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Abstract
I	extend	the	classic	SAR,	which	has	achieved	status	of	ecological	law	and	plays	a	criti-
cal	role	in	global	biodiversity	and	biogeography	analyses,	to	general	DAR	(diversity–
area	relationship).	The	extension	was	aimed	to	remedy	a	serious	application	limitation	
of	the	traditional	SAR	that	only	addressed	one	aspect	of	biodiversity	scaling—species	
richness	scaling	over	space,	but	ignoring	species	abundance	information.	The	exten-
sion	was	 further	 inspired	by	a	 recent	 consensus	 that	Hill	 numbers	offer	 the	most	
appropriate	measures	for	alpha-	diversity	and	multiplicative	beta-	diversity.	In	particu-
lar,	Hill	numbers	are	essentially	a	series	of	Renyi’s	entropy	values	weighted	differ-
ently	along	the	rare-	common-	dominant	spectrum	of	species	abundance	distribution	
and	are	in	the	units	of	effective	number	of	species	(or	species	equivalents	such	as	
OTUs).	I	therefore	postulate	that	Hill	numbers	should	follow	the	same	or	similar	law	
of	the	traditional	SAR.	I	test	the	postulation	with	the	American	gut	microbiome	pro-
ject	 (AGP)	dataset	of	1,473	healthy	North	American	 individuals.	 I	 further	propose	
three	new	concepts	and	develop	their	statistical	estimation	formulae	based	on	the	
new	DAR	extension,	including:	(i)	DAR	profile—z–q	relationship	(DAR	scaling	param-
eter	z	at	different	diversity	order	q),	(ii)	PDO	(pair-	wise	diversity	overlap)	profile—g–q 
relationship	(PDO	parameter	g	at	order	q,	and	(iii)	MAD	(maximal	accrual	diversity:	
Dmax)	profile—Dmax- q.	While	the	classic	SAR	is	a	special	case	of	our	new	DAR	profile,	
the	 PDO	 and	MAD	profiles	 offer	 novel	 tools	 for	 analyzing	 biodiversity	 (including	
alpha-	diversity	and	beta-	diversity)	and	biogeography	over	space.

K E Y W O R D S

diversity–area	relationship,	diversity–area	relationship	(DAR)	profile,	maximum	accrual	
diversity	(MAD)	profile,	pair-wise	diversity	overlap	(PDO)	profile,	self-similarity,	species–area	
relationship

1  | INTRODUC TION

The	species–area	relationship	(SAR),	well	regarded	as	one	of	the	few	
classic	laws	in	ecology	and	biogeography,	has	been	pursued	by	gen-
erations	 of	 ecologists	 and	 biogeographers	 since	 the	 19th	 century	

(Connor	 &	 McCoy,	 1979;	 Drakare,	 Lennon,	 &	 Hillebrand,	 2006;	
Harte,	Smith,	&	Storch,	2009;	He	&	Hubbell,	2011;	Helmus,	Mahler,	
&	Losos,	2014;	Lomolino,	2000;	Preston,	1960;	Rosenzweig,	1995;	
Sizling,	Kunin,	Sizlingova,	Reif,	&	Storch,	2011;	Storch,	Keil,	&	Jetz,	
2012;	 Tjørve,	 2009;	 Tjørve	&	 Tjørve,	 2008;	 Triantis,	 Guilhaumon,	
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&	Whittaker,	 2012;	Watson,	 1835).	 It	 is	 hailed	 as	 “ecology’s	most	
general,	 yet	 protean	 pattern”	 by	 Lomolino	 (2000)	 and	Whittaker	
and	 Triantis	 (2012).	 SAR	 relationship	 had	 inspired	MacArthur	 and	
Wilson’s	 (1967)	 island	biogeography	theory,	and	the	 latter	was	es-
sential	in	shifting	the	focus	of	ecological	research	from	population	to	
community	and	in	advancing	community	ecology	in	the	1970s	and	
after.	Today,	it	still	plays	a	critical	role	in	setting	strategy	and	policies	
for	biodiversity	conservation.

