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1  | INTRODUC TION

Cytoskeletal structures grant cells virous abilities including: adhere 
surroundings, protrusion, migration, as well as invading into tissues.1 
These cellular functions granted by several micro-protrusive struc-
tures of cellular cytoskeleton including: filopodia2 and invadosomes3 
(podosomes in physiological and invadopodia in pathophysiological 
aspect, respectively) lamellipodia.4 In that, podosomes are rich in 
monocytic cell lineage such as: dendritic cell,5 monocyte,6 macro-
phage7 and osteoclast.8 Podosomes thus constitute the essential 
organelle of the monocytic actin cytoskeletal organ.9

Osteoclast podosome is a kind of dynamic organelle, which has 
a definite functional role in bone metabolism and present a more 
specialized entity.10 When osteoclasts matured in vitro, the single 
podosome shows significantly rearranging and transforming from 
single podosome to podosome ‘clusters’, ‘rings’ and ‘belt’11 (Figure 1). 
When podosomes come into contact with bone, the podosomes 
formed in a closely packed array on the bone surface, and they are 
more closely connected to each other and form closed areas, which 
is crucial for the bone absorption characteristics of osteoclasts.12 
Osteoclasts have the ability to degrade substrates, but their main 
functions are different. Rather than the enclosed area itself regu-
lating the degradation of mineralized matrix, the bone resorption 
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Abstract
In the ageing skeleton, the balance of bone reconstruction could commonly be broken 
by the increasing of bone resorption and decreasing of bone formation. Consequently, 
the bone resorption gradually occupies a dominant status. During this imbalance pro-
cess, osteoclast is unique cell linage act the bone resorptive biological activity, which 
is a highly differentiated ultimate cell derived from monocyte/macrophage. The ero-
sive function of osteoclasts is that they have to adhere the bone matrix and migrate 
along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In 
that, the podosome is a membrane binding microdomain organelle, based on dynamic 
actin, which forms a cytoskeleton superstructure connected with the plasma mem-
brane. Otherwise, as the main adhesive protein, integrin regulates the formation of 
podosome and cytoskeleton, which collaborates with the various molecules includ-
ing: c-Cbl, p130Cas, c-Src and Pyk2, through several signalling cascades cross talking, 
including: M-CSF and RANKL. In our current study, we discuss the role of integrin 
and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, 
regulation and relevant signalling cascades cross talking.
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area is delineated in a tightly sealed chamber called an absorption 
pit.13 This chamber is isolated from the extracellular environment 
and highly acidic, thereby promoting bone resorption through the 
activity of cathepsin K.14

Currently, studies are widely conducted for exploring two issues 
for podosome and its cytoskeletal functions in osteoclastogenesis, 
such as: signalling cascades involved in the osteoclastogenesis cyto-
skeleton formation, and the adhesive signalling molecules involved 
in the physiological and pathological process of cytoskeleton (espe-
cially podosomes) regulation, in that our current review specifically 
covering from the study of integrin-associated molecules and related 
signalling cascades cross talking including: macrophage colony-stim-
ulating factor (M-CSF), receptor activator of nuclear factor-kappaB 
ligand (RANKL) and phosphoinositide 3-kinases (PI3K).

2  | AC TIN STRUC TURE OF PODOSOMES 
WITH INTEGRIN A SSOCIATION

Podosomes have typical morphological and structural characteristics. 
They proposed a punctate pattern, a 0.5−1.0 μm diameter localizing in 
the plasmatic membrane, consisting mainly of filamentous actin.15 As a 

highly dynamic organelle, podosomes undergone a consistent disinte-
gration and transformation in a short-term (minute) range, which char-
acterized by the quick overturn of actin in the structure.12 Although 
the podosome is amplified by actin production, in the fixed surface, 
the core structure grows perpendicular to the height of the lower layer 
approximate 0.6 μm.15 Further study found that the architectures of 
podosome are much complicated than originally thought: actin core, 
its characteristic is actin-related protein 2/3 (Arp2/3) complex,16 which 
stimulated by WASp (Wiskott-Aldrich syndrome protein) and cortactin 
nucleates actin filaments under the arrangement of the small GTPase 
Cdc4217,18 (Figure 2). Besides, the core contains actin that likely 
branched, a network of unbranched filaments that connects the top of 
the podosome to the ventral plasma membrane.19 Another set of un-
branched actin cables connects the podosomes to help organize them 
into higher order groups.20 The contractile nature of these cables may 
also contribute to the regular pattern of a typical podosome groups.21

