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ABSTRACT
Radiotherapy has become a popular and standard approach for treating cancer 

patients because it greatly improves patient survival. However, some of the patients 
receiving radiotherapy suffer from adverse effects and do not obtain survival benefits. 
This may be attributed to the fact that most radiation treatment plans are designed 
based on cancer type, without consideration of each individual’s radiosensitivity. A 
model for predicting radiosensitivity would help to address this issue. In this study, 
the expression levels of both genes and long non-coding RNAs (lncRNAs) were used 
to build such a prediction model. Analysis of variance and Tukey’s honest significant 
difference tests (P < 0.001) were utilized in immortalized B cells (GSE26835) to 
identify differentially expressed genes and lncRNAs after irradiation. A total of 41 
genes and lncRNAs associated with radiation exposure were revealed by a network 
analysis algorithm. To develop a predictive model for radiosensitivity, the expression 
profiles of NCI-60 cell lines along, with their radiation parameters, were analyzed. 
A genetic algorithm was proposed to identify 20 predictors, and the support vector 
machine algorithm was used to evaluate their prediction performance. The model 
was applied to 2 datasets of glioblastoma, The Cancer Genome Atlas and GSE16011, 
and significantly better survival was observed in patients with greater predicted 
radiosensitivity.

INTRODUCTION

Radiotherapy has become a standard treatment 
for curing various cancers and is widely used to improve 
the survival of cancer patients [1, 2]. Conventional 
radiotherapy is now combined with images processed by 
computed tomography to provide a non-invasive and highly 
tumor-specific treatment plan. Currently, most radiation 
treatment plans are designed based purely on the cancer 
type. Challenges arise, however, when individual genetic 
differences in radiosensitivity lead to different treatment 
responses among patients receiving the same radiation dose. 
For example, genetic variants in ATM are associated with 
differential hypersensitivity to radiation exposure [3, 4]. 

These results suggest that radiation sensitivity should be 
taken into consideration when designing the treatment plan.

In the last 2 decades, advanced high-throughput 
biotechnologies, such as microarray and next-generation 
sequencing, have provided accurate methods to measure 
genome-wide transcriptional profiles of a single individual 
within a short time. Furthermore, it is well known that 
radiation exposure is a dominant factor in driving 
downstream gene expression changes [5]. For example, 
several functional pathways, such as apoptosis signaling, 
cell cycle regulation, and DNA repair, can be triggered 
in cells responding to irradiation. Previous studies have 
demonstrated the possibility and the efficacy of using the 
gene expression levels from those affected genes to predict 
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the radiation exposure of cancer cell lines [6] and even 
their radiosensitivity [7]. Some studies have tried to extend 
the prediction models of radiosensitivity into patients 
[8, 9]. However, due to the difficulty of identifying 
biomarkers directly from patients, most studies developed 
prediction models for radiosensitivity from cell lines and 
subsequently validated their performance in independent 
patient cohorts. For instance, a prediction model for the 
radiosensitivity index (RSI) was developed from the gene 
expression profiles in a National Cancer Institute panel of 
60 (NCI-60) irradiated cell lines [10]. The performance of 
the RSI prediction model was validated in 3 datasets [11, 
12], including rectal cancer, esophageal cancer and breast 
cancer. These results suggest that taking gene expression 
levels into consideration when planning radiotherapy 
helps to identify susceptible patients and improve their 
treatment outcomes.

In addition to genes, radiation treatment is able to 
drive expression changes in non-coding RNAs including 
microRNAs and long non-coding RNAs (lncRNAs) [13–
15]. The expression levels of non-coding RNAs can be 
detected by using real-time polymerase chain reaction 
(RT-PCR) and high-throughput methods, including 
microarray and next-generation sequencing (NGS). 
Due to the short length of microRNA (22-23 bp), a 
specialized microarray platform is required to examine 
its expression level, which increases the difficulty of 
analyzing patients on a large scale. In contrast, lncRNA 
is longer (≥200 bp) [16], and several studies have shown 
that gene expression microarrays can be used to measure 
lncRNAs after advanced bioinformatics analyses [17, 18]. 
Therefore, these results can provide a better understanding 
of radiation response by re-analyzing gene expression 
microarrays from patients.