Although	 the	 study	 of	 SAR	 originated	 in	macroecology	 of	 the	
plants	 and	 animals,	 thanks	 to	 the	 revolutionary	 genomic	 and	 es-
pecially	metagenomic	sequencing	technologies,	molecular,	and	mi-
crobial	 ecologists	 have	 already	 joined	 in	 the	 exploration	 starting	
approximately	 a	 decade	 ago	 (Bell	 et	al.,	 2005;	 Green	 et	al.,	 2004;	
Horner-	Devin,	 Lage,	 Hughes,	 &	 Bohannan,	 2004;	 Noguez	 et	al.,	
2005).	The	revolutionary	metagenomic	technology	has	 lead	to	the	
launches	 of	 several	 national	 and	 international	 research	 programs,	
such	as	European	Union’s	MetaHIT	in	2007,	US-	NIH	human	micro-
biome	project	 (HMP)	 in	2008,	Earth	Microbiome	Project	 (EMP)	 in	
2012,	 and	 US	 National	 Microbiome	 Initiative	 (NMI)	 in	 2016	 (e.g.,	
Turnbaugh	 et	al.,	 2007;	 HMP	 Consortium	 (Human	 Microbiome	
Project	 Consortium),	 2012,	 Gilbert,	 O’Dor,	 King,	 &	 Vogel,	 2011).	
Indeed,	 the	 ecological	 theory	 has	 been	 both	 a	 unifying	 driving	
force	and	test	bed	for	this	revolution	(e.g.,	Barberán,	Casamayor,	&	
Fierer,	 2014;	Chiu	&	Chao,	 2015;	Costello,	 Stagaman,	Dethlefsen,	
Bohannan,	 &	 Relman,	 2012;	 Fierer,	 2008;	 Haegeman	 et	al.,	 2013;	
Lozupone,	Stombaugh,	Gordon,	Jansson,	&	Knight,	2012;	Ma,	2015;	
Ma,	Forney,	Geng,	&	Abdo,	2012).	Today,	molecular	ecologists	are	
capable	more	than	ever	to	test	major	ecological	theories	across	not	
only	taxa	(plants,	animals,	and	microbes)	but	also	ecosystem	types	
(e.g.,	 forest,	 lakes,	 ocean,	 human,	 and	 animal	 microbiomes),	 and	
novel	findings	and	insights	are	revealed	more	frequently	than	ever.

In	spite	of	its	wide	success	in	biodiversity	conservation	and	bio-
geography,	the	classic	SAR	was	limited	to	the	relationship	between	
species	richness	(the	number	of	species)	and	area	(space).	The	spe-
cies	abundance	was	totally	ignored	in	the	SAR.	Theoretically,	there	
is	nothing	wrong	with	this	ignorance	because	it	was	discovered	and	
verified	within	its	realm	(i.e.,	the	scope	of	species	richness).	It	was	not	
a	serious	issue	either	from	an	application	perspective	with	the	data-
sets	from	traditional	survey	technologies	for	biodiversity	and	bioge-
ography	because	species	abundance	was	relatively	difficult	to	obtain	
until	the	DNA	(RNA)	datasets	from	metagenomic	and	metagenetic	
sequencing	 of	 environmental	 samples	 become	 readily	 accessible.	
Bioinformatics	pipelines	can	be	utilized	to	readily	generate	the	OTU	
(operational	taxonomic	unit)	tables	in	the	case	of	16s-	rRNA	amplicon	
or	other	metagenetic	sequencing.	The	OTU	table	contains	not	only	
the	information	about	species	richness	(the	number	of	species)	but	
also	the	abundance	of	each	species	simultaneously.	This	makes	the	
extension	of	 the	classic	SAR	to	general	diversity–area	 relationship	
(DAR)	 necessary	 to	 fully	 harness	 both	 species	 richness	 and	 abun-
dance	 information.	 Indeed,	previously,	a	few	group	of	researchers,	
notably	Helmus	and	 Ives	 (2012),	Mazel	et	al.	 (2014),	have	success-
fully	 extended	 the	SAR	 to	phylogenetic	 and	 functional	diversities.	
Their	extensions	not	only	verified	 the	applicability	of	SAR	models	

beyond	traditional	species	richness,	but	also	found	important	appli-
cations	 in	 identifying	more	comprehensive	conservation	hot	spots	
and	predicting	the	impacts	of	habitat	loss.	In	this	study,	I	extend	the	
SAR	to	general	DAR	systematically	by	adopting	the	Hill	numbers	as	
diversity	measures,	for	both	alpha-	diversity	and	beta-	diversity	scal-
ing	 over	 space	 (habitat	 area),	 and	 further	 propose	 novel	 concepts	
and	their	quantifications	for	more	effectively	and	comprehensively	
analyzing	 biodiversity	 and	 biogeography	 of	 the	 biomes	 including	
both	macrobiomes	and	microbiomes.