Integrins and hyaluronan receptor CD44 are the main transmem-
brane adhesion molecule of podosomes, which is a bridge connecting 
internal and external.22 The transmembrane metalloprotease MT1-
MMP (MMP-14) was partly via microtubule/motor protein network 
transmitted to the podosome basal side, which all through the trans-
port vesicle.23-25 By interacting with actin filaments, the enzyme 

F I G U R E  1   Podosome patterns during 
osteoclast differentiation
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remains spatially confined to the site of podosomes formation.12 
A number of integrin-related structural proteins have been found 
around the actin core, including paxillin, vinculin and talin.15 Most of 

these molecules can be clearly located in the podosome core or ring 
structure, while others, such as p130Cas (Src kinase, crk-related sub-
strate of Cas), have not been finally located.26,27 Integrin shows an 

F I G U R E  2   Integrin-associated molecules structure and signalling
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isotype-specific localization, with β1 integrin locating the preferred 
core, while both the β2 integrin and β3 integrin are localized in the 
ring structure.15,28-30

Integrins are usually present low affinity, or inactive, or in basal 
states and could be activated from both directions.31 The receptor 
aggregation induced by the ‘outside-in’ signal after the occupation of 
the integrin cell's external distributor further increases the affinity of 
integrin to ligand. Another essential mode of activation is ‘inside-out’ 
signal cascades, including signal cascades induced by secondary re-
ceptors (such as: cytokine receptors) that transmit conformational 
variations in the interior cellular portion of integrin to the exterior 
cellular domain.31,32 Integrins are thus prepared for ligand binding 
and for signalling outside the cell, further regulate cytoskeleton 
reorganization.13 However, the activity state and exact molecular 
mechanisms of integrins in podosomes still remain elusive. In fact, 
αvβ3 integrin of osteoclastic podosome belt presents a basal state, 
which has no responding to the monoclonal antibody against activa-
tion-stimulated epitopes.33 On contrary, the activation is observed 
when M-CSF treated immunoreactivity against the αvβ3 integrin.33

3  | INTEGRIN SUBUNIT AND OSTEOCL A ST 
CY TOSKELETON REGUL ATION

Integrins are a superfamily of cell-surface receptors, which could 
conduct cellular and cell-matrix communications or interactions.34 
Integrin is involved in mediating signalling mechanisms that partici-
pate several cellular functions, such as: embryonic progression, cel-
lular homeostasis, leucocyte activation and homing, coding for cell 
death, and the benign and malignant tumour cell growth and metas-
tasis.35 The integrin membrane glycoprotein heterodimeric consists 
of α- and β-subunit.36,37 This adhesive molecule plays a essential role 
in osteoclastogenesis via regulating osteoclast adhesive ability, regu-
lating cell migration and sealing zone to form required cytoskeletal 
structures.38 Among various integrins, β3 integrin is most expressed 
in osteoclasts,33 while other integrins including the vitronectin/fi-
bronectin receptor and the collagen/laminin receptor α2β1 are also 
relatively low expressed in mammalian osteoclasts at lower level.39,40

On the other hand, however, the specific molecular signalling 
mechanisms of integrins for its role in osteoclast activation are far 
from being explored. Interestingly, in deficiency of αvβ3 murine 
model, the amount of bone surface osteoclasts did not decrease, 
indicating that the lack of αvβ3 has little inhibitory effect on the 
number of osteoclast differentiation, that is, osteoclast caused by 
the lack of αvβ3. The phenomenon that cells are separated from the 
bone surface does not cause a decrease in the number of osteoclast 
differentiation.41,42 In fact, the role of integrin, especially its subunit 
αvβ3 in the initially adhesive actions of osteoclasts is well-estab-
lished in several studies.43-45 However, the αvβ3 integrin intracellu-
lar localization remains exploring. Study has been demonstrated that 
the vitronectin receptor, αvβ3, was substantial in the sealing zone 
of matured osteoclasts. However, some studies failed to detect the 
αvβ3 presence in the osteoclast sealing zone membrane.45 Among 

these studies, in the matured osteoclasts the vitronectin receptor 
was identified to localize in the ruffled borders, intracellular vesicles 
and basolateral membranes. However, comparing the differences 
among these studies, we could conclude that these discrepancies 
might lies in the different study conditions such as: different brand of 
antibodies, various detection methods and the different osteoclasts 
status (activated osteoclasts, migrating osteoclasts, etc). Therefore, 
further studies are needed for exploring these issues.

