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Abstract

To date, the only established model for assessing risk for nasopharyngeal carcinoma (NPC) relies on the sero-status of the
Epstein-Barr virus (EBV). By contrast, the risk assessment models proposed here include environmental risk factors, family
history of NPC, and information on genetic variants. The models were developed using epidemiological and genetic data
from a large case-control study, which included 1,387 subjects with NPC and 1,459 controls of Cantonese origin. The
predictive accuracy of the models were then assessed by calculating the area under the receiver-operating characteristic
curves (AUC). To compare the discriminatory improvement of models with and without genetic information, we estimated
the net reclassification improvement (NRI) and integrated discrimination index (IDI). Well-established environmental risk
factors for NPC include consumption of salted fish and preserved vegetables and cigarette smoking (in pack years). The
environmental model alone shows modest discriminatory ability (AUC= 0.68; 95% CI: 0.66, 0.70), which is only slightly
increased by the addition of data on family history of NPC (AUC= 0.70; 95% CI: 0.68, 0.72). With the addition of data on
genetic variants, however, our model’s discriminatory ability rises to 0.74 (95% CI: 0.72, 0.76). The improvements in NRI and
IDI also suggest the potential usefulness of considering genetic variants when screening for NPC in endemic areas. If these
findings are confirmed in larger cohort and population-based case-control studies, use of the new models to analyse data
from NPC-endemic areas could well lead to earlier detection of NPC.
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Introduction

In most parts of the world, nasopharyngeal carcinoma (NPC) occurs

at an annual incidence rate of,1/100,000 [1,2], yet in South East

Asia and Southern China, it is endemic. NPC appears to be most

widespread in central of Guangdong province, where the city of

Sihui, for instance, shows incidence rates of 30.94/100,000 in

males and 13.00/100,000 in females [3]. In addition to this

strikingly localized pattern of geographic distribution, NPC is also

known to cluster in families in diverse populations [4], suggesting

that its etiology may involve distinct risk factors.

One such factor, which has been consistently validated, is the

widespread consumption of salted fish in endemic areas [5]. A

meta-analysis for preserved vegetables consumption further found

that, compared with individuals who eat the least amount of

preserved vegetables, those with the highest intake have approx-

imately a two-fold increase in risk for NPC [6]. Cigarette smoking,

too, has been implicated as a risk factor for NPC [7]. Although

these environmental risk factors are relatively well established,

however, it is not yet known whether they can be used to identify

increased or reduced risk for NPC. In order to build an NPC risk

prediction model based on these three known environmental

predictors, we recently conducted a large case-control study in

Cantonese populations. As expected, results from this study

independently confirm that tobacco smoking and a childhood

diet rich in salted fish and preserved vegetables are all

independently associated with elevated risk for NPC [8,9]. In

order to capture inherited genetic susceptibilities as well as shared

environmental and behavioral risk factors, we included data on

family history of NPC in our predictive model.

Genetic association and linkage studies consistently report that

NPC appears to be associated with the HLA-A region [10–12], and

two genome-wide association studies (GWAS) recently confirmed the

HLA region’s role in NPC in southern Chinese and Taiwanese

populations [13,14]. In the southern-Chinese GWAS, researchers

have not only associated three single-nucleotide polymorphisms (SNPs)

in the HLA region (rs2860580, rs2894207, and rs28421666) with
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elevated NPC risk, they have also identified three risk-associated

loci–TNFRSF19 on 13q12 (rs9510787, rs1572072), MDS1-EVI1

(rs6774494) on 3q26, and CDKN2A-CDKN2B gene cluster on 9p21

(rs1412829)–outside the HLA region [14]. When analysed

separately, each of these SNPs is associated with only modest

effects on NPC risk and is therefore of little predictive value. We

hypothesized, however, that all seven SNPs taken together could

be used to create a more significant genetic score for NPC risk.

Using all seven SNPs associated with the disease identified in the

southern Chinese GWAS, therefore, we built our first predictive

genetic model for determining NPC risk.

Similar models have been successfully used to assess the risk of

developing other cancers, such as the web-based risk prediction

tools for lung cancer (http://nomograms.mskcc.org/Lung/

RiskAssessment.aspx) and breast cancer (http://www.cancer.

gov/bcrisktool/). To project individualized risk for the disease,

these tools only require users to answer a few simple questions on

the website. As multiple risk-carrying variants have been identified

from GWAS data for such common disorders as cardiovascular

diseases [15], breast cancer [16,17], prostate cancer [18–20], and

diabetes [21], investigators have tested whether they might

increase these disease models’ predictive ability. With the growing

usefulness of Genetic Risk Prediction Studies (GRIPS), moreover,

guidelines were also developed to ensure the transparency, quality,

and completeness of reported results [22].

