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Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly
affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-kB. The urokinase plasminogen activator (u-PA)
system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we
sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system
and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration,
u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA,
colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion
were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA
antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-kB by the selective
NF-kB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin
adhesion and ECM invasion by 440% (Po0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-kB
through TLR-4. TLR-4 and NF-kB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion
and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and
NF-kB-dependent manner.
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Surgery remains the only definitive curative modality for colorectal
cancer (Meyerhardt and Mayer, 2005). Unfortunately, the peri-
operative milieu may facilitate the progression of previously
dormant occult metastatic disease (Da Costa et al, 1998). Although
the mechanisms underlying this phenomenon are not fully
elucidated, implicated factors include perioperative immune
suppression (Li et al, 2001), elevated angiogenic and inflammatory
cytokine levels (Da Costa et al, 1998) and elimination of putative
tumour-suppressing agents with primary tumour excision
(Coussens and Werb, 2002).

Lipopolysaccharide (LPS) or endotoxin, the foremost glycolipid
outer membrane constituent of Gram-negative bacteria, potently
stimulates immune system cells by binding cell-surface Toll-like
receptor 4 (TLR-4) and activating transcription factors and protein
kinases, such as NF-kB and p38 kinase, resulting in an increased
production of pro-inflammatory cytokines, overexpression of cell
adhesion molecules and matrix-degrading enzymes (Manthey et al,
1992). Contemporary studies have demonstrated the expression of

TLR-4 on human colorectal cancer cells and highlighted a key
function for the TLR system in the development of colitis-associated
tumours, suggesting a role for this receptor in colorectal
cancer development and progression (Böcker et al, 2003; Fukata
et al, 2007).

LPS has recently been implicated in accelerated metastatic
tumour growth after surgery. Following laparotomy and air
laparoscopy, LPS contaminates the peritoneal cavity and enters
the systemic circulation due to perioperative bacterial gut
translocation. In murine metastatic breast carcinoma models,
mice undergoing laparotomy or air laparoscopy had increased
serum levels of LPS and metastatic tumour burden compared to
those in the CO2 laparoscopy group, a result replicated by
intraperitoneal LPS injection (Pidgeon et al, 1999; Harmey et al,
2002). This association between LPS and accelerated perioperative
tumour growth may be a manifestation of a direct effect on cancer
cells or a circuitous immunologically mediated singularity. Luo
et al (2004) suggest that endotoxin is subservient to inflammatory
cytokines produced primarily by the innate immune system, as the
LPS-induced enhanced tumour burden was TNF-a dependant and
abolished in TLR4-deficient mice.

Although it has been extensively demonstrated that bacterial
endotoxin (LPS), analysed in both in vitro and in vivo experimental
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settings, reduces apoptosis (Andrews et al, 2001; Wang et al, 2003)
and increases proliferation in metastatic tumour cells (Coffey et al,
2006), the role of extracellular matrix (ECM)-degrading enzyme
systems remains to be elucidated in this phenomenon.

For a tumour to become invasive and ultimately metastasise,
tumour cells must cross cellular and matrix boundaries by
attaching to, interacting with, and invading components of the
basement membrane and ECM, culminating in access to the
circulation (Hart and Saini, 1992; Al-Mehdi et al, 2000).
Comprising several interdependent components, the urokinase
plasminogen activator (u-PA) system has a number of distinct but
complementary functions in this tightly regulated multi-step
process. The serine protease u-PA is secreted as a 55 kDa
proenzyme proteolytically cleaved to an enzymatically active
two-chain form (Pollanen et al, 1988; Sidenius and Blasi, 2003).
Its 60 kDa glycosylphosphatidylinositol-linked receptor, urokinase
plasminogen activator receptor (u-PAR/CD87), binds the epider-
mal growth factor-like domain of active u-PA (Vassalli et al, 1985;
Pollanen et al, 1990) and the ECM constituent vitronectin (Roldan
et al, 1990; Waltz and Chapman, 1994). Plasminogen activator
inhibitors 1 (PAI-1; Kanse et al, 1996) and PAI-2 form trimeric
complexes with u-PAR bound u-PA, culminating in internalisa-
tion, u-PA/PAI degradation and u-PAR recycling (Declerck et al,
1988). u-PA/u-PAR promotes cell/cell and cell/ECM proteolysis by
regulating localised plasminogen activation (Cubellis et al, 1990).
Independent of proteolysis, u-PA enhances cell invasion through
activation of several migration-associated signalling molecules
such as extracellular signal-regulated kinases (Nguyen et al, 1998),
focal adhesion kinases (Tang et al, 1998) and signal transducers
and activators of transcription 1 (STAT1) (Dumler et al, 1998).
Such intercellular signal transduction is apparently facilitated by
the interaction of u-PAR with integrins (Wei et al, 1996; Degryse
et al, 2001) and cytoskeletal components (Xue et al, 1997). In
addition, u-PA/u-PAR mediates cellular adhesion to the ECM
protein, vitronectin directly through integrin-independent, high-
affinity interaction between u-PAR and vitronectin, and indirectly
through function modifying lateral associations with integrin
family members (Xue et al, 1997; Degryse et al, 2001).

A number of experimental and clinical studies highlight the
significance of the u-PA system in colorectal cancer abound
(Ertongur et al, 2004; Setyono-Han et al, 2005). Both Harvey et al
(1999) and Skelly et al (1997) demonstrated superior 5-year survival
rates in patients whose tumour had lower total u-PA expression
after curative colon cancer resection. Herszényi et al (2008) showed
elevated serum levels of u-PA in patients with colorectal cancer. A
high u-PAR concentration in resected colorectal cancers is an
independent and significant prognostic factor for 5-year overall
survival (Ganesh et al, 1994). It has also been demonstrated that a
serum protein fraction representing soluble u-PAR (su-PAR: u-PAR
protein without the glycolipid anchor) is inversely correlated with
survival (Stephens et al, 1999). Suzuki et al (1998) showed that u-
PAR expression increases during the transition from adenoma to
invasive carcinoma in colorectal epithelium.