As mentioned above, although osteoclasts express high levels of 
αvβ3 integrin, mammalian osteoclasts can also express other integ-
rins at low levels, such as: the vitronectin fibronectin receptor αvβ1 
and collagen laminin receptor α2β1.46 In addition, unlike mammalian 
osteoclasts, the avian osteoclasts suggested could express more in-
tegrins, such as: fibronectin receptor αvβ1 vitronectin receptor αvβ5 
and β2 integrins.47-49 However, osteoclast adhesion to bone surface 
involves the interaction of integrin with bone matrix extracellular ma-
trix (ECM) proteins. Specifically, for example the murine osteoclasts 
adhere to ECM by the αvβ3-dependent manner, whereas the ECM 
proteins comprised by Arg-Gly-Asp (RGD) sequences. Moreover, 
the Arg-Gly-Asp (RGD) sequences containing the bone sialoprotein, 
osteopontin, and cryptic RGD site in denatured collagen type I and 
vitronectin.50-52 Besides the β3 integrin, recently it has been demon-
strated that murine osteoclasts could via α2β1 integrin to adhere the 
native collagen type I, which also in an RGD-dependent manner.53 In 
addition, osteolysis could inhibited through both the anti-β2 and an-
ti-β1 antibody treatment, and soluble RGD peptides could decrease 
the avian osteoclast adhesive abilities and osteolysis.

4  | CRUCIAL MOLECULES OF INTEGRIN-
RELE VANT OSTEOCL A ST CY TOSKELETAL 
REGUL ATION

Cellular communications and interactions with extracellular envi-
ronment are achieved by the recognition between cellular trans-
membrane receptors and immobilized or soluble ligands, and the 
signalling transduction from exterior to the interior of the cell. 
Podosomes formation and its cytoskeletal regulating functions are 
the net results of complicated signals interaction and both adhesive 
molecules and relevant receptors participation.23 In fact, integrin 
signalling cascades involved in the osteoclastogenesis or bone cell 
homeostasis are mediated by various ECM molecules, which com-
municate with the exterior domain of integrin and further transmit 
the interior signals, namely ‘outside-in signalling’. These crucial mol-
ecules includes: c-Src,54 c-Cbl,55 p130Cas 26and proline-rich tyrosine 
kinase 2 (Pyk2).56 Although the exact molecular mechanism of these 
molecules in osteoclast podosome regulation remains exploring, 
their role in the integrin-relevant cellular cytoskeletal regulation is 
well documented. For example, in fibroblastic cells, engagement be-
tween integrins and their ligands could stimulate the autophospho-
rylation and activity of focal adhesion kinase (FAK). Moreover, the 
FAK recruit the crucial molecules such as: c-Src.57 Further, in turn 
the interaction of c-Src and Grb2 could cause the phosphorylation of 
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FAK tyrosine 925. Consequently, these molecules communications 
and interactions will lead to the activation of signalling transmission, 
such as: extracellular signal-regulated protein kinase (ERK) signalling 
transduction.30,57 While the p130Cas interacting with the c-Src SH3 
domain of and could be tyrosine phosphorylated by this molecule, 
further lead the cytoskeleton reorganization through Crk and Nck.58