Experience has shown that early screening and improved

radiotherapy techniques can dramatically improve rates of survival

from NPC. But while the five-year survival rates for early-stage (I/

II) patients is 83–93%, the rate for patients diagnosed with late-

stage (III/IV) NPC is only 63–72% [23]. These figures underscore

the need to develop an efficient strategy and screening program for

the early detection of NPC in high-risk areas.

In an attempt to meet that need, this study introduces several

NPC prediction models that are the first to take into account

known environmental risk factors, family history of the disease,

and a genetic risk score comprising seven high risk SNPs identified

from the southern Chinese GWAS. In this pilot study, we evaluate

whether or not these complex models, based on a variety of risk

factors, are in fact more powerful for the early detection of NPC.

We propose to conduct further validation studies in future using

data from our on-going large cohort study [24] and from

a population-based case-control study (http://www.npcgee.com/

en/index.aspx). These validation studies are a necessary step

toward development of better risk prediction models for use as

screening tools in areas where NPC is endemic.

Materials and Methods

Subjects
Subjects for this study were selected from those taking part in

a large case-control study and are fully described elsewhere [8].

This study was reviewed and approved by the Human Ethics

Approval Committee of Sun Yat-Sen University Cancer Center

(SYSUCC). All patients signed informed consent before data

collection.

Briefly, for the patient cohort, NPC cases were identified from

the medical records of the SYSUCC in Guangzhou, the capital of

Guangdong Province. Patients were histologically confirmed and

enrolled in the hospital at some time between October 2005 and

October 2007. All patients had had no previous diagnosis of or

treatment for NPC, were without any prior history of cancer,

younger than age 80, were born and continuously lived in

Guangdong province at least for 5 years. Subjects with immuno-

logical and mental disease were excluded. Using these criteria,

a total of 1,387 NPC cases were included in the study and 61 were

excluded. Therefore, the consent rate for the NPC cases were

95.8%.

At the same time, for controls, visitors seeking physical

examinations at community hospitals in 21 municipalities in

Guangdong Province were interviewed. In-person interviews were

completed for 1,459 (66.0%) eligible controls, who were frequen-

cy-matched to cases by age (6 five years), gender, educational

level, dialect, and household type (rural or urban). Controls also

met the same inclusion criteria as the cases.

Data Collection
Trained interviewers conducted live interviews, which included

an extensive questionnaire, with patients in hospitals and controls

in physical examination centers. Information collected included:

demographic characteristics (age, sex, ethnicity, dialect, educa-

tional level, and household type), family history of NPC, and

dietary and cigarette smoking habits (using data collection

techniques describe in detail elsewhere) [8,9]. Briefly, for such

known NPC risk factors as salted fish and preserved vegetables,

subjects were asked to choose from three categories of intake

frequency: less than monthly, monthly, and weekly or more. For

cigarette smoking, subjects were asked to choose from the

following categories: age when began smoking, cumulative years

of smoking, and type of smoking. A final statistic defining the

cumulative impact of smoking in ‘‘pack-years’’ was determined by

multiplying the number of packs of cigarettes smoked per day by

the number of years the subject smoked. Meanwhile, approxi-

mately 6–7 ml of venous blood was collected. Genomic DNAs

were isolated from whole blood samples using a commercial DNA

extraction kit (Qiagen). Genotyping was conducted using Hu-

man610-Quad BeadChips (Illumina). Samples with a SNP call

rate of,96% were removed. SNPs were excluded if they had a call

rate ,95%, a minor allele frequency ,3% or significant deviation

from Hardy-Weinberg Equilibrium in the controls (P,1026) [14].

Statistical Analysis
We used logistic regression analysis to obtain estimated odds

ratios (ORs) and 95% confidence intervals (CIs) for associations

between risk factors and disease. Linear trend tests were conducted

on all ordinal variables. Seven SNPs with statistically significant

associations with NPC in the southern Chinese GWAS [14] were

selected as genetic variables for our predictive model. Although we

also found minor alleles of six SNPs associated with decreased

NPC risk, however, we elected to use ORs of the high-risk alleles

rather than these low-frequency alleles in our comparisons across

SNPs.