The	 choice	 of	Hill	 numbers	 for	 extending	 the	 classic	 SAR	was	
inspired	by	a	recent	consensuses	that	Hill	numbers	offer	the	most	
appropriate	 measures	 for	 alpha-	diversity	 and	 multiplicative	 beta-	
diversity	partition	 (Chao,	Chiu,	&	Hsieh,	2012;	Chao,	Chiu,	&	Jost,	
2014;	Ellison,	2010;	 Jost,	2007).	Besides	Hill	numbers,	 there	have	
been	many	diversity	indexes	(metrics)	in	existing	literature,	and	two	
of	the	most	widely	used	are	Shannon	entropy	(Shannon	&	Weaver,	
1949)	and	Simpson’s	(1949)	index	[see	Magurran’s	(2004)	monograph	
for	 a	 comprehensive	 review].	 Southwood	 and	 Henserson	 (2000)	
once	 commented	 “the	 result	 has	 been	 an	 ‘explosive	 speciation’	 of	
diversity	indices,	which	initially	brought	confusion	to	the	subject;	in	
addition,	 the	 ubiquitousness	 of	 some	 relationships	 and	 the	 appar-
ent	 constancy	 of	 certain	 numerical	 values	 have	 added	 a	measure	
of	mystique.”	The	Hill	numbers,	which	are	based	on	Renyi	 (1921)’s	
general	entropy,	and	of	which	Shannon’s	entropy	 is	a	special	case,	
overcome	a	significant	issue	in	measuring	biodiversity,	the	influence	
of	rarer	species,	which	made	it	hardly	possible	to	compare	different	
traditional	diversity	 indexes,	 such	as	comparing	Shannon	 index	vs. 
Simpson	index,	a	major	source	for	much	of	the	confusion	and	mys-
tique	as	critiqued	by	Southwood	and	Henserson	(2000).	In	spite	of	
its	theoretical	soundness,	the	work	of	Hill	 (1973)	had	not	received	
the	attention	it	deserves	until	recent	years,	when	Chao	et	al.	(2012,	
2014)	 and	 Chiu	 and	 Chao	 (2015),	 Ellison	 (2010),	 Jost	 (2006),	 Jost	
(2007)	 reintroduced	 the	 Hill	 numbers	 to	 ecology	 with	 additional	
important	 clarifications	 and	 extensions.	 Hence,	 the	 Hill	 numbers	
presented	 a	major	 conceptual	 advance	 in	measuring	 diversity	 and	
should	be	our	first	choice	for	extending	SAR	to	DAR.

The	SAR	has	multiple	functional	forms,	often	fitting	to	datasets	
equally	well,	although	the	power	law	function	is	predominantly	the	
most	often	used.	Flather	(1996)	tested	nine	models;	Tjørve	(2003,	
2009),	Dengler	(2009),	Williams,	Lamont,	and	Henstridge	(2009),	
and	 Triantis	 et	al.	 (2012)	 tested	 around	 20	models,	 respectively.	
As	 those	 comparative	 studies	 often	 used	 different	 classification	
of	 sampling	or	 species	accrual	 schemes,	 the	conclusions	are	 fre-
quently	 debated	 in	 the	 literatures.	 Traditionally,	 the	 modeling	
strategy	has	been	to	use	the	most	parsimonious	power	function,	
and	 preferably	 its	 log-	linearized	 fitting,	which	 facilitates	 further	
tractable	analysis	(e.g.,	Rosenzweig,	1995).	In	consideration	of	the	
debates	on	the	functional	forms	of	SAR	(e.g.,	He	&	Hubbell	2012),	
I	 test	 the	 traditional	power	 law	model	 (PL)	 as	well	 as	what	 I	be-
lieve	are	two	most	promising	extensions,	 that	 is,	 the	PL	with	ex-
ponential	cutoff	(PLEC)	and	the	PL	with	inverse	exponential	cutoff	
(PLIEC).	Still	 I	 follow	the	principle	of	parsimony	given	more	 than	
20	SAR	models	exist	in	the	literature	(see	the	excellent	review	and	
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synthesis	 such	 as	 Tjørve	 &	 Tjørve,	 2008;	 Tjørve,	 2009;	 Triantis	
et	al.,	2012;	Williams	et	al.,	2009),	and	the	excessive	computation	
workload	 (especially	with	 beta-	diversity	 scaling)	 had	 I	 tested	 all	
of	the	20+	models,	which	is	hardly	necessary	with	our	objectives	
set	 for	 this	 study.	The	 taper-	off	parameter	 (d)	 in	both	PLEC	and	
PLIEC	not	only	addresses	a	critique	 to	 the	 traditional	power	 law	
for	 overestimating	 diversity	 (He	&	Hubbell,	 2011),	 but	 also	 pre-
serves	the	biological	interpretations	of	the	scaling	parameter	(i.e.,	
slope	 z	 of	 SAR)	 as	 d	 is	 primarily	 a	 revision	 to	 the	 other	 less	 bi-
ologically	meaningful	parameter	c	 (Tjørve,	2009).	Furthermore,	 I	
propose	to	define	MAD	(maximal	accrual	diversity)	profile,	which	
can	be	estimated	with	the	PLEC	parameters.	I	also	discuss	the	pos-
sible	mechanisms	of	the	DAR	scaling	such	as	self-	similarity	or	scale	
invariance	associated	with	the	power	law	and	define	a	novel	pair-	
wise	diversity	overlap	(PDO)	metric	and	the	PDO	profile,	based	on	
the	inspirations	from	existing	SAR	studies	(Harte,	Kinzig,	&	Green,	
1999;	Harte,	Blackburn,	&	Ostling,	2001;	Sizling	&	Storch,	2004;	
Drakare	et	al.,	2006;		and	Tjørve	&	Tjørve,	2008).