Interestingly, c-Src was not only found highly expressed in pri-
mary osteoclasts, but also found in osteoclasts, which derived from 
RANKL induced from murine macrophages linage RAW264.7 cells. 
This suggested that the expression of c-Src appeared to be under 
the control of RANKL signalling cascades.59,60 As a member of the 
non-receptor tyrosine kinase family, c-Src was found to be crucial 
molecules for osteoclast cytoskeletal construction periods, such as: 
osteoclastic precursors fusion and polarization, which the targeted 
disruption of c-Src in mice could induce osteopetrosis. The Src−/− 
mice have inactive osteoclasts that lack ruffled border. Besides, 
Src−/− osteoclast precursor cells lack the capacity for spreading while 
the wild-type counterpart spreads with 60 min during the in vitro 
cell culture. These results suggesting aforementioned molecules as-
sociated with osteoclast cytoskeletal regulation.61,62 For example, 
although the absence of c-Src is sufficient to abrogate osteolysis 
in vivo, there has no decreasing for osteoclast cell numbers. These 
contrary results also raise a speculation for other various molecules 
participation and compensation during osteoclast function estab-
lishment. Tanaka et al have demonstrated that comparing to the wild-
type osteoclast counterpart, the level of tyrosine phosphorylation of 
c-Cbl immunoprecipitated from Src osteoclasts is significantly de-
creased. Further study clarified c-Src associates and colocalizes with 
c-Cbl in the osteoclast vesicles intracellular membranes.63

In fact, targeting abrogate the c-Src in murine model could lead 
the osteopetrosis caused by the osteoclasts functional defect.64,65 
In that, Src−/− murine-derived osteoclasts demonstrated abnormal 
cytoskeletal structure, delayed in cell migration and subsequently 
decreasing the osteolysis. Moreover, in the aspect of cytoskeleton 
regulation, c-Src is crucial molecules for regulating the podosome 
function and sealing zone formation. Specifically, the induction of 
αvβ3 integrin could activate c-Src, further lead the phosphorylation 
of adaptor molecules and cytoskeleton-associated kinases (c-Cbl, 
Pyk2 and Crk-associated substrate [p130Cas]) in osteoclasts.61,66,67 
Besides that, c-Src interacts with these molecules for forming a com-
plexes, which present and localize in podosomes, participating the 
osteoclast skeletal formation and cellular functions including: fusion 
and migration.

Recently, Zhao et al68 have identified Pyk2 is a main adherent 
tyrosine kinase in osteoclasts. As a member of the FAK family, Pyk2 
is highly contained in central nervous system (CNS) and haemato-
poietic cell lineage, such as: monocytes/macrophages and osteo-
clasts. Importantly, Pyk2 shares approximately 45% of overall amino 
acid identity with FAK. Therefore, Pyk2 has a high degree of con-
servation sequence surrounding the SH2- and SH3-domain binding 
site.55 Upon osteoclast attached the skeleton, Pyk2 localizes to cy-
toskeletal fractions and colocalizes with the F-actin of podosomes 
and podosome organelle formed sealing zones.69 In addition, Pyk2 

kinase could also colocalize with vinculin in the podosome for its 
actin-riched organelles spreading and reorganization in the forms of 
belt or rings in osteoclasts on glass, and in the form of sealed zone 
in matured functional osteoclasts on skeleton. Besides that, Pyk2 
C-terminal domain also comprised paxillin-binding sites. Therefore, 
Pyk2 is closely associated with the cytoskeletal proteins recruiting, 
which following the integrin activation in osteoclast.56 Specifically, 
Pyk2 is suggested to play a critical role in osteoclast adhesive 
function-related cytoskeletal organization, such as: osteoclastic 
precursors migration, osteoclast spreading and actin sealing zone 
formation. Similar to Pyk2, once osteoclast adheres to ECM, p130Cas 
was clarified to be highly tyrosine phosphorylated and localized to 
the actin-rich podosome in the forms of belt or rings in osteoclasts 
on glass, and in the form of sealed zone in matured functional os-
teoclasts on skeleton.70 However, study shown that for the c-Src−/− 
osteoclasts, p130Cas could not phosphorylated and scattering in 
osteoclastic cytoplasm, suggesting c-Src is up-stream of p130Cas 
molecule during its osteoclasts cytoskeletal association71 (Figure 3).