Despite being implicated in promoting colon cancer progres-
sion, the effect of LPS on u-PA and u-PAR expression, and the
function of this system in endotoxin augmented colon cancer cell
invasiveness, is not known. The aim of this study, therefore, was to
determine if the u-PA system is involved in endotoxin-enhanced
tumour cell adhesion and extracellular invasion, and to elucidate
the function of TLR-4 and NF-kB in this process.

MATERIALS AND METHODS

Reagents and antibodies (Abs)

Medium L-15, DMEM, HBSS, PBS without Ca2þ and Mg2þ , fetal
calf serum (FCS), penicillin, streptomycin sulphate, glutamine and

0.05% trypsin/0.02% EDTA solution were purchased from
Invitrogen Life Technologies (Paisley, Scotland, UK). Human
vitronectin, LPS (Escherichia coli O55B5), and all other chemicals
unless indicated were from Sigma-Aldrich (St Louis, MO, USA).
Human u-PA, the cell-permeable NF-kB inhibitor peptide, SN-50
and its non-functioning control analogue SN-50M were obtained
from Calbiochem (San Diego, CA, USA). Monoclonal anti-u-PA
and anti-u-PAR Abs were obtained from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Anti-TLR-4-blocking mAb (clone, HTA-
125), FITC-conjugated anti-TLR-4 mAb and isotype-control Abs
were from eBioscience (San Diego, CA, USA) and Serotec (Oxford,
UK) respectively. Anti-u-PAR (CD87) mAb and its isotype-control
mAb were from R&D systems (Minneapolis, MN, USA). Horse-
radish-peroxidase-conjugated secondary mAbs were purchased
from Dako (Cambridgeshire, UK). The novel u-PA inhibitor,
WXC-340, was kindly donated by Dr Bernd Muehlenweg (Wilex
AG, Munich, Germany).

Cell culture

Human colorectal tumour cell lines SW480, SW620 and
CACO2 were obtained from American Type Culture Collection
(Manassas, VA, USA). SW480 and SW620 cells were grown in
medium L-15 whereas CACO2 cells were cultured in DMEM.
Culture medium was supplemented with 10% FCS, penicillin
(100 U ml�1), streptomycin sulphate (100 mg ml�1) and glutamine
(2.0 mM). Cells were maintained at 371C in a humidified
5% CO2 atmosphere and subcultured by trypsinisation with
0.05% trypsin/0.02% EDTA when cells became confluent. All
studies were performed within 10 passages of obtaining the
cell lines.

Cell stimulation and sample preparation

Cells cultured in six-well plates (1� 106 cells per well; Falcon,
Lincoln Park, NJ, USA) were exposed to various concentrations of
LPS (0.1, 1 and 10 mg ml�1) for different time periods (0, 6, 12, 18
and 24 h) at 371C in humidified 5% CO2 conditions. Cell-free
supernatants were collected by centrifugation at 400 g for 10 min
and frozen at �701C or analysed immediately. To assess the
function of protein synthesis in LPS-enhanced u-PA and u-PAR
expression, cells were co-incubated with various concentrations of
cycloheximide (Paisley, UK).

Western blot analysis for TLR-4 involved unstimulated cell
lysates. To examine the role of TLR-4 and NF-kB in LPS-enhanced
u-PA and u-PAR expression, cells were incubated with various
concentrations of TLR-4-blocking Ab and SN-50, respectively,
before LPS stimulation. In dose–response experiments the optimal
inhibitory concentration was determined and used in all sub-
sequent experiments (25 and 100 mg ml�1 respectively). CACO2
cells were cultured with 1 mM butyrate for 24 h as a positive control
as described by Gibson et al (1999).

For western blot analysis of cell supernatant u-PA, conditioned
medium was concentrated 90- to 100-fold using centricon 10
centrifugal filter units (Millipore, Bedford, MA, USA) with a 10 kDa
pore diameter cutoff. Protein concentrations were determined
using a Micro BCA protein assay reagent kit (Pierce, Rockford, IL,
USA). Cell homogenate total protein samples were mixed loading
buffer (60 mM Tris, 2.5% SDS, 10% glycerol, 5% mercaptoethanol,
0.01% bromophenol blue) in a 1 : 1 ratio whereas concentrated
conditioned medium for cell supernatant u-PA western blot
analysis was mixed with sample buffer 3 : 1 ratio. Samples were
denatured for 10 min at 1001C.

u-PA and u-PAR ELISA

Levels of u-PA and PAI-1 in culture supernatants and cell
homogenates, and u-PAR in cell homogenates, were measured
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using commercially available u-PA and u-PAR ELISA kits
(American Diagnostica, Greenwich, CT, USA) according to the
manufacturer’s instruction.

UPA activity assay

The urokinase plasminogen activator activity levels in cell super-
natants were measured using a commercially available chromo-
genic u-PA activity assay kit (Chemicon, Temecula, CA, USA).
Values are expressed as IU per mg protein.