LncRNA is a newly identified modulator of gene 
expression levels. Although the functional mechanisms 
of lncRNAs remain unclear, several studies have reported 
that lncRNA expression can be triggered by irradiation 
[19, 20]. For example, lncRNA-p21 has been reported as 
a repressor of p53-dependent transcriptional responses 
[20]. These studies indicate that lncRNAs deserve further 
investigation to elucidate their functional roles in the 
radiation response.

In this study, gene expression microarrays from 
>1,000 samples were analyzed to identify the differential 
expression of genes and lncRNAs triggered by radiation 
exposure. A co-expression network algorithm was 
utilized to select important pairs of genes and lncRNAs 
associated with radiation treatment. Subsequently, feature 
selection of important predictors among those gene-
lncRNA interaction pairs was performed using a genetic 
algorithm in NCI-60 cell lines, and a prediction model 
for radiosensitivity was developed accordingly. The 
performance of the prediction model was validated in 2 
clinical datasets of glioblastoma patients.

RESULTS

Identification of radiation-responsive genes and 
lncRNAs

The analysis of variance (ANOVA) test and Tukey’s 
honest significant difference (HSD) test were performed 
in microarray dataset GSE26835 to identify differentially 
expressed genes and lncRNAs (P < 0.0001). In total, 1,086 
samples were classified into 3 groups, which were 0, 2, and 6 
h after irradiation (Figure 1). A total of 640 probes including 
8 lncRNAs showed significant expression changes between 
0 h and 2 h post-irradiation and 1,090 probes including 10 
lncRNAs were identified as having expression changes 
between 0 h and 6 h post-irradiation. To elucidate the 
biological functions and possible regulators of the union set 
of these significant probes (N=1,244), Ingenuity Pathway 
Analysis was performed. The top 3 significant pathways 
and regulators are shown in Supplementary Tables S1 and 
S2. Notably, among the differentially expressed probes, the 
most significant function was the p53 signaling pathway 
(P = 1.0 x 10-8) and the most important regulator was also 
TP53 (P = 2.93 x 10-28). It is well-known that TP53 drives 
changes in downstream gene expression in response to 
irradiation [21], and those differentially expressed genes 
regulated by TP53 are illustrated in Supplementary Figure 
S1. In addition to TP53, several studies have indicated 
radiation exposure is able to trigger the other 2 pathways, 
aryl hydrocarbon receptor signaling [22] and IL-8 signaling 
(Supplementary Table S1). These results suggested that 
ANOVA and Tukey’s HSD test were able to identify genes 
and lncRNAs participating in biological functions triggered 
by irradiation.

Identification of gene-lncRNA interaction pairs 
triggered by irradiation

Few studies have reported the biological functions 
and signaling pathways of lncRNAs, making it difficult 
to explore the roles of lncRNAs in the radiation response. 
One possible approach to address this issue is to cluster 
lncRNAs with genes based on their expression profiles 
because previous studies have demonstrated that genes 
participating in the same functional category displayed 
similar expression patterns [23]. A network-based co-
expression algorithm, weighted gene correlation network 
analysis (WGCNA), was performed to identify modules 
composed of correlated genes and lncRNAs. Comparison 
of the samples without irradiation (0 h) to the identified set 
of differentially expressed probes (N=1,244) via WGCNA 
revealed 2 and 10 modules at 2 h and 6 h post-irradiation, 
respectively (Supplementary Figure S2). Among the 12 
identified modules, highly correlated interactions between 
genes and lncRNAs were selected based on their Pearson 
correlation coefficients (r >0.75). Consequently, a total of 
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43 interaction pairs triggered by irradiation were identified 
(Table 1), which contains 34 genes and 7 lncRNAs.

Development of a prediction model for 
radiosensitivity

The NCI-60 cell lines, along with the fraction of 
surviving cells after a radiation dose of 2 Gy (SF2), 
were utilized as the training set for developing a 
prediction model for radiosensitivity. For the identified 
34 genes and 7 lncRNAs, a genetic algorithm (GA) 
was used to select the best combination of genes and 
lncRNAs as the predictors for developing a model by 
the support vector machine (SVM) algorithm (Figure 1). 
The accuracy values in different generations are 
illustrated in Supplementary Figure S3. Notably, the 
accuracy values had become stable after 70 generations 
and over 87% of samples can be correctly predicted 