5  | CRITIC AL SIGNALLING AND THEIR 
CROSS TALKING INVOLVED IN INTEGRIN-
A SSOCIATED OSTEOCL A ST CY TOSKELETAL 
REGUL ATION

5.1 | Immune tyrosine-based activating motif-
bearing adapters

Several studies suggested the importance of immune tyrosine-based 
activating motif (ITAM)-bearing adapters for its role in integrin sig-
nalling during the osteoclast cytoskeletal regulation.72,73 Meanwhile, 
components immunoreceptor signalling might also cross talk with 
other signalling cascades of osteoclastogenesis, such as: RANKL 
signalling pathways. In that, ITAM-bearing transmembrane adapters 
through a noncovalent manner complicated with these immunore-
ceptors. Receptor ligation could cause the ITAM tyrosines phospho-
rylation through Src-family induction, which consequently via the 
SH-2 domain to lead the recruitment of Syk or ZAP-70 kinases.66,74 
Further, the activation of Syk and ZAP-70 kinases could stimulate 
various downstream signalling pathways, such as: ITAM/PLCγ signal-
ling cascades.66

Studies proved two critical ITAM-bearing transmembrane 
adapters: DAP1275 and the FcRγ chain (FcRγ)76 have involved 
in the integrin signal transduction during the several cellular bi-
ology of including: neutrophils, macrophage and osteoclast. For 
example, combined genetic deficiency of DAP12 and FcRγ could 
abrogate β2-stimulated functional reactions and downstream 
signalling cascades transmitting in neutrophils, which during the 
process without interacting with other integrin-independent sig-
nalling cascades.77,78 However, in macrophages, DAP12 and FcRγ 
are two key adapters for β2 integrin conducted ERK signalling 
cascades activation.79 Although studies showed that the double 
deficiency of DAP12−/−/FcRγ−/− mutation significantly induced 
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the osteopetrosis, the solitary DAP12−/− mutation also could 
lead to the defective development of osteoclastic functions.78,80 
Interestingly, the double deficiency of DAP12−/−/FcRγ−/− mutate 
osteoclast differentiates normally in vitro, this might lie in exitance 
of other ITAM-containing receptor localizing on the osteoclast sur-
face. However, double deficiency of DAP12−/−/FcRγ−/− mutation 
could cause the failure of podosomes structure formation such as: 
podosome belts or sealing zone, and consequently decreasing the 
ability of bone resorption.73 Therefore, the overall outcome of the 
double deficiency of DAP12−/−/FcRγ−/− mutation and the solitary 
DAP12−/− mutation in osteoclast phenotype is very similar to the 
results of β3 integrins deficiency in osteoclast.78 Moreover, in the 
solitary DAP12−/− mutate osteoclast precursors, cells fail to mi-
gration on αvβ3 integrin-ligand–coated surfaces. Thus, the DAP12 
and FcRγ are the critical adapters for regulating the development 
of osteoclast precursors and function of matured osteoclast, 
which speculated as the result of a interaction with αvβ3 integrin 
signal activation.

DAP12, as the ITAM-bearing transmembrane adapter mol-
ecule highly, is expressed in immune cells. Besides, DAP12 is a 

crucial orchestrator of between integrin signalling pathways and 
various stimuli. For example, DAP12 could pair myeloid cellular 
surface-resident receptors, such as: receptor on osteoclasts and 
triggering receptor expressed on myeloid (TREMs) cells. In fact, re-
sorptive function abolished in DAP12−/− osteoclast mainly caused 
by the αvβ3 integrin and M-CSF signalling impaired. Specifically, as 
the responding to M-CSF induction and reacting to αvβ3 integrin 
engagement, c-Src leads the phosphorylation of DAP12 ITAM motif 
through the tyrosine residues.81 In that, the DAP12 cytoplasmic 
domain containing the ITAM motif, which is a docking site for none 
receptor tyrosine kinases, such as: Syk, which could be involved 
in the DAP12 for its role in osteoclastic cytoskeletal regulation, 
further regulates osteoclast bone resorptive function. Moreover, 
both could regulate the phosphorylation of PLCγ2 in osteoclasts. 
Therefore, it is suggested that FcRγ and DAP12 regulate the PLCγ2 
through the responding to the engagement of αvβ3 integrin during 
osteoclastogenesis (Figure 1). However, the role of PLCγ2 in cel-
lular regulation, especially the role in communication to adhesive 
factors, remains exploring. Studies showed modified ITAM could 
bind Syk then triggering signalling transduction, such as: PLCγ2, 

F I G U R E  3   Signalling cross talking of osteoclastogenesis
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which demonstrated highly expressed in osteoclast cytoskeletal 
reorganization.