For simplicity’s sake, and to facilitate application of our risk

model in future, we created a ‘genetic risk score’ as a measure of

the cumulative effects of multiple genetic risk variants as follows:

Xk

i~1
biSNPi,

where k is the number of SNPs replicated in this study; SNPi is the

number of risk alleles (0, 1, or 2); bi is the regression coefficient for

SNPi, which was derived using a logistic regression model.

In designing a statistical tool for NPC prediction, we

constructed five models considering different mixes of factors

associated with the disease: environmental risks, family history of

NPC, epidemiological risks (environmental predictors and family

history of NPC), genetic risks (using our genetic risk score), and an

inclusive model in which all of the above were considered. A

nonparametric approach was used to compare the area under the

Predicting NPC Using Genetic Epidemiological Risks
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receiver operating characteristic (ROC) curves (AUC) for these models,

[25] and the Hosmer-Lemeshow test was used to assess their final

calibration. Each model’s internal performance validity was

evaluated using a bootstrap method involving 2,000 replications,

during which the AUC was adjusted for potential over-fitting. To

quantify discriminatory improvement for models with and without

the genetic risk score, we also computed the net reclassification

improvement (NRI) and integrated discrimination index (IDI) [26]. To

decrease possible bias arising from the exclusion of subjects with

incomplete information from the analysis, we imputed missing

values using the multiple-imputation method (aregImpute function

of the R statistic package, see www.r-project.org). Statistical

analyses were performed using Stata (version 10.0) and R (version

2.14.0).

Results

Our study sample contains 1,387 NPC cases and 1,459 healthy

controls, matched for distribution in terms of age, sex, dialect,

educational level, and type of household. Both patient and control

groups are roughly three-quarters male. The mean age of NPC

onset is about 47 years old. (Read Table 1-Demographic Characteristics

and Socioeconomic Status of the Study Populations in Reference [8]).

Association with NPC Risk
While all seven SNPs identified in this case-control study are

consistently associated with NPC risk, the most significant

association occurs in SNPs: rs2860580 (OR=1.82, 95% CI:

1.62, 2.05]), rs2894207 (OR=1.67, 95% CI: 1.44, 1.95), and

rs28421666 (OR=1.46, 95% CI: 1.24, 1.71), located in the HLA

region (Table 1). Combining risk values for all seven SNPs, we

calculated a ‘genetic risk score’ for each participant. In cases, the

mean (6 SD) genetic risk score is 3.3860.50, while in controls it is

3.1060.56 (p,0.001). This score, moreover, is normally distrib-

uted in controls but in NPC cases is slightly skewed to the right

(Figure 1).

Based on the genetic risk score’s quintile distribution in subjects,

we evaluated its association with NPC and other epidemiological

risk factors. As expected, after adjustment for potential confoun-

ders and other epidemiological risk factors, risk for NPC rises in

direct proportion to genetic risk score. Compared with people

whose scores are in the lowest quintile, those with scores in the

highest quintile are 4.64 times more likely to develop NPC (95%

CI: 3.55, 6.07). (Figure 2).

Of the epidemiological factors considered, the most important

risk predictors rank as follows: 1) family history of NPC

(OR=3.65, 95% CI: 2.79, 4.78); 2) weekly or more vs. less than

monthly consumption of preserved vegetables (OR=3.27, 95%

CI: 2.75, 3.88) or of salted fish (OR=2.45, 95% CI: 2.04, 2.95).

We found no interaction among genetic risk score and other

epidemiological factors (data not shown), and adjustment for all

potentially confounding factors leaves the ORs and corresponding

95% CIs virtually unchanged. (Table 2).

Calibration and Classification Performance
As can be seen from the following calibration statistics (Hosmer-

Lemeshow x2 statistic), all five of our models represent a good fit

(Table 3). ROC curve analysis, however, shows low discriminatory

accuracy for models based only on family history of NPC

Table 1. Association between risk of nasopharyngeal carcinoma and seven single-nucleotide polymorphisms.