in the last generation, suggesting the effectiveness of 
the GA to identify a superior combination of genes and 
lncRNAs as predictors. The GA identified 20 predictors, 
comprising 16 genes and 4 lncRNAs (Table 2). 
Intriguingly, 1 of the 4 lncRNAs, TP53TG1, has been 
reported to be associated with radiosensitivity in 
previous studies [14, 24], strengthening the possibility 
that lncRNAs can serve as predictors. In addition, 
many of the other 20 predictors have been reported to 
be associated with irradiation, including RPS4Y1 [25], 
EPS8L2 [26], ANXA4 [27], PYCARD [28], MR1 [29], 
ALDH6A1 [30] and RTN1 [27, 31]. Lastly, to further 
confirm that this combination was not identified by 
random chance, a permutation test was performed by 
considering various combinations of the 34 genes and 7 
lncRNAs. The low empirical p-value (0.0014) indicates 
that the prediction model has a low chance of being 
identified by chance.

Figure 1: Proposed workflow to identify differentially expressed genes and lncRNAs triggered by radiation exposure. 
A total of 4 microarray datasets were analyzed. Briefly, differentially expressed genes and lncRNAs were identified in GSE26835. 
The weighted gene correlation network analysis (WGCNA) method and a genetic algorithm (GA) were performed to select predictors. A 
prediction model for radiosensitivity was developed using the support vector machine (SVM) and two external glioblastoma multiforme 
(GBM) datasets were analyzed. For more detailed information, please refer to the text.
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Table 1: Pairs of genes and lncRNAs responding to radiation exposure (N=43)

Probe(lncRNA) Name(lncRNA) Probe(gene) Name(gene) Correlation Time

214983_at TTTY15 205000_at DDX3Y 0.935 2 h

214983_at TTTY15 204410_at EIF1AY 0.921 2 h

214983_at TTTY15 201909_at RPS4Y1 0.92 2 h

214983_at TTTY15 206624_at USP9Y 0.918 2 h

214983_at TTTY15 204409_s_at EIF1AY 0.907 2 h

214983_at TTTY15 206700_s_at KDM5D 0.896 2 h

214983_at TTTY15 205001_s_at DDX3Y 0.892 2 h

209917_s_at TP53TG1 210609_s_at TP53I3 0.883 2 h

209917_s_at TP53TG1 200885_at RHOC 0.847 2 h

222271_at --- 210609_s_at TP53I3 0.839 2 h

209917_s_at TP53TG1 215407_s_at ASTN2 0.835 2 h

209917_s_at TP53TG1 205354_at GAMT 0.823 2 h

209917_s_at TP53TG1 218180_s_at EPS8L2 0.82 2 h

209917_s_at TP53TG1 200974_at ACTA2 0.814 2 h

222051_s_at --- 221586_s_at E2F5 0.809 2 h

222271_at --- 200974_at ACTA2 0.806 2 h

209917_s_at TP53TG1 210224_at MR1 0.801 2 h

214983_at TTTY15 211149_at UTY 0.798 2 h

209917_s_at TP53TG1 207565_s_at MR1 0.797 2 h

222271_at --- 215407_s_at ASTN2 0.796 2 h

222271_at --- 200885_at RHOC 0.793 2 h

209917_s_at TP53TG1 204985_s_at TRAPPC6A 0.793 2 h

222271_at --- 205354_at GAMT 0.79 2 h

209917_s_at TP53TG1 202949_s_at FHL2 0.789 2 h

222271_at --- 201301_s_at ANXA4 0.783 2 h

209917_s_at TP53TG1 205531_s_at GLS2 0.774 2 h

209917_s_at TP53TG1 209498_at CEACAM1 0.769 2 h

209917_s_at TP53TG1 204034_at ETHE1 0.766 2 h

222271_at --- 203226_s_at TSPAN31 0.765 2 h

209917_s_at TP53TG1 221666_s_at PYCARD 0.765 2 h

222271_at --- 202949_s_at FHL2 0.764 2 h

215708_s_at LOC100653079 211804_s_at CDK2 0.762 6 h

222271_at --- 218180_s_at EPS8L2 0.761 2 h

209917_s_at TP53TG1 212236_x_at JUP /// KRT17 0.76 2 h

209917_s_at TP53TG1 210223_s_at MR1 0.76 2 h

222271_at --- 210224_at MR1 0.759 2 h

222271_at --- 207566_at MR1 0.759 2 h

(Continued)
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Validation of the prediction model in patients 
with glioblastoma

Two microarray datasets from patients with 
glioblastoma multiforme (GBM) were retrieved, one from 
The Cancer Genome Altas (TCGA) [32] and another from 
the Gene Expression Omnibus (GEO) (accession number 
GSE16011) [33]. The datasets were analyzed to evaluate 
the prediction performance of the developed SVM model. 