To	the	best	of	our	knowledge,	this	should	be	the	first	extension	
of	the	SAR	to	general	diversity–area	scaling	beyond	species	richness	
level	 in	 terms	of	 the	Hill	numbers.	The	methodological	extensions	
of	SAR	to	general	Hill	numbers	based	DAR	should	not	only	enrich	
the	 theoretical	modeling	of	 the	diversity	 scaling	 in	 terms	of	more	
comprehensive	diversity	profiles,	but	also	overcome	the	limitation	of	
the	classic	SAR.	Furthermore,	my	novel	DAR	method	is	applicable	to	
both	alpha-	diversity	and	beta-	diversity.	The	three	new	concepts	and	
their	 statistical	 parameters	 including	 DAR	 profile,	 PDO	 (pair-	wise	
diversity	overlap)	profile,	and	MAD	(maximal	accrual	diversity)	pro-
file,	 developed	below,	 should	 greatly	 enrich	 the	quantitative	 tools	
for	analyzing	 the	biodiversity	and	biogeography	of	various	biomes	
on	the	earth.

2  | THE METHODS—E X TENDING CL A SSIC 
SAR TO DAR

I	use	the	following	definitions	and	procedures	to	extend	the	classic	
SAR	(species–area	relationship)	to	DAR	(diversity–area	relationship).	
To	save	page	space,	their	detailed	descriptions	are	presented	in	the	
online	Supporting	information	Appendix	S1.	The	demonstration	and	
interpretation	of	the	DAR	definitions	and	procedures	with	the	AGP	
datasets	are	presented	in	the	next	section	of	“demonstrations	of	the	
extensions.”

2.1 | Definitions of alpha and beta diversities

I	 adopt	 the	Hill	 numbers	 to	measure	 both	 alpha	 and	beta	 diversi-
ties,	 and	 multiplicative	 partition	 of	 the	 Hill	 numbers	 to	 define	
beta-	diversity.

The	 Hill	 numbers,	 originally	 introduced	 as	 an	 evenness	 index	
from	economics	by	Hill	 (1973),	were	 reintroduced	 into	ecology	by	
Jost	(2007)	and	Chao	et	al.	(2012)	who	further	clarified	Hill’s	num-
bers	for	measuring	alpha-	diversity	as:

where S	is	the	number	of	species,	pi	is	the	relative	abundance	of	spe-
cies	i,	q	is	the	order	number	of	diversity.

The	 Hill	 number	 is	 undefined	 for	 q =	1,	 but	 its	 limit	 as	 q	 ap-
proaches	to	1	exists	in	the	following	form:

The	parameter	q	 determines	 the	 sensitivity	of	 the	Hill	number	
to	the	relative	frequencies	of	species	abundances.	When	q =	0,	the	
species	abundances	do	not	count	at	all	and	0D = S,	 that	 is,	 species	
richness.	When	q = 1,	1D	equals	the	exponential	of	Shannon	entropy	
and	is	interpreted	as	the	number	of	typical	or	common	species	in	the	
community.	When	q	=	2,	2D	equals	the	reciprocal	of	Simpson	index,	
that	is,

which	 is	 interpreted	as	 the	number	of	dominant	or	very	abundant	
species	in	the	community	(Chao	et	al.,	2012).	The	general	interpreta-
tion	of	qD	(diversity	of	order	q)	is	that	the	community	has	a	diversity	
of	order	q,	which	is	equivalent	to	the	diversity	of	a	community	with	
qD = x	equally	abundant	species.

Recent	 studies	 (e.g.,	 Chao	 et	al.,	 2012;	 Ellison,	 2010;	Gotelli	&	
Chao,	2013;	Jost,	2007)	have	advocated	the	use	of	multiplicatively	
defined	beta-	diversity,	rather	than	additively	defined,	by	partition-
ing	 gamma-	diversity	 into	 the	 product	 of	 alpha	 and	 beta,	 in	which	
both	alpha	(qDα)	and	gamma	(

qDγ)	diversities	are	measured	with	the	
Hill	numbers.

This	beta-	diversity	(qDβ)	derived	from	the	above	partition	takes	the	
value	of	1	if	all	communities	are	identical,	the	value	of	N	(the	number	
of	communities)	when	all	 the	communities	are	completely	different	
from	each	other	(there	are	no	shared	species).	With	Jost	(2007)	words,	
this	beta-	diversity	measures	“the	effective	number	of	completely	dis-
tinct	communities.”	In	this	article,	I	compute	diversities	until	q =	3,	that	
is,	to	the	third	order.	Note	that	a	series	of	the	Hill	numbers	at	different	
order q	is	termed	diversity	profile	(Chao	et	al.,	2012;	Jost,	2007).