5.2 | Non-receptor tyrosine kinase Syk

Syk is required for β2 integrin conducted cellular spreading and the 
activation of ERK signalling in myeloid cells including osteoclast.82 
Syk, as a non-receptor tyrosine kinase, is essential to immune sys-
tem and associated with various functions of the immune cells. Syk 
also is crucial component of Fc-receptors, including: Fcε-receptors 
and Fcγ-receptors on macrophages and Fc receptor-related collagen 
receptor GpVI of platelets.83 Syk could conduct the β1, β2 and β3 in-
tegrins signalling in various cells, such as: monocytes/macrophages 
and neutrophils.84 As aforementioned, most of those cellular abili-
ties of Syk are associated to the binding with receptor-associated 
tyrosine-phosphorylated ITAMs immunoreceptors for further sig-
nalling cascades transduction. The Syk has remarkable role in several 
inflammatory and immune pathological processes, which presented 
in various diseases including musculoskeletal disorders, such as: ar-
thritis.84 However, the molecular functions of Syk in osteoclastogen-
esis-related diseases remain exploring.

In fact, in osteoclasts DAP12 and FcRγ activate the Syk subse-
quently conducted the development and function of osteoclast. In 
addition, Syk−/− mutation osteoclastic precursors failed to differ-
entiate to mature osteoclasts or present bone adhesive activity. 
Other study showed Syk could constitutively phosphorylate in 
stably adherent osteoclasts, and plating preosteoclasts on αvβ3 
ligands could lead the phosphorylation of Syk.74,85 Those results, 
importantly, clarified the interactions between bone homeostasis, 
especially osteoclast cellular functions, and immunoreceptor-like 
signalling, therefore provided critical evidence for novel field of 
bone and immune system, namely ‘osteoimmunology’.86 In addi-
tion, these studies suggest that Syk signalling involved the reg-
ulation of osteoclast cytoskeleton and adhesive function, which 
might have a cross talking with integrin signallings and relevant 
molecules. Several studies developed Syk−/− murine model, in 
order to clarify the role of Syk in the engagement or communi-
cation with integrin signalling pathway. However, due to the peri-
natal lethality in Syk−/− murine model, the study failed to test the 
Syk−/− animals bone morphology,87 it is until recently studies pro-
vide the evidence for Syk role in bone homeostasis in vivo.

During our current manuscript preparation, Csete and col-
leagues have further reported that they accomplished the condi-
tional abolish of the Syk, which could generate a murine model 
with osteoclastic-specific Syk deficiency mic (SykΔOC) or hae-
matopoietic Syk deficiency mice (SykΔHaemo) via. Subsequently, 
through using Cre recombinase expressed under the control of 
the Ctsk or Vav1 promoter, they demonstrated that the density 
of bone trabecular presented an increasing manner in SykΔHaemo 
and SykΔOC mice.88 In other hand, study manifested that osteo-
clast with the phenotype of Syk−/− could significantly resemble 
the osteoclast with β3 integrin-deficient phenotype. Moreover, 

in Syk−/− osteoclastic precursors, cells manifested in adhesion, 
Vav 3 phosphorylation and spreading defects, further plate the 
Syk−/− osteoclast on αvβ3 integrin-ligand–coated surface and do 
not resorb bone.43,89 These novel study results demonstrated the 
crucial role of Syk in osteoclast associated to the β3 integrin-me-
diated cellular function.

6  | CRUCIAL SIGNALLING CROSS 
TALKING IN OSTEOCL A ST CY TOSKELETON 
REGUL ATION

As two primary key osteoclastogenesis signals, M-CSF and RANKL 
not only involved in the stimulation of osteoclastic differentiation, 
but also organize the cytoskeleton of matured osteoclast, thereby 
regulating their capacity to degrade bone, together and/or respec-
tively.90,91 In fact, previous studies considering that the binding of 
the M-CSF and c-Fms induced signalling pathways required for oste-
oclastic precursor survival and proliferation,92 whereas the binding 
of RANKL and RANK conducted signalling cascades required for dif-
ferentiation of osteoclastic precursors and the resorptive function 
of matured osteoclast.93