The model was applied to classify the patients into 
radiosensitive (RS) and radioresistant (RR) groups. The 
Kaplan-Meier survival curves of the prediction results 
are illustrated in Figure 2. Notably, a significantly higher 
survival rate was observed in the RS patients while 
receiving radiotherapy (RT+) in both datasets (P = 0.015 
for TCGA and P = 2x10-7 for GSE16011), suggesting the 
prediction model is effective in identifying RS patients for 
radiation treatment. In contrast, no significant differences 

Table 2: The 20 selected genes and lncRNAs in the prediction model

Probe Sets Gene Symbol Ensembl ID

205000_at DDX3Y ENSG00000067048

204410_at EIF1AY ENSG00000198692

201909_at RPS4Y1 ENSG00000129824

206624_at USP9Y ENSG00000114374

200885_at RHOC ENSG00000155366

218180_s_at EPS8L2 ENSG00000177106

200974_at ACTA2 ENSG00000107796

204985_s_at TRAPPC6A ENSG00000007255

201301_s_at ANXA4 ENSG00000196975

204034_at ETHE1 ENSG00000105755

221666_s_at PYCARD ENSG00000103490

212236_x_at JUP ENSG00000128422

210223_s_at MR1 ENSG00000153029

33494_at ETFDH ENSG00000171503

221590_s_at ALDH6A1 ENSG00000119711

203485_at RTN1 ENSG00000139970

*209917_s_at TP53TG1 ENSG00000182165

*222051_s_at --- ENSG00000254208

*214657_s_at LOC100653017 ENSG00000245532

*213447_at LOC100506948 ENSG00000224078

*lncRNA

Probe(lncRNA) Name(lncRNA) Probe(gene) Name(gene) Correlation Time

214657_s_at LOC100653017 208899_x_at ATP6V1D 0.757 2 h

209917_s_at TP53TG1 203650_at PROCR 0.751 2 h

214657_s_at LOC100653017 33494_at ETFDH 0.75 2 h

222271_at --- 215407_s_at ASTN2 0.75 6 h

213447_at LOC100506948 221590_s_at ALDH6A1 0.75 2 h

209917_s_at TP53TG1 203485_at RTN1 0.75 2 h

*---:unannotated
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were observed between RS and RR patients who had 
not been treated by radiation (RT-), and thus the results 
indicated that the prediction model was specific to the RT+ 
patients.

A multivariable Cox hazard regression model was 
performed to compare the prediction performance of the 
model with other clinical parameters, including age, grade, 
and Karnofsky Performance Score (KPS). As shown in 
Table 3, the prediction model remains an independent 
predictor after being adjusted for other confounding 
factors (P = 0.00698 for TCGA and P = 0.0277 for 
GSE16011). Therefore, these results demonstrate that the 
prediction model can effectively identify patients who 
will be responsive to radiotherapy and thus experience 
significantly better survival outcomes.

DISCUSSION

Radiotherapy has become a standard procedure for 
treating cancer. Tremendous improvement in tumor control 
and survival in patients treated by irradiation has been 
demonstrated in several cancer types [34, 35]; however, 
severe adverse effects were also reported. Therefore, how 

to maintain the efficacy but avoid the accompanying side 
effects of radiotherapy poses a major challenge in treating 
cancer. A possible approach to address this issue is to take 
individual genetic differences into consideration when 
designing radiation treatment plans. In this study, we 
demonstrated the possibility of identifying biomarkers for 
radiosensitivity based on the expression levels of genes 
and lncRNAs, and a radiosensitivity prediction model 
was developed by the SVM algorithm. These biomarkers 
effectively divided the patients into 2 groups showing 
significantly different survival rates in 2 independent 
GBM cohorts.

