 1.02, p = 0.42), but a trend towards signifi-

cant differences between the two sessions as well as a significant SESSION�TIME interaction

(F(6,102) = 2.47, p = 0.03, η2 = 0.13). However, since sphericity of the data was violated as

revealed by Mauchly’s sphericity test, Greenhouse-Geyser correction was applied, resulting in

a trend to a significant interaction only (F(3.1,52.2) = 2.47, p = 0.07). For graphical illustration

Fig 1. Results of the experiment. Mean normalized MEP amplitudes are shown pre and post magnet exposure in 2

min intervals. The grey bar represents the exposure (10min) to the permanent magnet. The post measurement started

1 minute after the end of magnet exposure. Error bars show standard error of the mean. No difference between the

sessions with and without oddball task was observed, neither was any effect of magnet exposure.

https://doi.org/10.1371/journal.pone.0233614.g001
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see Fig 2. Inspection of single subject data revealed, that the difference between session 1 and 2

was driven by only 4 out of the 18 subjects (see Fig 3).

Furthermore, a friendly anonymous reviewer encouraged us to report a 3-way ANOVA

including the factors SESSION (first/second), INTERVENTION (with/without oddball), and

TIME (1–7).

There was a significant effect for the factor SESSION (F(1,224) = 12.35, p<0.001, η2 = 0.05).

However, there was no other significant effect for any factor (INTERVENTION:

F(1,224)<0.001, p = 0.99; TIME: F(6,224) = 0.66, p = 0.68) nor any statistically significant

interaction.

Please note that in this 3-way ANOVA the group of 18 subjects is splitted so that only 9 sub-

jects are averaged for the factors SESSION and INTERVENTION. Furthermore, since our aim

was to investigate the influence of the oddball-task on MEP Amplitude (i.e. INTERVEN-

TION�TIME), the question of the influence of session order is a post-hoc question.

Discussion

We evaluated the influence of an acoustic oddball task on the effect of tSMS on motor cortex

excitability by directly comparing magnet exposure with and without oddball task. We could

not find significant differences for any of the two conditions, indicating that the oddball task

was not the reason for our failure to replicate tSMS effects [16], as postulated [17]. Since we

Fig 2. Results of the experiment, grouped with respect to session order. Mean normalized MEP amplitudes are

shown pre and post magnet exposure in 2 min intervals. The grey bar represents the exposure (10min) to the

permanent magnet. The post measurement started 1 minute after the end of magnet exposure. Error bars show

standard error of the mean. There was a trend towards a significant difference between the first and the second session

as well as a trend to increased MEP amplitudes after magnet exposure in the first session.

https://doi.org/10.1371/journal.pone.0233614.g002
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again did not observe any modulatory effect of tSMS on excitability, the present study con-

firms our previous results.

Recent tSMS studies showed short-term modulatory effects up to 6min after application of

tSMS for 10 [1] or 15 minutes [2]. In a recent study even long-lasting modulatory effects (at

least 30min) on corticospinal excitability have been observed after tSMS applied for 30 minutes

[6]. However, in our attempts to replicate tSMS modulatory effects we observed no significant

difference in MEP amplitudes before and after 10 minutes of tSMS regardless of the applica-

tion of the oddball task, which supports the results of our previous tSMS study [16].

A reason for the difference in our results compared to other tSMS studies might be high

variability in corticospinal excitability and thus MEP amplitudes. In the present study we

observed high intraindividual variabilities in baseline MEP amplitudes between session one

and two, although RMTs and 1-mV-intensities correlated between the sessions. A comparable

variability in baseline MEP amplitudes together with intersession reliability of RMTs has been

reported recently in 27 subjects [24]. The observed variability in our study might mask weak

modulatory effects caused by tSMS.

High variability in MEP amplitudes for single pulse TMS has been observed in other TMS

studies. Several phenomena have been considered: spontaneous fluctuations in corticospinal

and segmental motoneuron excitability levels [25], variation of synchronization and the num-

ber of activated motor units [26], and variability in corticospinal excitability and spinal

Fig 3. Individual data. Mean normalized MEP amplitudes are shown pre and post magnet exposure in 2 min intervals. The grey bars represent the exposure to the

permanent magnet. Visual inspection yielded differences between the sessions only for the subjects 06, 07, 13 and 18, respectively.

https://doi.org/10.1371/journal.pone.0233614.g003
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desynchronization [27]. In the latter study [27], another putative source of variability has been

addressed, i.e. the stability of coil position. Variance of MEP amplitudes did not differ compar-

ing navigated and non- navigated TMS in three consecutive measurements each. However, in

another study the superiority of navigated TMS over non-navigated TMS has been demon-

strated comparing MEP amplitudes [28]. The authors found higher MEP amplitudes com-

bined with a lower variance when TMS was navigated, although MTs were similar with both

methods. Since we used navigated TMS, in contrast to other published tSMS studies [e.g., 1, 2,

6], we cannot exclude that the observation of reduced MEP amplitudes in those studies might

be due to the non-navigated TMS setup.