risk allele frequency OR (95% CI)b

SNP Allelea case (%) Control(%) heterozygote homozygote OR (95% CI) per risk alleleb P-trendc

rs6774494 A/G 68.6 64.5 1.31 1.02–1.68 1.52 1.19–1.95 1.21 1.08–1.35 8.5661024

rs2860580 G/A 74.4 61.7 2.34 1.76–3.11 3.85 2.89–5.11 1.82 1.62–2.05 1.12610224

rs2894207 A/G 89.3 82.9 1.72 1.03–2.88 2.86 1.74–4.71 1.67 1.44–1.95 9.16610211

rs28421666 A/G 89.5 85.4 1.14 0.62–2.09 1.72 0.95–3.11 1.46 1.24–1.71 4.3661026

rs1412829 A/G 92.1 88.7 1.91 0.79–4.63 2.80 1.17–6.69 1.50 1.25–1.79 4.3761026

rs1572072 C/A 75.6 73.0 1.15 0.84–1.58 1.32 0.97–1.80 1.15 1.02–1.29 0.020

rs9510787 G/A 39.9 35.4 1.17 1.00–1.38 1.48 1.19–1.86 1.21 1.09–1.34 5.0061024

aRisk allele/reference allele.
bOR =odds ratio; CI = confidence interval. OR (95% CI) for each SNP were estimated separately using a logistic regression adjusted for age, sex, educational level, dialect,
and rural or urban household type.
cP values for trend (two-sided) were derived from Cochran- Armitage trend tests.
doi:10.1371/journal.pone.0056128.t001

Figure 1. Distribution of genetic risk score. Distribution of the
seven SNPs-based genetic risk score in 1,387 NPC cases (black bars) and
1,459 controls (grey bars). Individual risk for NPC was calculated by
weighting each risk allele with its corresponding risk coefficient, which
was derived from logistic regression.
doi:10.1371/journal.pone.0056128.g001
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(AUC=0.57), environmental predictors (AUC=0.68), or genetic

risk score (AUC=0.64). Performance improves, however, when

family history of NPC and environmental risk factors are

combined (AUC=0.70), and improves still further when genetic

risk score is included (AUC=0.74) (Figure 3). Statistically

significant differences occur when the inclusive model is compared

with the epidemiological model (difference in AUC=0.04,

p,0.001) or the genetic risk score model (difference in

AUC=0.10, p,0.001). In all models, moreover, unadjusted

AUC values are slightly lower than internally validated (that is,

optimism corrected) AUC values (Table 3). We also calculated

positive predictive value (PPV) and negative predictive value

(NPV) as measure of predictive ability for models based on

different predictors, the two measures together with AUC

consistently suggested that when more information was incorpo-

rated into the model, the discrimination ability improves

accordingly (see Table S1).

Reclassification for Epidemiological Model vs. Inclusive
Model
To determine whether or not the inclusive model gives better

classification results than the epidemiological model, we calculated

both NRI and IDI. Setting the predicted risk threshold at 0.2 and

0.3, we used a reclassification table to evaluate how accurately the

two models assigned people to low, intermediate, or high risk

categories. In these calculations, the NRI is estimated at 0.16 and

Figure 2. Distribution of risk for NPC by genetic risk score (in
quintiles). Risk of NPC (expressed as OR 695% CI) was adjusted for
age, sex, education level, dialect, residential area, family history of NPC,
pack-years smoked, salted fish and preserved vegetables consumption.
The boundaries for each genetic risk score quintile are shown on the x-
axis.
doi:10.1371/journal.pone.0056128.g002

Table 2. Associations between genetic variants, epidemiological risk factors and risk of nasopharyngeal carcinoma.

Predictor (code) Case (No.) Control (No.) ORa 95% CIa ORb 95% CIb

Genetic risk score (in quintiles)

1 (0) = low 162 400 1.00 referent 1.00 referent

2 (1) 249 321 1.93 1.50–2.46 1.88 1.44–2.44

3 (2) 281 291 2.39 1.87–3.06 2.47 1.90–3.21

4 (3) 321 251 3.17 2.47–4.05 3.23 2.48–4.19

5 (4) = high 374 196 4.74 3.68–6.10 4.64 3.55–6.07

P-trendc 8.629610238 4.112610226

Family history of NPC

No (0) 1,154 1,382 1.00 referent 1.00 referent

Yes (1) 233 77 3.65 2.79–4.78 3.53 2.64–4.71

Cumulative amount of smoking (in pack years)