Western blot analysis

Aliquots containing equal amount of total proteins from
each sample were separated in SDS-polyacrylamide gels and
electrophoretically transferred onto nitrocellulose membranes
(Schleicher & Schuell, Dassel, Germany). Membranes were blocked
for 1 h at room temperature with PBS containing 0.05% Tween 20
and 5% non-fat milk, and probed overnight at 41C with primary
Abs at conditions recommended by the manufacturers. Blots were

washed three times with PBS containing 0.05% Tween 20 and 5%
non-fat milk and further incubated with the appropriate horse-
radish-peroxidase-conjugated secondary Ab at room temperature
for 1 h. Immunoreactive proteins visualised using the ECL
detection system (Amersham Biosciences, Piscataway, NJ, USA).
To ensure equal protein loading, all membranes were stripped and
re-probed with anti-b-actin Ab where indicated. Western blot
analysis studies were performed in duplicate and repeated on three
separate occasions.

Measurement of NF-jB activation

SW480, SW620 and CACO2 cells were incubated with 0.1 mg ml�1

LPS for 30 min. Briefly, cells were lysed in a hypotonic solution
(10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl and 0.1% Nonidet P-40,
pH 7.9) on ice for 10 min and centrifuged at 13 000 r.p.m. to pellet
nuclei. Cytoplasmic supernatants were removed, and nuclei were
re-suspended in nuclear extract buffer (20 mM HEPES, 25%
glycerol, 420 mM NaCl, 1.5 mM MgCl2 and 0.2 mM EDTA, pH 8.0)
on ice for 15 min. The lysates were centrifuged at 13 000 r.p.m., and
supernatants containing the nuclear proteins were collected. All
buffers contained freshly added 0.5 mM DTT, 0.5 mM PMSF and
protease inhibitor cocktail (Roche, Mannheim, Germany). Protein
concentrations were determined using a Micro BCA protein assay
reagent kit (Pierce). All extracts were stored at �701C until
analysed. NF-kB activation was measured by the NF-kB ELISA kit
(Active Motif, Carlsbad, CA, USA) according to the manufacturer’s
recommendations.

FACS analysis

Cells were exposed to various concentrations of LPS (0.1, 1 and
10 mg ml�1) for different time periods (0, 6, 12, 18 and 24 h) at 371C
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Figure 1 (A) LPS-stimulated tumour cells release u-PA in a dose-
dependent manner. Following stimulation with various concentrations of
LPS for 24 h, u-PA concentration in SW480 and SW620 cell culture
supernatants was measured by ELISA as described in Materials and
Methods. Data are expressed as the mean±s.d. (ng mg�1 of protein) of
three separate experiments conducted in triplicate. The statistical
significance was compared with the cells incubated with culture medium
(* for 0.1 mg ml�1, Po0.05) and for cells incubated with 0.1 mg LPS
(**Pp0.05 for 1 mg LPS compared to 0.1 mg LPS). (B) LPS statistically
increases u-PA release within 12 h of stimulation. Following stimulation with
0.1mg ml�1 LPS for various time periods, u-PA concentration in SW480
and SW620 cell culture supernatants was measured by ELISA as described
in Materials and Methods. Data are expressed as the mean±s.d. (ng per
mg of protein) of three separate experiments conducted in triplicate. The
statistical significance was compared with the cells incubated with culture
medium (* for 0.1mg ml�1, ** for 1 mg ml�1, Po0.05). (C) LPS enhances
u-PA activity in SW480 and SW620 cell supernatants. SW480 and SW620
cells were stimulated with various concentrations of LPS for 24 h in the
presence or absence of the selective u-PA inhibitors amiloride
(10 mg ml�1) and WX-340 (1.0 mg ml�1). The u-PA activity in culture
supernatants was measured by colorimetric analysis as described in
Materials and Methods. Data are expressed as the mean±s.d. (IU per mg
of protein) from three separate experiments conducted in triplicate. The
statistical significance was compared with the cells incubated with culture
medium alone (* for 0.1 mg ml�1, ** for 1mg ml�1, Po0.05). (D) LPS
increases active u-PA expression in SW480 and SW620 cell supernatants.
Following stimulation with LPS for 24 h, tumour cell culture supernatants
were processed and concentrated as described in Materials and methods
and western blot analysis was performed to detect active u-PA expression.
Lane 1, u-PA positive control; lanes 2 and 3, CACO2 cells stimulated with 0
and 0.1 mg ml�1 LPS respectively; lanes 4 and 5, SW480 cells stimulated
with 0 and 0.1 mg ml�1 LPS respectively; lanes 6 and 7, SW620 cells
stimulated with 0 and 0.1 mg ml�1 LPS respectively.
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in humidified 5% CO2. The expression of u-PAR and TLR-4 on
SW480, SW620 and CACO2 cells was determined using direct
immunofluorescent staining. Briefly, 20 ml of FITC-conjugated
anti-u-PAR or FITC-conjugated anti-TLR-4 mAbs was added to
100ml of cell suspension (1� 106 cells per ml) and incubated at 41C
for 30 min. FITC-conjugated isotype IgG1 mAbs were used as
negative controls. Cell-surface expression of u-PAR and TLR-4 was
analysed on a FACScan flow cytometer (BD Biosciences, Mountain
View, CA, USA) to detect the log of the mean channel fluorescence
intensity with an acquisition of FL1. A minimum of 10 000
events were collected and analysed on CellQuest software (BD
Biosciences).