In recent years, some studies have successfully 
developed prediction models for radiosensitivity and 
radiation exposure using gene expression levels [7]. For 
example, a linear regression model was developed from 
cell lines to calculate a radiosensitivity index (RSI), and 
patients were divided into responders and non-responders 
to radiotherapy according to the threshold of the 25th 
percentile of the RSI interval [7, 12]. Another study 
simultaneously analyzed 4 microarray datasets to establish 
a prediction model, which was utilized to classify patients 
into 2 groups with different radiosensitivity based on 

Figure 2: The Kaplan-Meier survival curves for the TCGA and GSE16011 datasets. Patients were classified as radioresistant 
(RR) and radiosensitive (RS) based on the developed prediction model. In addition to the radiosensitivity, patients were divided into 2 
groups based on whether they received radiotherapy (RT+) or not (RT-).
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hierarchical clustering [8]. Although significant differences 
in survival between responders and non-responders were 
observed in both studies, both are subject to an important 
limitation: both the RSI model and the hierarchical 
clustering model must include many patients to establish 
the baseline for comparison. However, the treatment plan 
of a patient needs to be determined within a short time 
and it is impractical to delay the decision just because not 
enough patients are enrolled. In addition, the requirement 
of accumulating patients to create the baseline may make 
prediction results relatively unstable. The predictions for 
1 patient from the 2 models can become totally different 
just by adding some additional patients, because the 
25th percentile of the RSI interval and the hierarchical 
clustering results are sensitive to small changes in baseline 
samples. Yet an individual patient’s gene expression 
levels remain the same at all times. Therefore, a machine 
learning algorithm, such as the SVM, may serve as a better 

prediction model for clinical practice due to its availability 
for individual patients and lower sensitivity to the training 
samples.

To our knowledge, ours is the first study to incorporate 
the expression levels of lncRNAs into a prediction model 
for radiosensitivity. Several studies have demonstrated that 
lncRNAs are key players in modulating transcriptional 
changes and radiation responses [20]. For example, a 
previous study has indicated that some lncRNAs can regulate 
the expression level of TP53 [20]. Among the 4 identified 
lncRNAs, TP53TG1 has been reported to be associated with 
both TP53 expression and radiation exposure in previous 
studies [36, 37]. The full name of TP53TG1 is TP53 target 
1 (non-protein coding), and its expression level was altered 
after radiation exposure in a wild-type TP53-dependent 
manner, suggesting its potential role in the radiation 
response modulated by TP53 [36]. The expression level of 
TP53TG1 is increased 1.5-fold 24 h after irradiation in a 

Table 3: Cox hazard regression analysis of the prediction models in the TCGA and GSE16011 datasets

Hazard ratio SE P-value

TCGA RT(+) Model 1.641 0.184 6.98E-03

Age 1.033 0.007 4.02E-06

Chemotherapy 0.513 0.297 2.45E-02

KPS 0.992 0.006 2.14E-01

TCGA RT(-) Model 0.836 0.506 7.24E-01

Age 1.028 0.020 1.79E-01

Chemotherapy 1.079 0.427 8.58E-01

KPS 0.972 0.015 4.83E-02

GSE16011 RT(+) Model 1.681 0.236 2.77E-02

Histological diagnosis 0.615 0.146 8.75E-04

WHO grade 2.227 0.191 2.74E-05

Gender 0.932 0.199 7.22E-01

Age 1.037 0.008 3.41E-06

KPS 0.989 0.006 7.34E-02

Type of surgery 1.179 0.090 6.77E-02

Chemotherapy 0.788 0.343 4.87E-01

GSE16011 RT(-) Model 0.604 0.417 2.26E-01

Histological diagnosis 0.796 0.249 3.59E-01

WHO grade 2.405 0.349 1.18E-02

Gender 2.237 0.368 2.87E-02

Age 1.007 0.016 6.83E-01

KPS 0.961 0.010 2.71E-05

Type of surgery 1.363 0.160 5.24E-02

Abbreviations: RT: radiotherapy; KPS: Karnofsky Performance Score; SE, standard error; WHO: World Health Organization
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dose-dependent manner, suggesting its potential as a suitable 
candidate in radiodosimetry [37]. Although the reports of the 
other 3 lncRNAs shown in Table 2 are relatively limited, we 
believe they deserve further study to elucidate their roles in 
the radiation response. Furthermore, a permutation test was 
performed in this study to assess whether it is superior to 
add lncRNAs into a prediction model for radiosensitivity. As 
shown in Supplementary Figure S4, the average prediction 
accuracy value based on both genes and lncRNAs was 
slightly better than that obtained from genes only. Therefore, 
the performance of a prediction model for radiosensitivity can 
be improved by simultaneously considering the expression 
levels of both genes and lncRNAs.