#20 955 1,110 1.00 referent 1.00 referent

.20 432 349 1.52 1.26–1.83 1.41 1.15–1.74

Salted fish intake

, monthly 731 1,084 1.00 referent 1.00 referent

monthly 236 118 3.02 2.37–3.84 2.07 1.57–2.73

$ weekly 420 257 2.45 2.04–2.95 1.55 1.25–1.92

P-trendc 1.821610227 5.76761025

Preserved vegetables intake

, monthly 555 973 1.00 referent 1.00 referent

monthly 204 129 2.81 2.20–3.58 2.07 1.56–2.74

$ weekly 628 357 3.27 2.75–3.88 2.66 2.17–3.25

P-trendc 1.424610243 2.542610212

aOR = odds ratio; CI = confidence interval. OR and 95% CI were derived from logistic regression, with adjustment for age, sex, education level, dialect, household type
(rural/urban).
bOR and 95% CI were derived using logistic regression adjusted for age, sex, education level, dialect, rural or urban household type, and all other variables listed in the
table.
cP values for trend (two-sided) were derived from Cochran- Armitage trend tests.
doi:10.1371/journal.pone.0056128.t002

Predicting NPC Using Genetic Epidemiological Risks

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e56128



the IDI at 0.05, both of which are highly significant (p,0.001).

(Table 4).

To evaluate how missing data affect performance, we imputed

values for missing data on education (0.35%), residence (0.77%),

dialect (0.21%), family history of NPC (2.49%), pack-years smoked

(1.55%), salted fish consumption (0.91%), preserved vegetables

consumption (0.74%), rs6774494 (7.55%), rs2860580 (7.48%),

rs2894207 (9.31%), rs28421666 (7.73%), rs1412829 (7.31%),

rs1572072 (7.13%), and rs9510787 (7.41%). A secondary analysis

of the data set without imputed values for missing data shows that

for all five prediction models, discriminative accuracy is virtually

identical to the analysis with imputation of missing data on

different variables (data not shown).

Discussion

Risk prediction models, which can evaluate the combined

impact of multiple risk factors, have high potential for uncovering

new insights that will improve our ability to diagnose, treat, and

even prevent disease. Prediction models for breast [27] and lung

[28] cancer have already been developed and validated in diverse

external populations, and the Gail model is now widely used in

Figure 3. Receiver-operating characteristic (ROC) analysis. The areas under the ROC curves (AUC) as measures of predictive power for risk-
assessment models based on environmental risk factors, family history of NPC, and genetic variants for NPC.
doi:10.1371/journal.pone.0056128.g003

Table 3. Area under curves (AUC) as a measure of predictive strength for risk-prediction models based on different indicatorsa.

Model AUC 95% CI
AUC revised
optimism-corrected Model calibration P valuec

x2 statisticb P valueb

Environmental 0.68 0.66–0.70 0.67 8.89 0.352 ,0.001

Family history of NPC 0.57 0.55–0.59 0.55 3.53 0.897 ,0.001

Epidemiological 0.70 0.68–0.72 0.69 13.01 0.112 ,0.001

Genetic risk score 0.64 0.62–0.66 0.63 4.41 0.818 ,0.001

Inclusive model 0.74 0.72–0.76 0.73 0.73 0.999 reference

aThe environmental model is based on consumption of salted fish and preserved vegetables, and cumulative amount of smoking. The family history of NPC model
includes family history of NPC only. The epidemiological model combines both environmental and family history of NPC predictors. The genetic risk score model
includes a score derived from seven SNPs identified in the Cantonese GWAS. The inclusive model integrates all data on epidemiological and genetic predictors.
bx2 statistic and P value was calculated from the Hosmer–Lemeshow Goodness-of-Fit test, a model with x2 statistic ,20 (P.0.01) is considered as a good calibration.
cAUC of the models were compared with a nonparametric approach, and P value was obtained from the comparison of the inclusive model with the other models.
doi:10.1371/journal.pone.0056128.t003
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counselling, as the basis for decisions on the use of tamoxifen for

treatment, and for determining the most useful sample size in

randomized prevention trials [17].

To our knowledge, however, no study has yet sought to predict

NPC risk by evaluating the combined effects of its known

environmental risks, family history of NPC, and genetic variants

in high-risk populations. The current study incorporates all three

NPC risk prediction models, validates predictability internally.

With an AUC of 0.70, the resulting epidemiological model has

good discriminatory ability comparable to that achieved with the

Gail (AUC=0.67) [27] and Bach (AUC=0.72) models [28].

When a genetic risk score based on seven SNPs from the southern

Chinese GWAS is incorporated into our model, moreover, the

AUC increases from 0.70 to 0.74.