2.2 | The DAR models and DAR profiles

As	all	Hill	numbers	are	in	units	of	species,	and	in	fact,	they	are	re-
ferred	to	as	the	effective	number	of	species	or	as	species	equivalents;	

(1)qD=

(

S
∑

i=1

p
q
i

)1∕(1−q)

(2)
1D= lim

q→1

qD=exp

(

−

S
∑

i=1

pi log (p1)

)

(3)
2D=

(

1∕

S
∑

i=1

p2
i

)

(4)qD� =
qD�∕

qD�
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intuitively,	Hill	numbers	should	follow	the	same	or	similar	pattern	of	
SAR.	I	postulate	that,	similar	to	the	well-	known	SAR	for	species	rich-
ness	(i.e.,	the	Hill	number	of	order	zero,	0D = R),	there	exist	counter-
parts	for	the	Hill	numbers	of	general	q-	order,	qD.	I	set	to	investigate	
the	extensions	of	SAR	to	general	diversity	scaling	with	area	 (DAR)	
and	further	verify	our	extensions	with	the	AGP	dataset.

The	basic	power	function,	known	as	the	power	law	(PL)	species	
scaling	law	widely	adopted	in	SAR	study,	is	extended	to	describe	the	
general	diversity–area	relationship	(DAR):

where qD	 is	diversity	measured	in	the	q- th	order	Hill	numbers,	A	 is	
area,	and	c	and	z	are	parameters.

I	also	extend	two	modified	PL	models	for	DAR	analysis:	Power	
law	with	exponential	cutoff	(PLEC)	and	power	law	with	inverse	ex-
ponential	 cutoff	 (PLIEC)	 originally	 introduced	 to	 SAR	modeling	 by	
Plotkin	et	al.	(2000)	and	Ulrich	and	Buszko	(2003),	respectively	(also	
see	Tjørve,	2009).	The	PLEC	model	is	as	follows:

where d	is	a	third	parameter	and	should	be	negative	in	DAR	scaling	
models,	and	exp(dA)	 is	 the	exponential	decay	term	that	eventually	
overwhelms	 the	power	 law	behavior	at	very	 large	value	of	A. The 
justification	for	adding	the	exponential	decay	term	is	because	both	
the	human	body	and	the	microbial	species	inhibited	on	or	in	human	
body	are	finite,	and	there	should	be	a	taper-	off	 item	to	reflect	the	
finite	size	of	diversity.

PLIEC	is	similar	to	PLEC	but	with	Sigmoid	shape,	rather	than	con-
vex	as	PLEC;	it	is,

Essentially,	PLEC	and	PLIEC	can	be	considered	as	extensions	to	
parameter	c,	rather	than	z,	that	is,	c(x)	=	c	exp	(dx)	or	c(x)	=	c	exp	(d/x),	
respectively.	Therefore,	z	is	assumed	to	have	the	similar	interpreta-
tion	 as	 its	 counterpart	 in	 the	basic	PL.	PLEC	and	PLIEC,	 however,	
both	 behave	 very	 differently.	 The	 PLEC	model	 asymptotically	 ap-
proaches	cxz	as	x	becomes	small,	whereas	the	PLIEC	asymptotically	
approaches	 cxz	 as	 x	 becomes	 large.	 They	 were	 designed	 to	 rem-
edy	the	potentially	unlimited	accrual	of	species	when	the	area	ap-
proaches	 to	 infinity	 by	 introducing	 a	 taper-	off	 exponent	 that	may	
even	produce	asymptote.

I	use	the	following	log-	linear-	transformed	equations	8-10	to	esti-
mate	the	model	parameters	of	Equations	5-7,	respectively:

I	consider	the	ability	to	fit	all	three	models	(PL,	PLEC,	and	PLIEC)	
in	a	unified	manner—linear	transformation—an	advantage.	I	use	both	
linear	correlation	coefficient	(R)	and	p-	value	to	judge	the	goodness	
of	the	model	fitting.	 In	fact,	either	of	them	should	be	sufficient	to	
judge	the	suitability	of	the	models	to	data.	An	even	more	important	
advantage	is	that	the	three	models	preserve	the	ecological	interpre-
tation	of	the	scaling	parameter	z.

Adopting	the	convention	in	SAR	analysis,	the	fitted	parameter	z 
with	Equation	8	is	termed	the	slope	of	the	power	law	DAR,	because	
z	 represents	 the	 slope	of	 the	 linearized	 function	 in	 log–log	 space.	
However,	 the	slope	of	the	DAR	as	the	tangent	to	the	curve	 in	the	
untransformed	axes	[i.e.,	the	original	PL-	DAR,	Equation	5]	 is	deter-
mined	by	both	fitted	parameters	z	and	c	as	explained	in	the	online	
Supporting	information	Appendix	S1.	This	is	a	significant	advantage	
of	the	 log-	transformed	fitting	of	SAR,	and	also	the	primary	reason	
why	I	adopted	the	log–log-	linearized	fitting	in	this	study.