In the development of a prediction model, a critical 
step is how to select important predictors, especially 
when handling high-throughput data [38]. A popular 
approach is to perform a stepwise regression using forward 
selection and/or backward elimination, and to evaluate the 
performance by the Akaike information criterion (AIC) 
[39]. However, such methods are time-consuming and 
inefficient, because the number of possible combinations 
of predictors is large. We tried such an approach in this 
study, but the predictors identified from the AIC model 
changed substantially upon the addition of only 1 or 2 pairs 
of genes and lncRNAs. The GA was used instead due to 
its low computational complexity and high efficiency 
in achieving good accuracy. In this study, the number of 
possible combinations of the original pool (34 genes and 7 
lncRNAs) is C20

41= 269128937220, which is impossible to 
test in a reasonable amount of time. In addition, it is well-
known that radiosensitivity differs greatly across different 
tissues. Therefore, we analyzed the NCI-60 cell lines to 
develop the prediction model because they were from 
distinct tissue types. One major advantage of using the GA 
in this situation is that it can identify the best combination 
of predictors (genes and lncRNAs) through random 
selection over many generations, taking the heterogeneity of 
radiosensitivity in different tissue types into consideration. 
The randomness in the initial step of GA is compensated 
for by the reproducibility of the consecutive generations 
(Supplementary Figure S3). Although it is desirable to 
minimize the number of predictors in the GA model in order 
to minimize costs and simplify experimental procedures, the 
prediction performance of the GA was poor and unstable 
when the number of predictors selected was <20. Therefore, 
the number of predictors in the GA was set at 20 to achieve 
the highest possible prediction accuracy with the minimum 
number of predictors.

There are certain limitations to our study. First, it is 
well-known that radiosensitivity may vary in different tissues, 
and thus the prediction model cannot cover all cancer types. A 
theoretical solution is to develop different prediction models 
for specific tissue or cancer types; however, such an approach 
usually suffers from a limited sample size in the real world. One 
compromise is to identify predictors based on cell lines and 
then to validate their performance in patient cohorts. Therefore, 

we developed the prediction model for radiosensitivity based 
on gene expression data from human lymphocytes in this 
study because previous studies have shown that lymphocytes 
can be used as an accurate indicator of radiosensitivity 
for patients [40, 41]. Furthermore, it is not difficult to get 
lymphocytes from patients; therefore peripheral blood samples 
are suggested as the source for future applications. However, 
many differences exist between human samples and cell lines, 
and thus validations in more independent cohorts are required. 
Second, the sample size in this study is limited, even though 
2 external GBM datasets were analyzed. Further evaluations 
of the prediction model should be performed in more samples 
and different cancer types. Third, the prediction outcomes 
were dichotomized into RS and RR groups based on the SF2 
parameter. However, radiosensitivity may be a continuous 
variable instead of a dichotomous variable. Unfortunately, 
the sample sizes of published microarrays after irradiation are 
insufficient to develop a prediction model for specific radiation 
response values. Therefore, a better prediction model can only 
be developed after more of these datasets are accumulated 
and published.

MATERIALS AND METHODS

Microarray datasets

Four datasets analyzed in this study were retrieved 
from the Gene Expression Omnibus (GEO) [33], CellMiner 
[42], and The Cancer Genome Altas (TCGA) [32], and their 
characteristics are summarized in Supplementary Table 
S3. The dataset with the largest sample size, GSE26835, 
was utilized as the identification set to select differentially 
expressed genes and lncRNAs triggered by irradiation. 
Subsequently, a prediction model for radiosensitivity was 
developed based on the expression profiles of the NCI-60 
cell lines. Two GBM datasets were used as the validation 
sets to evaluate the performance of the developed prediction 
model. All preprocessing procedures and normalization 
algorithms, including robust multiarray averaging (RMA) 
and quantile normalization, were performed in R [43, 44]. 
Although the microarray platforms of these 4 datasets were 
originally designed to examine gene expression profiles, 
previous studies have shown that a re-analysis of the probe 
sequences can select the probes targeting lncRNAs. In this 
study, we adopted the results from a previous study [45], 
and all those probe sets targeting lncRNAs can be mapped 
to the Ensembl database.

Identification of differentially expressed genes 
and lncRNAs triggered by irradiation

A protocol to identify radiation-induced genes and 
lncRNAs and develop a prediction model is illustrated in 
Figure 1. Initially, the ANOVA and Tukey’s HSD tests 
were performed in the samples harvested at 0, 2, and 6 
h after radiation exposure in GSE26835 (P < 0.0001). 
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To take biological effects into consideration, only probes 
showing at least 1.3-fold changes were retained for further 
analyses. Because few published studies have reported 
the biological functions of lncRNAs, Ingenuity Pathway 
Analysis (IPA®, QIAGEN Redwood City, www.qiagen.
com/ingenuity) was performed only on the differentially 
expressed genes to characterize their signaling pathways 
and associated regulators.