In that, M-CSF interact with its cognate receptor c-Fms could 
lead the specific tyrosine residues autophosphorylation and 
transphosphorylation in the site of cytoplasmic tail of c-Fms.94 
However, among the c-Fms cytoplasmic tail tyrosine residues, four 
crucial tyrosine residues (including: Y559, Y697, Y721 and Y921) 
participate the regulation of osteoclastic precursors survival and 
proliferation.95 Particularly, among these four critical tyrosine res-
idues, phosphorylated Y559 could bind with c-Src, subsequently 
the phosphorylated Y559 and c-Src complex cause the c-Cbl and 
phosphatidylinositol 3-kinase (PI3K) recruitment, which PI3K 
could further activate the Akt signalling.96 Besides that, the phos-
phor-Y697/Y974 could interact with Grb2 that stimulated ERK sig-
nalling.97 Recently, studies demonstrated that PI3K is also clarified 
localizing in podosomes via the engagement between c-Src and 
gelsolin in response to αvβ3 integrin activation. In that, c-Src could 
lead the phosphorylation of Y731 tyrosine residue in c-Cbl. In 
fact, the Y731 tyrosine residue in c-Cbl is known as a PI3K binding 
site, and the mutation of c-Cbl/Y731 overexpression could inhibit 
bone resorptive activity.98 Other study has showed using the PI3K 
inhibitor wortmannin could decrease the osteoclastic adhesive 
ability and cause the podosomes disappearing.99 These results 
suggested that the c-Src/PI3K/Akt signalling pathway might play 
a essential role in osteoclastic cytoskeleton assembling, especially 
for podosomes formation and motility.

Moreover, c-Src following αvβ3 integrin engagement could di-
rectly phosphorylate Syk. Indeed, Syk SH2 motifs mutation could 
disrupt the molecule ability on DAP12 communication, whereas re-
taining interaction with αvβ3 integrin abrogates the communication 
of Syk and Src and therefore regulate the osteoclast cytoskeleton 
reorganization.100 Besides the αvβ3 integrin-binding ability for os-
teoclastic adhesive function, Syk also associated with the M-CSF 
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signalling cascades in a DAP12-dependent manner. In addition, 
Syk SH2 motif mutation could also defect the binding ability to the 
DAP12 ITAM motif and abrogate the response to M-CSF signalling. 
Thus, the association of Syk SH2 motifs with DAP12 could be spec-
ulated as a critical convergence point for αvβ3 integrin and M-CSF 
signalling cascades to the osteoclastic cytoskeleton regulation. 
However, this cellular mechanism is conducted by a autophosphory-
lation by Src rather than transphosphorylation.101

In the late stage of osteoclastogenesis, osteoclastic resorptive 
capacity mainly affected by its cytoskeleton reorganization.102 
Once contact with bone surface, osteoclasts could demarcate the 
acidified bone matrix resorptive zone from the bone surface and 
apical membrane through the actin cytoskeletal reorganization to 
form the podosome belt, further a sealing zone, which subsequently 
form a gasket to restrain the lacunar acid leakage.103 Indeed, osteo-
clastic resorptive ability depends on the sealing zone and actin rings 
formation. Besides, vast studies for exploring the RANKL-induced 
osteoclast formation form precursors.102,104,105 Studies have been 
also conducted to explore the osteoclast cytoskeleton regulated by 
RANKL. Specifically, studies have reported that the RANK signal-
ling might associate with c-Src, therefore suggesting the interaction 
between RANK and αvβ3 integrin.63 As aforementioned, c-Src as-
sociated with the osteoclastic cytoskeleton regulation by activat-
ing the receptor/kinase complex. In addition, RANKL could also 
activate the PI3K/Akt signalling cascades through tumour necro-
sis factor receptor-associated factor (TRAF), whereas the genetic 
deletion of c-Src or the inhibitor of Src-family kinase could inhibit 
RANKL-stimulated osteoclast resorptive ability via decreasing the 
Akt activation. Suggested the cytoskeletal regulating activation of 
RANKL/TRAF/PI3K/Akt signalling might cross taking with Src ki-
nase (Figure 3).

However, the ability of osteoclastic bone resorption finally 
achieved on the actin-rich sealing zones formation, the cellular actin 
cytoskeletal integrity and consequently via a complicated signalling 
transduction fashion. The osteoclasts polarization could be regu-
lated by the RANKL/RANK interact with αvβ3 integrin.106 Besides 
that, αvβ3 integrin could also up-regulate the canonical signalling 
complex consisting of Syk and Pyk2 for allowing the actin rings for-
mation in osteoclast.56,107-110
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