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A B S T R A C T   

As synthetic biology enters the era of quantitative biology, mathematical information such as kinetic parameters 
of enzymes can offer us an accurate knowledge of metabolism and growth of cells, and further guidance on 
precision metabolic engineering. kcat, termed the turnover number, is a basic parameter of enzymes that de-
scribes the maximum number of substrates converted to products each active site per unit time. It reflects enzyme 
activity and is essential for quantitative understanding of biosystems. Usually, the kcat values are measured in 
vitro, thus may not be able to reflect the enzyme activity in vivo. In this case, Davidi et al. defined a surrogate kvivo

max 

(kapp) for kcat and developed a high throughput method to acquire kvivo
max from omics data. Heckmann et al. and 

Chen et al. proved that the surrogate parameter can be a good embodiment of the physiological state of enzymes 
and exhibit superior performance for enzyme-constrained metabolic model to the default one. These break-
throughs will fuel the development of system and synthetic biology.   

Traditional synthetic biology and metabolic engineering focus more 
on the trial-and error-based pathway engineering, which consumes lots 
of time and effort. With the development of big data and machine 
learning, synthetic biology has evolved to the era of quantitative 
biology, and it is possible to conduct precise metabolic engineering 
guided by rational design like multi-scale data processing and learning 
from microbial intelligence. For this purpose, mathematical parameters 
are crucial for a better knowledge of cell growth and metabolism [1,2]. 
Among them, kcat is considered as one of the most important parameters 
that illustrate the basic metabolic activities. 

kcat values, also called the turnover numbers, are parameters 
describe the maximum number of substrates converted to products per 
unit time per active site. It is a quantitative measurement of enzyme 
activity. The kcat values are defined by equation (1), 

kcat =
vmax

E0
(1)  

where vmax is the maximum reaction rate and E0 is the concertation of 

the enzyme. In system and computational biology, the kcat values are 
adopted for enzyme-constrained genome scale models, which offers a 
better understanding of metabolic activities of living cells [2]. Also, kcat 
values can provide quantitative guidance for pathway engineering and 
metabolic reconstitution (Fig. 1). To this end, it is important to develop 
strategies for kcat acquisition. 

kcat values are normally obtained from protein expression assays by a 
low throughput way (Fig. 1), which is labor-intensive and time- 
consuming [3]. Indeed, the in vitro kcat measurements differ among 
literatures and only 9% of kcat values of the well-studied Escherichia coli 
are available [4]. Furthermore, the in vitro kcat may not be a true 
reflection for in vivo scenarios since the conditions are significantly 
changed [5]. Actually, the kcat value varies according to pH, buffer, 
temperature, and immobilization. For example, the in vitro kcat of 
catalase varies from 11 s-1 to 151 s-1 due to changes in pH and buffer in 
E. coli [6]. Therefore, it is an urgent necessity for a universal method to 
estimate kcat data that well matching the in vivo scenarios. 

To address the aforementioned issues, Davidi et al. defined kapp, as a 
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surrogate for in vitro kcat [7]: 

kapp,ij =
vij

Eij
= ηkcat,ij (2)  

kapp,maxi = kcat,i (3)  

where vij is the reaction rate of i-th enzymatic reaction under j-th 
cultivation conditions. Eij is the enzyme concentration. η is a condition- 
dependent function, ranging between 0 and 1, which describes the 
decrease in the catalytic rate. The kapp,maxi values represent the 
maximum turnover number under optimal state among varied cultiva-
tion conditions. It can be determined when the growth condition pools 
are large enough. Davidi et al. tested 31 different growth conditions and 
proteomic data Eij were extracted (Fig .1). For the reaction rate, flux 
balance analysis (FBA) was adopted for the calculation of vij. The kapp,maxi 

values were then determined. Comparison of kapp,maxi values with in vitro 
kcat values for E. coli yielded a correlation factor of R2 = 0.62, indicating 
a good agreement for in vivo and in vitro situations [7]. Chen et al. used 
the same method to obtain the kapp data of yeast and the correlation 
analysis results in a R2 = 0.26, which suggested a high in vivo and in 
vitro discrepancy. The in vitro kcat values of yeast were further analyzed 
by Chen et al. and the authors found that the weak correlation is caused 
by the heterologous expression of enzymes. Exclusion of these heterol-
ogous expressed enzymes led to a better R2 = 0.41 but still not as good as 
for E. coli [8]. 