Tumour cell vitronectin adhesion assay

Human vitronectin (1 mg ml�1), poly-Lysine (1 mg ml�1) and BSA
(1mg ml�1, used as a negative control) were coated onto 96-well,
flat-bottom plates (Falcon). SW480, SW620 and CACO2 cells were
exposed to various concentrations of LPS (0.1, 1 and 10 mg ml�1)
for different time periods (0, 6, 12, 18 and 24 h) at 371C in
humidified 5% CO2 conditions. For blocking experiments, cells
were pre-treated with various concentrations of SN-50
(100mg ml�1), SN-50M (100mg ml�1), u-PA inhibitors (10 mg ml�1

amiloride, 0.3 mg ml�1 WXC-340), u-PA (20 mg ml�1), u-PAR
(20mg ml�1) and TLR-4-blocking Abs (25mg ml�1) for 1 h before
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Figure 2 (A) SW480, SW620 and CACO2 cells constitutively express cell-surface u-PAR. (i) SW480, (ii) SW620 and (iii) CACO2 cells were analysed by
FACScan analysis as described in Materials and Methods. Filled histograms represent isotype-matched mAb that served as a negative control; open
histograms represent anti-u-PAR mAb. Shown are data from one representative experiment from three independent assays. (B) LPS enhances total cellular
u-PAR expression. Following stimulation with various concentrations of LPS for 24 h, the u-PAR concentration in SW480 and SW620 cell lysates was
measured by ELISA. Data are expressed as the mean±s.d. (ng per mg of protein) of six separate experiments conducted in triplicate. The statistical
significance was compared with cells incubated with culture medium alone (* for 0.1 mg ml�1, Po0.05) and 0.1mg LPS (**P¼o0.05 for 1mg LPS compared
to 0.1 mg LPS) and between SW480 and SW620 cells (** for SW480 cells, Po0.05). (C) LPS enhances cell-surface u-PAR expression. Surface expression of
u-PAR on SW480 (i) and SW620 (ii) cells was determined by FACScan analysis after stimulation with LPS for 24 h. Filled histograms represent 0 mg ml�1

LPSþ u-PAR mAb; open histograms represent 0.1mg ml�1 LPSþ u-PAR mAb. Shown are data from one representative experiment with tabulated MFI
(±s.e.m.) from three independent assays.

LPS promotes tumour cell ECM adhesion and invasion

SD Killeen et al

1592

British Journal of Cancer (2009) 100(10), 1589 – 1602 & 2009 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



LPS stimulation. The above cell suspension (100 ml; 1� 106 cells
per ml) was added in triplicate to the vitronectin-, poly-Lysine-
and BSA-coated 96-well plates and incubated for 2 h at 371C in
humidified 5% CO2 conditions. The cell suspension was discarded
and the remaining adherent cells were washed twice with PBS.
Fluorescent probe precursor (100 ml), calcein-AM (Calbiochem)
was added to each well. Fluorescence was measured using a
fluorescence plate reader at an excitation wavelength of 485 nm
and emission wavelength of 520 nm. Standard curves to convert
measured fluorescence to cell number were constructed utilising
known cell numbers.

Tumour cell invasion assay

In vitro tumour cell invasion was assessed using an ECM in vitro
ECM invasion chambers (Chemicon) with cell culture inserts
containing an 8 mm pore size positron emission tomography

membrane with a thin layer of ECM membrane matrix as
previously described. Briefly, 0.5 ml of tumour cells (1� 105 cells
per ml) re-suspended in serum-free medium containing various
concentrations of LPS (0.1, 1 or 10 mg ml�1) was added to the cell
culture insert of the invasion chamber. FBS (20 mg ml�1) was added
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Figure 3 (A) LPS enhances SW480 and SW620 attachment to the
extracellular matrix (ECM) protein vitronectin. After the cells were
incubated with culture medium, 0.1 or 1mg ml�1 LPS for 24 h, the
adherence of SW480 and SW620 cells to vitronectin was assessed
as described in Materials and Methods. Data are expressed as the
mean±s.d. from four separate experiments conducted in triplicate.
Statistical significance was compared with the cells incubated with
culture medium alone (* for 0.1mg ml�1, Po0.05). (B) LPS enhances
SW480 and SW620 ECM invasion. After the cells were incubated
with culture medium, 0.1 or 1mg ml�1 LPS for 24 h, the ECM invasion of
SW480 and SW620 cells was assessed as described in Materials and
Methods. Data are expressed as the mean±s.d. from four separate
experiments conducted in triplicate. Statistical significance was compared
with the cells incubated with culture medium alone (* for 0.1mg ml�1,
Po0.05).
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Figure 4 Effect of u-PA and u-PAR blockade on LPS-induced tumour
cell adhesion and invasion. SW480 and SW620 cells were incubated with
either isotype-matched control mAb (2.5 mg ml�1) or u-PAR function-
blocking mAb (2.5mg ml�1) or the selective u-PA inhibitors amiloride
(10 mg ml�1) and WXC-340 (1mg ml�1) for 1 h before 0.1 mg ml�1 LPS
stimulation. Tumour cell attachment to vitronectin (A) and ECM invasion
(B and C) were assessed as described in Materials and Methods. Results
are expressed as the mean±s.d. from three separate experiments
conducted in triplicate. Statistical significance was compared with cells
incubated with either culture medium plus control mAb (*Po0.05) or LPS
plus control mAb (**Po0.05).
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Figure 5 (A) SW480, SW620 and CACO2 constitutively express cell-surface TLR-4. (i) SW480, (ii) SW620, (iii) CACO2 and (iv) THP-1 (positive
control) cells were analysed by flow cytometry using direct immunofluorescent staining as described in Materials and Methods. Filled histograms representing
isotype-matched mAbs served as a negative control; open histograms represent anti-TLR-4 mAb. Shown are data from one representative experiment from
three independent assays. (B, i – iii) Inhibition or deficiency of TLR-4 reduces LPS-enhanced u-PA activity. Following pre-incubation with 20 mg ml�1 anti-
TLR-4 function-blocking antibody or matched isotype control, cell supernatant u-PA activity were analysed by colorimetric analysis for SW480 (i), SW620 (ii)
and CACO2 (iii) cell lines. Data are expressed as the mean±s.d. from six separate experiments conducted in triplicate. Statistical significance was compared
with cells incubated in either culture medium alone (*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05). (C, i – iii) Inhibition or deficiency of TLR-4 reduces LPS-
enhanced surface u-PAR expression. Following pre-incubation with 20 mg ml�1 anti-TLR-4 function-blocking antibody or matched isotype control, surface
u-PAR expression was analysed by flow cytometry for SW480 (i), SW620 (ii) and CACO2 (iii) cell lines. Filled histograms represent 0 mg ml�1 LPSþTLR-4
mAb; open histograms: red line represents 0.1 mg ml�1 LPSþTLR-4 mAb, black line 0.1 mg ml�1 LPSþ cont mAb and blue line 10 mg ml�1 butyrate. Shown
are data from one representative experiment with tabulated MFI (±s.e.m.) from six independent assays. Statistical significance was compared with cells
incubated in either culture medium alone (*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05). (D) Inhibition or deficiency of TLR-4 reduces LPS-enhanced tumour
cell vitronectin adhesion. Following pre-incubation with 20 mg ml�1 anti-TLR-4 function-blocking antibody or matched isotype control, tumour cells were
stimulated with 0.1 mg ml�1 of LPS for 24 h and vitronectin adhesion assessed as described in Materials and Methods. Results are expressed as the
mean±s.d. from four separate experiments, conducted in triplicate. Statistical significance was compared with cells incubated in either culture medium alone
(*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05). (E) Inhibition or deficiency of TLR-4 leads to reduced LPS-stimulated tumour cell extracellular matrix (ECM)
invasion. Following pre-incubation with 20mg ml�1 anti-TLR-4 function-blocking antibody or matched isotype control, tumour cells were stimulated with
0.1mg ml�1 LPS for 24 h ECM invasion assessed as described in Materials and Methods. Results are expressed as the mean±s.d. from four separate
experiments, conducted in triplicate. Statistical significance was compared with cells incubated in either culture medium alone (*Po0.05) or 0.1 mg ml�1 LPS
(**Po0.05).
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in the outer chamber as a chemoattractant. SW480 and SW620 cells
were pretreated with various concentrations of SN-50 (100mg ml�1),
SN-50M (100mg ml�1), u-PA inhibitors (10 mg ml�1 amiloride,
0.3 mg ml�1 WXC-340), u-PA (20mg ml�1), u-PAR (20mg ml�1)
and TLR-4-blocking Abs (25mg ml�1) for 1 h before LPS stimula-
tion. The cells were then incubated at 371C in humidified 5% CO2