I	 define	 the	 relationship	between	DAR	model	 parameter	 (z)	 of	
the	traditional	PL	model	and	the	diversity	order	(q),	or	z–q	trend,	as	
the	DAR	profile.	It	describes	the	change	of	diversity	scaling	parame-
ter	(z)	with	the	diversity	order	(q),	comprehensively.	Our	definition	is	
obviously	inspired	by	the	diversity	profile	of	the	Hill	numbers	(Chao	
et	al.,	2012,	2014).

2.3 | Sampling schemes to fit DAR models

Proper	sampling	schemes	and	the	accrual	of	areas	are	not	obvious	in	
our	study.	I	found	that	Scheiner	(2003),	Scheiner	et	al.	(2011)	type-	
III-	B	sampling	scheme	(i.e.,	no	spatial	relationship	among	the	areas	
sampled)	 is	 the	 most	 appropriate	 for	 DAR	 modeling.	 Arguments	
for	 designing	 the	 sampling	 schemes	 are	 provided	 in	 the	 online	
Supporting	information	Appendix	S1.

Unlike	 most	 studies	 in	 macroecology,	 where	 there	 is	 often	 a	
natural	 spatial	 sequence	 (or	arrangement)	among	 the	communities	
sampled,	there	is	not	a	naturally	occurring	spatial	sequence	(arrange-
ment)	among	the	communities	of	individual	subjects	from	whom	AGP	
samples	were	obtained.	To	avoid	the	potential	bias	from	an	arbitrary	
order	of	the	community	samples,	I	totally	permutated	the	orders	of	
all	 the	community	samples	under	 investigation	and	then	randomly	
choose	100	(1,000	for	alpha-	DAR)	orders	of	the	communities	gen-
erated	from	the	permutation	operation.	That	is,	rather	than	taking	a	
single	arbitrary	order	for	accruing	community	samples	 in	one-	time	
fitting	 to	 the	 DAR	 model,	 I	 repeatedly	 perform	 the	 DAR	 model-	
fitting	100	(1,000)	times	with	the	100	(1,000)	randomly	chosen	or-
ders.	 Finally,	 the	 averages	of	 the	model	 parameters	 from	 the	100	
(1,000)	times	of	DAR	fittings	are	adopted	as	the	model	parameters	
of	the	DAR	for	the	set	of	community	samples	under	investigation.

2.4 | The accrual of diversities to fit DAR models

To	devise	what	I	believe	to	be	the	most	appropriate	and	also	natural	
scheme	to	accrue	diversity,	 I	 follow	the	following	three	principles.	

(5)qD= cAz

(6)qD= cAz exp (dA),

(7)qD= cAz exp (d∕A)

(8)ln (D)= ln (c)+z ln (A)

(9)ln (D)= ln (c)+z ln (A)+dA

(10)ln (D)= ln (c)+z ln (A)+d∕A
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The	first	is	to	use	the	Hill	numbers,	or	what	Jost	(2007)	termed	the	
true	diversity;	 the	second	 is	to	follow	the	essence	of	SAR,	as	cap-
tured	by	the	word	“accumulation”	or	“aggregate,”	that	is,	species	(di-
versity)	are	accumulated	for	the	accrued	areas;	the	third	is	that	the	
diversity	scaling	model	should	be	useful	 for	predicting	diversity	at	
different	 levels	 of	 areas	 accumulated.	 I	 consider	 these	 three	prin-
ciples	as	axioms	in	traditional	SAR,	and	I	believe	that	any	extension	
from	SAR	to	DAR	should	not	violate	them.	One	important	advantage	
for	 us	 to	 stick	 to	 the	 three	 principles,	which	 are	 embodied	 in	 the	
traditional	SAR	theory,	is	that	our	new	DAR	may	inherit	many	of	the	
insights	 and	 applications	 traditional	 SAR	 has	 reveled	 and	 offered.	
The	accrual	scheme	based	on	the	three	axioms	is	described	in	detail	
in	the	online	Supporting	information	Appendix	S1.

2.5 | Predicting MAD (Maximal Accrual Diversity) 
with PLEC- DAR models

The	wide	application	of	the	traditional	SAR	in	the	theory	and	prac-
tice	of	 the	global	biodiversity	conservation	sets	an	excellent	prec-
edent	for	the	biomedical	applications	of	the	DAR	models	I	build	in	
this	study.	For	example,	one	may	use	the	DAR	models	predict	 the	
(accumulated)	diversities	 in	a	human	population.	 In	the	following,	 I	
present	one	novel	application—estimation	of	the	maximal	accrual	di-
versity	(MAD)	of	the	human	microbiome	with	PLEC	model.	Among	
the	three	DAR	models,	only	PLEC	may	have	a	maximum,	as	derived	
below	based	on	PLEC	model	of	DAR.