Since our data support earlier findings that smoking, eating

preserved vegetables, and eating salted fish all elevate the risk for

developing NPC significantly, we included these three variables in

our environmental risk model. Other environmental exposures

(drinking herbal tea or alcohol, eating inadequate fresh vegetables

and fruit) were excluded to avoid mistaking spurious noise

variables as independent predictors for the outcome by auto-

selecting predictors (using logistic regression) from among too

many variables [29]. These exclusions may, however, make our

model less stable and reproducible. To achieve good performance

and design a method easy enough for implementation in clinical

settings, we elected to include only three predictors in our

environmental models. To avoid colinearity among multiple

related variables in our final model, moreover, we included only

the indicator deemed most important (such as ‘cumulative amount

of smoking in pack-years’ for our tobacco smoking risk factor),

even though data on smoking status, age at smoking initiation,

smoking intensity, duration of smoking, use of a filter beak or not,

and degree of inhalation are available and significantly associated

with NPC risk.

Inasmuch as family history of NPC is associated with an almost

four-fold increase in NPC risk, we also explored the extent to

which the family history of NPC alone, or together with other

factors, helps in the identification of individuals at high risk for

NPC. Since family history has, in fact, been the basis for initial risk

stratification in many common and preventable conditions, it

holds similar promise as the basis for a cost-effective screening tool

for NPC [30,31]. This study shows that, although family history of

NPC alone has only limited predictive value, when it is

incorporated into a model that also includes environmental

predictors, predictive ability is substantially increased. It should

also be noted that the epidemiological model estimates individual

probability of developing NPC on the basis of answers to a few

simple questions, making it a practical tool, following validation,

for use in external populations.

As measured by the AUC, NRI, and IDI, the discrimination

ability improves when common genetic variants are incorporated

into the epidemiological model. These improvements in AUC and

integrated discrimination rates, as well as our models’ simplicity

and ease of implementation, suggest that the model might prove to

be useful screening tools for NPC in endemic areas. It is worth

noting that we selected only seven SNPs for inclusion in our

prediction models. Of two earlier GWAS of NPC [13,32], the

GWAS in Taiwanese individuals shows a strong association at

SNP rs2517713 and another independent association at rs29232

[13]. Both of these SNPs, moreover, are in considerable LD with

our most significant SNP rs2860580 (rs2517713 and rs2860580:

c2 = 0.99, D9=1; rs29232 and rs2860580: c2 = 0.29, D9=0.80).

Another GWAS of NPC in a Malaysian Chinese population shows

an association at ITGA9 (on 3p21) [32], but we observed no such

association and surmised that the relatively small sample size

(Number of case/control = 279/512) for this earlier study may

have resulted in an inconsistent observation. Taking all of the

evidence together, we decided to include seven SNPs for this study.

We realize, however, that this model is only preliminary and

should be revised to include new independent loci as they are

found. Additionally, we compared the allele frequencies of the

seven SNPs in our case/control subjects with other ethnic

populations. We used the data from dbSNP132 (URL: http://

www.ncbi.nlm.nih.gov/snp), in which the allele frequencies were

estimated in multiple ethnic groups by multiple-center human

genome projects, including Japanese in Tokyo, Han Chinese in

Beijing, European and Sub-Saharan African populations from the

HapMap project, and multiple populations from the 1000

Genome Projects. We observed that rs9510787-G allele has

a higher frequency in Cantonese compared with other ethnic

groups, while rs6774494-G allele has a lower frequency compared

with other ethnic groups. The allele frequencies of other five SNPs

are various across different ethnic groups (see Table S2).

Currently, no independent large-scale case-control study has

been conducted to evaluate the effect-sizes of these seven SNPs on

NPC risk among other ethnic populations. Therefore, we are not

able to compare the risk effect of genetic risk score across different

ethnic populations. However, it is reasonable that our risk models

based on epidemiological risk factors and genetic risk score might

need to be carefully refined when trying to apply to other ethnic

populations because of different effect-sizes of risk factors for

different ethnic populations.

Modelling NPC risk using genetic risk score (susceptibility loci)

and well-established risk factors for diverse ethnic populations (i.e.,

salted fish and preserved vegetable consumption, smoking, family

history of NPC) might be of public health significance and is

worthy of further investigation.

Table 4. Reclassification of data for use in epidemiological
and inclusive modelsa.