conditions for 24 h. Invaded cells that attached to the bottom of the
matrix membrane were detached and lysed in cell lysis buffer. Cell
lysates were then stained with CyQuant-GR-Dye (Chemicon).
Fluorescence was measured using a fluorescence plate reader at an
excitation wavelength of 485 nm and emission wavelength of
520 nm. A standard curve to convert measured fluorescence to cell
number was constructed using known cell numbers.

Statistical analysis

All data are presented as the mean±s.d. Student’s two-tailed t-test
was used to compare data between two groups. One-way analysis

of variance and Bonferroni’s correction were used to compare data
between three or more groups. Differences were judged statistically
significant at Po0.05.

RESULTS

LPS enhances u-PA release and activity in colon cancer
cells

Stimulation of SW480 and SW620 tumour cells with LPS increased
u-PA protein release in a dose-dependent manner. LPS at
0.1mg ml�1 was sufficient to enhance u-PA levels in the cell
supernatants (Figure 1A). This occurred within 12 h of LPS
stimulation (Figure 1B). LPS stimulation induced increased u-PA
activity in both SW480 and SW620 cell supernatants (Figure 1C).
This was mirrored by increased expression of activated two-chain
u-PA in SW480 and SW620 cells following LPS stimulation on

SW 480  + LPS concentration
(�g ml–1)

MFI (± s.e.m.)

__ 0 �g ml–1 LPS + TLR-4 mab 31.4 ± 2.3

__ 0.1 �g ml–1 LPS +TLR-4 mab 35.4 ± 2.0

__ 0.1 �g ml–1 LPS + cont mab 48.5  ± 3.1

SW 620 + LPS concentration
(�g ml–1)

MFI (± s.e.m.) 

__ 0 �g ml–1 LPS  + TLR-4 mab 20.6 ± 3.0
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western blot analysis of concentrated cell supernatants
(Figure 1D). Nevertheless, LPS-stimulated upregulation of u-PA
activity was almost completely blocked by two u-PA selective
antagonists, amiloride and WXC-340 (Figure 1C). Metastatic
SW620 cells had higher baseline u-PA protein and activity levels
than primary SW480 cells (Figure 1A and C).

LPS enhances u-PAR expression in colon cancer cells

SW480, SW620 and CACO2 tumour cells constitutively expressed
cell-surface u-PAR as confirmed by FACScan analysis (Figure 2A).
Baseline total cellular u-PAR levels were significantly higher in
primary SW480 cells than in metastatic SW620 cells (Figure 2B).
LPS increased total cellular and surface u-PAR levels in a dose-
dependent manner (Figure 2B and C).

LPS increases tumour cell adhesion and invasion

Different constitutive adhesion to the ECM protein vitronectin and
in vitro invasion through ECM were observed between naive
SW480 and SW620 cells (Figure 3A and B). Non-specific poly-D-
lysine binding was similar in both cell lines and for LPS-stimulated
and unstimulated cells (data not shown). LPS significantly
increased tumour cell vitronectin adhesion (Figure 3A). Both cell
lines demonstrated a significant 38% increase in vitronectin
adhesion when stimulated with 0.1 mg ml�1 LPS (Po0.05 compared
to cells treated with culture medium alone). In vitro tumour cell
invasion was also enhanced by approximately 43% in SW480 and
SW620 cells treated with 0.1 mg ml�1 LPS versus culture medium
alone (Po0.05; Figure 3B).