However, since the metabolic flux vij is calculated by FBA in the 
method, such estimation can be limited by poor FBA accuracy or 
incomplete genome-scale model, and the robustness of the kapp in 

response to various perturbations remains unclear [9]. Therefore, 
Heckmann et al. proposed a 13C metabolic flux analysis (MFA) based 
method for kapp predication [9] (Fig. 1). To obtain the vij data, E. coli 
cells with various knockouts of central metabolism were cultivated in 
minimum medium with glucose. The resulting cultures were then sub-
jected to MFA to generate vij of 21 strains from adaptive laboratory 
evolution (ALE) [10,11]. The MFA based kapp,maxi showed good consis-
tency with kapp,maxi by FBA with R2 = 0.9, indicating this method a good 
complementation for the systems lacking FBA data. Heckmann et al. [9] 
and Chen et al. [8] then applied kapp to the enzyme-constrained meta-
bolic model and found that model with kapp showed better performance 
in compared with the original one. It is clear that flux data and proteome 
data from the well characterized species under the certain cultivation 
conditions are available and reliable. Although getting omics data under 
different cultivation conditions is still a tedious process for non-model 
organisms, the work flow and protocols, as described in this comment, 
are available to some extent. 

The above summarized methods can effectively and unfailingly 
measure the kapp in a high-throughput way currently. However, the 
coverage is still limited. To address this issue, Chew et al. developed a 
3D convolutional neural network to predict enzymatic catalysis rates 
based on experimental reaction data and corresponding molecular dy-
namics simulation data, which can be used to predict flux data [12]. It is 
worth mentioning that Heckman et al. [9] made use of machine learning 
to extrapolate the kapp to genome scale, which combined with the 3D 
structure and biochemical characteristics of enzymes in the database to 
further estimate the kapp for enzymes suffering from coverage issue of 
proteomic techniques [13]. This method offered another perspective for 

Fig. 1. Stages of the development of kcat extraction methods for higher throughput and better coverage.  
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kapp calculation despite the availability of the structural information and 
biochemical property is limited for some enzymes of interest. Thus, 
Feiran Li et al have developed a deep learning based kapp data prediction, 
which exploited the most extensive and common information, like 
amino acid sequences and substrate structures to detect the kcat values 
for better coverage of the enzymes in the system [14]. 

In summary, the development of kcat data can be divided into three 
stages (Fig. 1). For the original kcat measurement, in vitro assays were 
utilized, and the reaction data was fit to Michaelis-Menten equation 
[15–17]. Then methods integrating proteomics data together with FBA 
or MFA were introduced based on equation (1), (2) and (3) [7–9]. 
Currently, a more coverage method regarding the machine learning is 
being developed for generic kapp prediction. This shows that kapp data 
extraction methods are transitioning from a low-throughput, low--
coverage approach to a high-throughput, high-coverage, high-accuracy 
approach. 

In the outlook, the accurate and complete dataset of kcat/kapp pro-
vides us another mathematical measurement in addition to tran-
scriptome, proteome and metabolome and reveals the quantitative 
picture of genome scale metabolic network. On the one hand, kapp based 
enzyme-constrained metabolic model can presumably be improved for 
better depiction of intrinsic growth and metabolic activities of cells. On 
the other hand, kinetic features can effectively provide theoretical 
guidance for metabolic engineering modification and further realize the 
transformation from random trial-and-error to rational design. The 
development of kcat values will support a revolutionary progress for 
synthetic biology and metabolic engineering. 
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