Epidemiological Model Inclusive Model

Healthy controls

[0,0.2) [0.2,0.3) [0.3,1] % reclassified

[0,0.2) 0 0 0 –

[0.2,0.3) 105 111 102 65

[0.3,1] 108 147 886 22

NPC cases

[0,0.2) 0 0 0 –

[0.2,0.3) 12 36 74 70

[0.3,1] 28 53 1184 6

Combined Data

[0,0.2) 0 0 0 –

[0.2,0.3) 117 147 176 67

[0.3,1] 136 200 2070 14

NRI [95% CI]: 0.16 [0.13–0.20]; p-value: ,0.001

IDI [95% CI]: 0.05 [0.04–0.06]; p-value: ,0.001

aNRI: net reclassification improvement; IDI: integrated discrimination index;
Reclassification was calculated for strata of predicted risk of,0.2, 0.2 to 0.3, and
$0.3.
doi:10.1371/journal.pone.0056128.t004
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Whether genetic variants can provide estimates stable enough to

be translated into disease prediction on an individual level remains

to be seen [33]. In evaluating the performance of breast-cancer

risk models, Sholom et al. consider 10 significant common genetic

variants. Adding these genetic information to existing risk models,

they found, only increases their AUC from 58.0% to 61.8%. This

finding indicates that risk analysis based on common variants is

not yet able to identify reduced or elevated individual risk in

a clinically useful way [17]–a finding echoed by evaluations of risk

models for other common disorders [15,19–21,34–39].

While such findings may seem discouraging, researchers should

not underestimate the potential predictive value of genetic

markers. Results from at least one permutation analysis indicated

that testing for multiple susceptibility genes simultaneously can

give high-to-excellent discriminative accuracy [40]. Risk models

for cancer prediction may be made clinically useful with the

addition of information on ‘‘missing heritability’’, i.e., gene-gene

interaction and the contribution from causal variants. In addition,

to find the best risk prediction model for NPC, other statistical

models should be explored. Using various machine learning

methods (such as the support-vector machine (SVM), classification and

regression tree (CART), random forest (RF), and the neuronal network)

to explore different kinds of classifiers, for instance, could help to

minimize any possibility of over-fitting.

It is important to note that our risk models do not take into

account a well-known risk factor for NPC, the presence of EBV

antibody titers [5]. This is because while 94.7% of NPC cases in

our sample test positive for EBV virus capsid antigen-IgA (VCA/IgA),

only 18.2% of our control subjects are EBV positive. In view of

this highly skewed distribution, we decided it was more reasonable

to include variables other than EBV antibody titers in our NPC

risk models. The wisdom of this choice was recently confirmed by

results from our Sihui prospective EBV serological screening study

[24], in which a model testing for VCA/IgA performed well for

NPC prediction in the 3rd year (AUC=0.807). Over time,

however, the predictive power of this model appears to weaken,

until after the 8th year, AUC distribution stabilizes at about 0.64.

We have also conducted the analyses focusing on the subset of

EBV positive populations only. The results suggested that the

performance measured by AUC was slightly improved for models

based on different predictors in this EBV positive subset compared

with that of the full data set (data not shown). However, we would

like to interpret the results with caution due to the limitation of

small sample size for EBV positive controls (n = 265). It is difficult

to get an accurate estimate for the model performance. We

concluded that further investigation with large sample size (e.g.,

large-scale prospective study design) is needed for evaluating the

performance of the risk model in EBV positive populations.

Since incorporating genetic variants into an epidemiological

model results in higher accuracy and better performance, it may

be possible to improve the performance of the EBV model by

taking genetic variants into account. Testing for genetic variants

has the added value of needing to be measured only once in

a lifetime, whereas EBV/IgA titer status is fluctuating and must be

retested over time. Using both models together should therefore

increase the power for NPC risk prediction.

In sum, this study introduces a new and reasonably reliable

model for the prediction of risk for NPC. Its designers hope to

refine and test this new model more broadly, in order to make it

feasible for future clinical use. While the results presented here are

promising, they will need validation in larger samples and a variety

of independent populations before the proposed models can be

introduced for use in screening programs and counselling

procedures. Once the models are fully tested and revised, we

hope to implement an epidemiologically based software or web-

based service site the public can use to evaluate their own NPC

risk by answering a few questions. If a person is willing to donate

a small blood sample, we will be able to refine risk estimates based

on the inclusive model. If we are successful, these new tools might

be used as the basis for a new strategy for the early detection of

NPC in endemic areas.
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