Inhibition of u-PAR and u-PA attenuates LPS-mediated
tumour cell adhesion and invasion

SW480 and SW620 cells pre-incubated with the u-PAR function-
blocking mAb for 1 h before LPS stimulation failed to demonstrate
enhanced vitronectin adhesion (Po0.05 compared to cells treated
with LPS or LPS plus isotype mAb control) (Figure 4A). Pre-
treatment with either u-PA (20mg ml�1) or u-PAR (20mg ml�1)
function-blocking mAbs or the selective u-PA inhibitors, amiloride
(10 mg ml�1) and WXC-340 (0.3 mg ml�1) partially impaired LPS-
enhanced tumour cell invasion (Po0.05 compared to cells treated
with LPS or LPS plus isotype mAb control) (Figure 4B and C).
Combined u-PA and u-PAR inhibition further impaired both basal
and LPS-stimulated tumour cell invasion in an additive manner
(Po0.05 compared to cells treated with LPS or LPS plus u-PA,
u-PAR or isotype-control mAb alone) (Figure 4B and C).

SW480 and SW620 cells express TLR-4 whereas TLR-4
inhibition attenuates LPS-mediated activation of the u-PA
and u-PAR system, tumour cell adhesion and invasion

Both SW480 and SW620 cells showed low constitutive expression
of TLR-4 on the cell surface whereas CACO2 cells lacked TLR-4
surface expression, as confirmed by FACScan analysis (Figure 5A).
CACO2 cells failed to demonstrate increased u-PA or u-PAR
expression after stimulation with varying concentrations of LPS
but did when stimulated with butyrate (Figure 5B and C). Pre-
treatment of SW480 and SW620 cells with a TLR-4-blocking Ab
(25mg ml�1 HTA-125) for 1 h before LPS stimulation significantly
reduced both u-PA and u-PAR expression and u-PA activity
(Po0.05 compared to cells stimulated with LPS alone or LPS plus
isotype Ab control) (Figure 5B and C). CACO2 cells failed to
demonstrate increased tumour cell vitronectin adhesion
(Figure 5D) and in vitro tumour cell invasion (Figure 5E) in
response to LPS stimulation. TLR-4 blockade also significantly
reduced LPS-dependent tumour cell vitronectin adhesion

(Figure 5D) and in vitro tumour cell invasion for SW480 and
SW620 cell lines (Figure 5E).

LPS increases NF-jB activation whereas NF-jB inhibition
attenuates LPS-mediated activation of the u-PA and u-PAR
system, tumour cell adhesion and invasion

Stimulation of SW480 and SW620 cells with 0.1 mg ml�1 LPS for
30 min increases NF-kB activity. This LPS-enhanced NF-kB
activity is attenuated by TLR-4 inhibition (Figure 6A). SN-50 is a
cell-permeable peptide containing a hydrophobic N-terminal
linked to the nuclear localisation sequence of NF-kB p50,
which prevents nuclear translocation of LPS and TNF-a-activated
NF-kB. SN-50M has two-peptide substitution and no measurable
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SW480 + LPS concentration
(�g ml–1) MFI (± s.e.m.)

0 �g ml–1 LPS + SN-50M 31.1 ± 2.4 

0.1 �g ml–1 LPS  + SN-50 31.6 ± 3.2

__ 0.1 �g ml–1 LPS+SN-50M 49.1  ± 3.1

SW 620  + LPS
concentration (�g ml–1) MFI (± s.e.m.)
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0.1 �g ml–1 LPS+ SN-50 21.1 ± 3.1

__ 0.1 �g ml–1 LPS+SN-50M 41.8 ± 2.9
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Figure 6 (A) LPS stimulation of SW480 and SW620 cells increased NF-kB activity. SW480 (i), SW620 (ii) and CACO2 (iii) cell lines were stimulated
with 0.1 mg ml�1 for 30 min cell after incubation with TLR-4 mAb, control mAb or medium alone. Cell and nuclear lysates were obtained and NF-kB activity
assessed by ELISA as described in Materials and Methods. Data are expressed as the mean±s.d. of three separate experiments conducted in triplicate.
Statistical significance was compared with cells incubated in either culture medium alone (*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05). (B, i – iii) NF-kB
inhibition impairs LPS-enhanced u-PA activity. Following pre-incubation with 100 mg ml�1 SN-50 or SN-50M and subsequent stimulation with 0.1 mg ml�1