Another factor that could possibly influence the reliability of excitability measurements is

the number of single TMS pulses averaged to a mean amplitude as dependent variable. Studies

suggest the recording of at least 21 MEPs [29], or 26 for male and 30 for female subjects [30]

for on optimal consistency in results. In our study we applied an average of 35 pulses (random

jitter between 34 and 38) for each baseline measurement, which is above the recommended

number. In other tSMS studies, baseline excitability measurements were based on 20 [1] or 30

[2] single TMS pulses. Another study indicates that the first 20 MEPs should not be used for

excitability measurements, due to an initial transient-state of corticospinal excitability [31].

However, we observed no systematic difference between the two time points of each baseline

measurement, although each time point included an average of only 18 pulses (random jitter

between 16 and 19).

The choice of the exposed hemisphere might also contribute to the conflicting results.

Whereas in the present study and in some of the previous tSMS experiments [2, 5, 16] the left

hemisphere was exposed in right-handed subjects, in the first description of the effect [1] the

right hemisphere was chosen. Unfortunately, no information about handedness of the subjects

was provided in that study. One could speculate that the dominance of the hemisphere might

have an influence on the intensity of putative inhibitory tSMS effects. Applying excitatory pro-

tocols, a more pronounced effect for the non-dominant hemisphere has been suggested with

andoal tDCS [32, 33] and paired associative stimulation [34]. To our knowledge, there are no

data with inhibitory protocols yet. Thus, the influence of hemispheric dominance on tSMS

remains to be investigated.

The main independent variable in the present study was presence or absence of an acoustic

oddball task during the application of tSMS. We observed no difference in MEP amplitudes in

dependence of the oddball task. Moreover, in the subject´s first session, independent of the

oddball task, MEPs tended to increase over time post stimulation, whereas there was no

change in the subject´s second sessions. The tendency of MEP amplitudes to increase over

time in the absence of any intervention was observed before [35–37]. However, in our data

this effect is mainly driven by a subsample of four subjects (see Fig 3). Aside from the presence

or absence of an acoustic oddball task the procedure in the two sessions of each subject was

identical. So far, in all tSMS studies published the effects have not been repeated with the same

settings. In addition, although the order of sham and real tSMS sessions was counterbalanced

in those studies, their data have not been analyzed with respect to the factor order. Recently,

for intermittent theta burst stimulation (iTBS) it was suggested that the modulatory effect

might habituate if the same procedure was repeated [24]. In their study, the increase of corti-

cospinal excitability following iTBS was present in a first session, but disappeared when a sec-

ond, identical session was followed about one week apart. The authors concluded that there is

a high interindividual variability as well as a low intraindividual reliability of iTBS effects, and

that group results based on only one session should be interpreted with caution [24]. This

notion does not only hold for iTBS. In a former study [23] we investigated the effects of tran-

scranial direct current stimulation (tDCS) on visual cortex excitability. Subjects took part in
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two sessions, which only differed after the tDCS intervention, but included an identical post-

stimulation measurement. Only for cathodal tDCS a medium reliability was observed in the

post-stimulation measurement, and overall a high variability in response to tDCS was found

[23]. Therefore any study investigating the modulatory effect of a cortical stimulation includ-

ing tSMS would be well advised to repeat the intervention in order to estimate the real effect.

In a study investigating the effects of three different non-invasive brain stimulation tech-

niques on the excitability of the motor cortex, no distinct group effect was observed for either

Paired Associative Stimulation, anodal tDCS or iTBS [38]. Instead, cluster analysis revealed a

bimodal result pattern for all methods. However, less than half of the subjects responded as

expected, and it was suggested that inter-individual variability has to be thoroughly addressed

in the field of brain stimulation. Moreover, recently it was shown that cluster analyses based

on MEPs might be sensitive for false positive results [37]. In that study, following four different

classification techniques a significant number of subjects were classified as responders despite

any intervention. Thus, the high variability might sometimes lead to false positive results if

MEP amplitudes are used as the dependent variable. This, on the one hand, highlights the

importance to unravel the underlying reasons for this variability [39]. On the other hand, since

it was shown that neural activity can be regulated volitional [40], better methods have to be

established to control for and to standardize brain activity before the application of brain stim-

ulation techniques.

To conclude, we did not observe an inhibitory effect caused by tSMS, nor any influence of

the auditory oddball task. However, these results do not exclude a tSMS effect in general. Fur-

ther studies with adequate statistical power and within-subject replication would clarify this

general question. Although there are first attempts for a potential treatment of neurological or

psychiatric diseases using tSMS [41], the fundamental research of tSMS is still just at the

beginning.
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