Identification of gene-lncRNA interaction pairs

To take the biological functions of lncRNAs into 
consideration, a network-based co-expression algorithm, 
WGCNA, was used [23]. The main concept of the 
WGCNA method is to cluster the genes and lncRNAs 
with similar expression patterns into a single module 
based on the hypothesis that genes and lncRNAs involved 
in the same functional pathway will have highly correlated 
expression values. All parameters were set as their default 
values, except that “deepSplit” was used to explore more 
possible regulations between genes and lncRNAs. Lastly, 

the Pearson correlation coefficients were calculated for 
the genes and lncRNAs classified into the same module 
in order to select the highly correlated gene-lncRNA 
interaction pairs (r >0.75).

Development of a prediction model using a 
genetic algorithm

The gene expression profiles and radiation 
parameters of the NCI-60 cell lines [46] retrieved from 
CellMiner [42] were analyzed to develop a prediction 
model. To mimic the situation of radiotherapy in real 
patients, the SF2 was utilized, and the NCI-60 cell 
lines were dichotomized into radiosensitive (RS) and 
radioresistant (RR) groups based on the threshold of 
0.4. A GA was designed to select genes and lncRNAs 
with the highest prediction accuracy in the NCI-
60 cell lines (Figure 3). In the first generation, we 
randomly selected 20 predictors from the gene-lncRNA 
interaction pairs, which included 34 genes and 7 
lncRNAs. The random selection of predictors was 

Figure 3: The proposed genetic algorithm for feature selection in the prediction model.To ensure that the prediction accuracy 
value of the model became stable, the selection was repeated for 100 generations.
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repeated 100 times to simulate different combinations 
of genes and lncRNAs. For different combinations of 
predictors, the SVM algorithm was used to develop 
prediction models, and their performance was evaluated 
in the NCI-60 cell lines using 5-fold cross-validation. 
Subsequently, the combination showing the highest 
prediction accuracy in the first generation was kept in 
the second generation. To generate other combinations 
in the second generation, 2 combinations in the first 
generation were selected based on the probabilities that 
were calculated by dividing their accuracy values by the 
total accuracy values of all combinations. This method 
is based on the belief that a combination in the first 
generation with higher accuracy is more likely to be 
selected in the next generation, which concurs with the 
concept of “survival of the fittest.” A random exchange 
of predictors among the 2 selected combinations was 
performed in order to mimic the process of crossover 
and to add more diversity to the set of predictors. 
The procedures to breed a new generation were 
repeated until 100 generations were simulated, and the 
prediction model in the last generation produced the 
highest accuracy for predicting radiosensitivity (SF2). 
Lastly, a permutation test was performed to evaluate 
the random chance of identifying 20 predictors with the 
same accuracy value. A combination of 20 predictors 
was randomly selected from the 43 interaction pairs 
shown in Table 1  and this procedure was repeated 
100,000 times to establish a null baseline of prediction 
accuracy. To evaluate whether lncRNAs raise the 
prediction accuracy, the comparison of randomly 
selected predictors included lncRNA probesets. The 
empirical p-value of a prediction model was determined 
by comparing its prediction accuracy with the null 
baseline, that is, by the ranking of the accuracy values.

Validation of prediction model in GBM patients

The developed prediction model was applied to 2 
microarray datasets of GBM patients from GSE16011 
and TCGA. Considering the high mortality rate of GBM 
[47], we focused on the overall survival rate within 2 
years. Patients’ data were excluded from the analyses 
if no information was provided about their status of 
radiotherapy and survival. The stratification resulted in 
324 RT+ and 57 RT- patients in the GBM dataset from 
TCGA and 193 RT+ and 70 RT- patients in GSE16011. 
The developed prediction model was utilized to classify 
those patients into RS or RR groups, and log-rank tests 
were used to examine the differences in overall survival 
between them. To further evaluate whether the prediction 
model was associated with radiotherapy only, the RT+ and 
RT- patients were compared accordingly. Kaplan-Meier 
survival curves were produced and Cox hazard regression 
analyses were performed to assess the differences in and 
performance of the prediction model and other clinical 
parameters.
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