LPS, cell supernatant u-PA activity for SW480 (i), SW620 (ii) and CACO2 (iii) cells was analysed by colorimetric analysis as described in Materials and
Methods. Data are expressed as the mean±s.d. of six separate experiments conducted in triplicate. Statistical significance was compared with cells incubated
in either culture medium alone (*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05). (C) NF-kB inhibition impairs LPS-enhanced u-PAR surface expression. Following
pre-incubation with 100 mg ml�1 SN-50 or MSN-50 and subsequent stimulation with 0.1 mg ml�1 LPS, surface u-PAR was analysed by flow cytometry as
described in Materials and Methods for SW480 (i), SW620 (ii) and CACO2 (iii) cell lines. Filled histograms represent 0mg ml�1 LPSþ SN-50M; open
histograms: red lines represent 0.1 mg ml�1 LPSþ SN-50, black lines 0.1 mg ml�1 LPSþ SN-50M and green lines 10 mg ml�1 butyrate. Shown are data from
one representative experiment with tabulated MFI (±s.e.m.) from six independent assays. Statistical significance was compared with cells incubated in either
culture medium alone (*Po0.05) or 0.1mg ml�1 LPS (**Po0.05). (D) NF-kB inhibition impairs LPS-enhanced tumour cell vitronectin adhesion. Following
pre-incubation with 100 mg ml�1 SN-50 or SN-50M and subsequent stimulation with 0.1 mg ml�1 LPS tumour cell attachment to vitronectin was assessed as
described in Materials and Methods. Results are expressed as the mean±s.d. from four separate experiments, conducted in triplicate. Statistical significance
was compared with cells incubated with culture medium alone (*Po0.05) or 0.1mg ml�1 LPS (**Po0.05). (E) NF-kB inhibition impairs LPS-enhanced
tumour cell ECM invasion. Following pre-incubation with 100 mg ml�1 SN-50 or SN-50M and subsequent stimulation with 0.1 mg ml�1 LPS, tumour cell ECM
invasion was assessed as described in Materials and Methods. Results are expressed as the mean±s.d. from four separate experiments, conducted in
triplicate. Statistical significance was compared with cells incubated with culture medium alone (*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05).
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effect on NF-kB activation in LPS-stimulated cells. Pre-treatment
of SW480 and SW620 cells with 100mg ml�1 of SN-50, for 1 h
before LPS stimulation, inhibited LPS-induced upregulation
of u-PA activity (Figure 6B) and u-PAR expression (Figure 6C)
compared to cells stimulated with LPS (Po0.05) or LPS
plus SN-50M (Po0.05). Furthermore, SN-50 pre-treatment
attenuated LPS-dependent tumour cell vitronectin adhesion
(Figure 6D) and in vitro ECM invasion (Figure 6E) compared
to cells stimulated with LPS (Po0.05) or LPS plus SN-50M
(Po0.05).

Protein synthesis inhibition impairs LPS-mediated
activation of the u-PA and u-PAR system

Cycloheximide is a protein synthesis inhibitor that inhibits the
initiation of new peptide chains and the elongation of nascent
peptides on ribosomes by different mechanisms (Ennis and Lubin,
1964).

Co-incubation of SW480 and SW620 cells with 10 mg ml�1 of
cycloheximide inhibited LPS-induced upregulation of u-PA
(Figure 7A), u- PA activity (Figure 7B), total (Figure 7C) and
surface u-PAR expression (Figure 7D) compared to cells stimu-
lated with LPS alone (Po0.05). Furthermore cycloheximide
attenuated LPS-dependent tumour cell vitronectin adhesion
(Figure 7E) and in vitro ECM invasion (Figure 7F) compared to
cells stimulated with LPS alone (Po0.05). This suggests that the
stimulatory effect of LPS is at least partially mediated at the
transcriptional level.

DISCUSSION

Bacterial endotoxin directly and indirectly facilitates cancer
progression in vitro and in vivo through a multitude of
complimentary mechanisms. Fundamental to this process is
tumour cell invasion involving cell attachment to the sub-
endothelial ECM and subsequent unidirectional cell migration
coupled with local proteolysis induced by a number of enzymes,
particularly MMPs and u-PA (Pollanen et al, 1988; Sidenius and
Blasi, 2003). We have previously demonstrated that LPS enhances
tumour cell invasion in colorectal tumour cells through a
mechanism at least partially mediated by NF-kB-dependent b1
integrin upregulation (Wang et al, 2003). However invasion is
ultimately subservient in many cases to local pericellular
proteolysis. SW480 and SW620 express low levels of MMPs, which
were unaltered with LPS stimulation (data not shown). Therefore
this study focused on the contribution of another proteolytic
cascade, the u-PA system, to endotoxin-mediated accelerated
tumour invasion.

The SW480 cell line was cultured from a primary rectal tumour
and the SW620 cell line from a secondary hepatic metastases
derived from the same patient. Interestingly, basal u-PA and u-PA
activity levels were approximately 40% higher in metastatic SW620
cells compared to primary SW480 cells. This was mirrored in
higher basal levels of in vitro invasion using the ECM invasion
chamber. In contrast, baseline surface and total cellular expression
of u-PAR was higher in SW480 cells when compared to SW620
cells, and therefore, adhesion to its specific ligand vitronectin was
correspondingly higher in SW480 cells. Although both increased
u-PA and u-PAR levels are associated with tumour metastases
(Duffy, 2002), elevated u-PA expression may be important in
development of the metastatic process in this cell system as
acquisition of the metastatic phenotype appears to involve
overexpression of u-PA and downregulation of u-PAR. Notwith-
standing the differences in basal expression, the relative increase in
u-PA protein concentration and activity, and u-PAR surface and
total cellular expression with LPS stimulation were similar between
both SW480 and SW620 cell lines. Tumour cell vitronectin

adhesion and in vitro ECM invasion were likewise consistently
amplified with LPS challenge.

Baseline and LPS-associated in vitro cellular invasion was
partially repressed by u-PA and u-PAR inhibition. The selective
u-PA inhibitor amiloride and novel chemotherapeutic compound
WXC-340 also incompletely reduced LPS-enhanced invasion. This
reduction occurred to the same extent in both SW480 and SW620
cells. Combined u-PAR and u-PA inhibition further impaired
invasion in an additive manner. Such findings incriminate the
u-PA system as a pre-eminent end effector mechanism in LPS-
mediated enhanced tumour invasion. Constituents of this
system could justifiably be targeted in the perioperative period.
Indeed, the precursor of WXC-340, wx-uk1 has completed
phase I trials in patients with metastatic solid tumours tumours
(http://clinicaltrials.gov/ct2/results?term ¼wx-uk1).