The	necessary	condition	for	Equation	6	to	achieve	maximum	is	
its	derivative	equals	zero,	that	is,

Hence,	when

qD	may	have	a	maximum	in	the	following	form:

Eqs.	(11)	 and	 (12)	 can	 be	 utilized	 to	 predict	 the	 maximal	 ac-
crual	 diversity	 (MAD)	 of	 the	 human	 microbiome,	 whether	 it	 is	
alpha-		or	beta-	diversity.	I	define	the	MAD	profile	as	the	relation-
ship	between	the	Dmax	and	diversity	order	q,	that	is,	Dmax–q	trend.	
It	 is	 noted	 that	 in	 the	 above	 derivation,	 there	 are	 two	 implicit	

assumptions:	One	 is	 that	Amax	>	0,	which	 requires	z	 and	d	of	dif-
ferent	signs,	and	another	is	z > 0,	d	<	0.	The	situation	restricted	by	
the	first	assumption	 is	ecologically	meaningless,	and	 I	can	safely	
eliminate	it	from	consideration	because	negative	accrual	(Amax	<	0)	
is	not	possible.	The	situation	restricted	by	the	second	assumption	
(i.e., z <	0	&	d >	0)	is	possible	both	mathematically	and	ecologically,	
but	the	extreme	value	is	then	minimum	rather	than	maximum.	In	
the	case	of	the	traditional	SAR,	the	z <	0	is	not	justified.	However,	
in	general	DAR	with	Hill	numbers,	z <	0	is	possible	at	higher	diver-
sity	orders.	In	this	study,	I	use	the	average	z	and	d	from	100/1,000	
times	of	resampling	operations,	to	compute	Dmax.	In	case	the	aver-
age z	and	d	do	not	satisfy	the	above	two	assumptions,	I	select	the	
valid	 permutations	 from	 100/1,000	 re-	samplings,	 compute	Dmax 
for	each	valid	permutation,	 and	 then	obtain	 the	average	Dmax	of	
the	valid	permutations.

2.6 | The self- similarity property and pair- wise 
diversity overlap (PDO) profile

As	diversity	measured	 in	Hill	numbers	are	 the	numbers	of	species	
equivalents,	 I	 expect	 that	 the	 PL-	DAR	 should	 possess	 the	 self-	
similarity	 or	 scale	 invariance	 as	 SAR	 has	 demonstrated	 (Drakare	
et	al.,	 2006;	 Harte	 et	al.,	 1999,	 2001;	 Sizling	 &	 Storch,	 2004	 and	
Tjørve	 &	 Tjørve,	 2008).	 Adopting	 similar	 derivation	 process	 with	
the	SAR,	the	following	properties	of	PL-	DAR	can	be	worked	out	as	
follows:

From	 Equation	5,	 the	 following	 equations	 can	 be	 derived	 as	
follows:

Hence,	 z	 is	 the	 ratio	 of	 diversity	 accrual	 rate	 to	 area	 increase	
rate.

By	setting	A	=	1,	S0 = cAz = c;	hence,	c	 is	the	number	of	species	
equivalents	of	diversity	in	one	unit	of	area,	but	not	per	unit	of	area	
because	the	scaling	is	nonlinear.

The	self-	similarity	is	also	known	as	scale	invariant,	which	refers	
to	the	following	mathematical	property	of	the	power	law:

that	 is,	 scaling	 the	 argument	 A	 (area)	 by	 a	 constant	 factor	 α	 is	
equivalent	to	scaling	its	function	proportionally	by	a	constant	fac-
tor	αz	Therefore,	all	power	laws	with	a	particular	scaling	exponent	
z	 are	equivalent	up	 to	 constant	 factors	because	each	 is	 a	 scaled	
version	 of	 the	 others.	 The	 scale	 invariance	 is	 also	 responsible	
for	 the	 linear	 relationship	 after	 log-	transformation	 of	 power	 law	

df(A)

dA
= (qD)� = [cAz exp (dA)]� =0

czAz−1 exp (dA)+cAz exp (dA)d=0

czAz−1+cAzd=0 (c≠0)

zAz−1+Azd=0

z+Ad=0

(11)Amax=−z∕d

(12)Max(qD)= c
(

−
z

d

)z

exp (−z)= cAz
max

exp (−z)

(13)dD∕dA= zD∕A

(14)
dD∕D

dA∕A
= z

(15)f(�A)= c(�A)z=�zf(A)∝ f(A)
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(Equation	8),	and	the	resulted	straight	line	on	log–log	plot	is	termed	
the	signature	of	power	law.	This	is	another	reason	I	adopted	log–
log-	linear	transformation	fitting	of	the	power	law;	of	course,	this	is	
essentially	the	same	argument	I	argued	previously	(i.e.,	the	“slope”	
argument).