LPS signalling involves TLR-4, a member of the highly
conserved family of TLR proteins (Schumann et al, 1990; Perera
et al, 2001). Both SW480 and SW620 cells express low but
measurable surface levels of TLR-4 whereas CACO2 do not,
reflecting the poor response of this cell line to LPS stimulation.
Furthermore, LPS-mediated u-PA and u-PAR upregulation and
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Figure 7 (A) Protein synthesis inhibition impairs LPS-enhanced cell supernatant u-PA concentration. Following co-incubation with 10 mg ml�1

cycloheximide and 0.1 mg ml�1 LPS, cell supernatant u-PA concentration for SW480 (i), SW620 (ii) and CACO2 (iii) cells was analysed by ELISA as
described in Materials and Methods. Data are expressed as the mean±s.d. of six separate experiments conducted in triplicate. Statistical significance was
compared with cells incubated in either culture medium alone (*Po0.05) or 0.1mg ml�1 LPS (**Po0.05). (B) Protein synthesis inhibition impairs LPS-
enhanced u-PA activity. Following co-incubation with 10 mg ml�1 cycloheximide and 0.1 mg ml�1 LPS, cell supernatant u-PA activity for SW480 (i), SW620 (ii)
and CACO2 (iii) cells was analysed by colorimetric analysis as described in Materials and Methods. Data are expressed as the mean±s.d. of six separate
experiments conducted in triplicate. Statistical significance was compared with cells incubated in either culture medium alone (*Po0.05) or 0.1 mg ml�1 LPS
(**Po0.05). (C) Protein synthesis inhibition impairs LPS-enhanced total u-PAR expression. Following co-incubation with 10 mg ml�1 cycloheximide and
0.1mg ml�1 LPS, total cellular u-PAR expression was determined by ELISA as described in Materials and Methods. Data are expressed as the mean±s.d. of
six separate experiments conducted in triplicate. Statistical significance was compared with cells incubated in either culture medium alone (*Po0.05) or
0.1mg ml�1 LPS (**Po0.05). (D) Protein synthesis inhibition impairs LPS-enhanced surface u-PAR expression. Following co-incubation with 10 mg ml�1

cycloheximide and 0.1 mg ml�1 LPS, cell-surface u-PAR was analysed by flow cytometry as described in Materials and Methods for SW480 (i), SW620 (ii) and
CACO2 (iii) cell lines. Filled histograms represent 0 mg ml�1; open histograms: red lines represent 0 mg ml�1 LPSþ 10mg ml�1 cycloheximide, black lines
0.1mg ml�1 LPSþ 10mg ml�1 cycloheximide and green lines 0.1 mg ml�1 LPS. Shown are data from one representative experiment with tabulated MFI
(±s.e.m.) from six independent assays. Statistical significance was compared with cells incubated in either culture medium alone (*Po0.05) or 0.1 mg ml�1

LPS (**Po0.05). (E) Protein synthesis inhibition impairs LPS-enhanced tumour cell vitronectin adhesion. Following co-incubation with 10 mg ml�1

cycloheximide and 0.1 mg ml�1 LPS, tumour cell attachment to vitronectin was assessed as described in Materials and Methods. Results are expressed as the
mean±s.d. from four separate experiments, conducted in triplicate. Statistical significance was compared with cells incubated with culture medium alone
(*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05). (F) Protein synthesis inhibition impairs LPS-enhanced tumour cell ECM invasion. Following co-incubation with
10mg ml�1 cycloheximide and 0.1mg ml�1 LPS, tumour cell ECM invasion was assessed as described in Materials and Methods. Results are expressed as the
mean±s.d. from four separate experiments, conducted in triplicate. Statistical significance was compared with cells incubated with culture medium alone
(*Po0.05) or 0.1 mg ml�1 LPS (**Po0.05).
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enhanced tumour cell adhesion and invasion was abrogated by
TLR-4 blockade using a functional TLR-4-blocking mAb.

On stimulation of TLR-4 with LPS, IkB-a is phosphorylated by
IkB-a kinase and thus phosphor-IkB-a is transiently expressed in
the cytoplasm concomitant with a similarly transient decrease in
cytoplasmic IkB-a (Aggarwal, 2004). In this study blockade of
NF-kB activation by SN-50, a synthetic peptide that impedes
NF-kB signalling by inhibition of nuclear translocation of NF-kB,
abrogated LPS-induced upregulation of the u-PA system and
attenuated tumour cell adhesion and invasion, indicating that
NF-kB activation is a prerequisite not only for the transduction of
LPS signals in tumour cells, but also for the enhanced tumour cell
metastatic ability induced by LPS stimulation. Protein synthesis

seems fundamental to this LPS-induced upregulation of the u-PA
system and enhanced tumour cell adhesion and invasion
(Figure 7A–F).

LPS antagonism is another potential perioperative therapy,
particularly attractive as it would not impair putatively important
TLR-4 or NF-kB function in normal tissue.

Thus stimulation of tumour cell TLR-4 and subsequent NF-kB
activation by systemic exposure to LPS in the perioperative
period may accentuate tumour cell adhesion and invasion by a
variety of mechanisms including activation of the u-PA and
integrin systems.

In conclusion, bacterial endotoxin directly promotes tumour cell
adhesion and invasion through the upregulation of u-PA and
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Figure 8 Binding of LPS to TLR-4 leads to NF-kB activation, increased u-PA activity and u-PAR expression and ultimately enhanced tumour cell
vitronectin adhesion and tumour cell extracellular matrix invasion.

LPS promotes tumour cell ECM adhesion and invasion

SD Killeen et al

1600

British Journal of Cancer (2009) 100(10), 1589 – 1602 & 2009 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



u-PAR mediated by TLR-4-dependent activation of NF-kB (Figure 8).
These findings provide further evidence for the involvement of
bacterial products in surgery-associated accelerated growth in

metastatic disease and justify either selective or collective targeting
of LPS, TLR-4 and the u-PA system in the perioperative period to
attenuate surgery-induced accelerated metastatic tumour growth.
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