From	(15),	it	is	also	obvious	that:

where DαA	 and	DA	 are	 the	diversity	at	area	size	αA	 and	A,	 respec-
tively,	αz	is	the	scaling	factor.	I	omitted	diversity	order	(q)	to	simplify	
the	notation,	for	example,	DA	in	place	of	

qDA.
Applying	 log	 function	 with	 the	 base	 (α)	 on	 both	 sides	 of	 (16),	

there	is

It	follows	that

If	α =	2,	then	z = log 2(D2A/DA)

is	a	special	case	of	(18).
The	fraction	(h)	of	new	diversity	due	to	expansion	of	α	times	of	

original	area	A	can	be	expressed	as:

Similarly,	the	proportion	of	new	diversity	in	the	j-	th	area	(of	the	
same	size)	added	can	be	computed	with	the	following	equation:

Tjørve	 and	Tjørve	 (2008)	 termed	α	 as	 area	multiplication	 rate, 
and	 I	 adopt	 the	 same	 term	 for	DAR,	 and	h	 is	 the	 fraction	of	 new	
diversity	accumulated	as	a	function	of	z.	When	α	=	2,	the	proportion	
of	new	diversity	h = 2z	−	1,	the	diversity	overlap	(g)	of	two	bordering	
areas	of	the	same	size	(computed	as	the	proportion	of	the	new	diver-
sity	in	the	second	area)	is	as:

In	(22),	g	is	also	the	scale-	invariant	overlap	because	it	is	the	over-
lap	between	two	areas	of	the	same	size.

If	z = 1,	then	g = 0,	no	overlap;	and	if	z = 0,	g = 1,	totally	overlap.	
In	reality,	g	should	between	0	and	1.

As	the	equal	size	of	area	assumption	 is	 largely	true	 in	the	case	
of	sampling	human	microbiome,	the	parameter	z	of	the	PL-	DAR	can	
be	utilized	to	estimate	the	pair-	wise	diversity	overlap	(PDO),	that	is,	
diversity	overlap	between	two	individuals,	in	the	human	microbiome	
with	Equation	22.	Given	 the	 range	of	g	 is	between	0	and	1,	 I	may	
even	use	percentage	notation	to	measure	pair-	wise	diversity	overlap.

Similar	to	previous	definitions	for	DAR	profile	(z–q	pattern)	and	
MAD	profile	 (Dmax–q	 pattern),	 I	 define	PDO	profile	 (g–q	 pattern)	
as	a	series	of	values	of	the	pair-	wise	diversity	overlap	metric	(g)	at	
different	diversity	order	(q).	The	profile	comprehensively	(at	differ-
ent	diversity	order	or	nonlinear	level,	q)	captures	the	average-	level,	
pair-	wise	overlap	(similarity)	between	two	communities	in	a	meta-	
community	setting.	Although	the	g	 (PDO	profile)	 is	 simply	a	pre-
cise	function	of	PL-	DAR	z	(DAR	profile)	(equation	22),	the	former	is	
far	more	convenient	for	measuring	community	overlap	(similarity),	
which	should	have	more	straightforward	and	intuitive	usage.

3  | DEMONSTR ATIONS OF THE 
E X TENSIONS

3.1 | The American Gut microbiome project (AGP) 
dataset

I	use	the	datasets	from	the	American	Gut	Project	(AGP:	http://ameri-
cangut.org/),	part	of	the	Earth	Micorbiome	Project	(EMP).	The	dataset	
of	OTU	tables	(which	are	equivalent	to	the	species	abundance	data	of	
a	community	in	macroecology	and	utilized	to	test	the	DAR	extensions	
throughout	this	article),	were	rarefied	to	10,000	sequence	reads	per	
sample	computed	 from	 the	DNA-	sequencing	data	of	 the	16s-	rRNA	
(v4	 region)	marker	genes	 from	 the	gut	microbiome	of	6,500	volun-
teer	participants	(as	of	October	2015),	was	downloaded	from	the	AGP	
website	 (https://github.com/biocore/American-Gut/tree/master/
data/AG).	According	to	AGP	website	(http://americangut.org/about/),	
the	protocols	used	by	the	AGP	project	to	process	the	samples	and	ob-
tain	the	OTU	tables	have	been	extensively	tested	and	benchmarked	
by	Knight	Lab	at	the	University	of	California,	San	Diego,	one	of	the	
largest	microbiome	research	laboratories	in	the	world.	I	selected	the	
dataset	of	1,473	healthy	Caucasian	individuals	and	excluded	the	sam-
ples	from	individuals	with	IBD,	diabetes,	and	any	other	diseases.

The	 test	 of	DAR	 extensions	with	 the	AGP	dataset	 consists	 of	
two	parts:	alpha-	DAR	and	beta-	DAR	modeling,	each	with	three	DAR	
models,	 PL,	 PLEC,	 and	 PLIEC,	 respectively.	 I	 further	 define	DAR,	
MAD,	 and	 PDO	 profiles	 for	 the	 alpha-		 and	 beta-	diversity	 scaling	
of	the	human	gut	microbiome,	respectively.	Tables	1	and	2	list	the	
alpha-	DAR	models,	and	Table	3	lists	the	beta-	DAR	models.	Figure	1	
illustrates	the	DAR	and	PDO	profiles	for	alpha	and	beta	diversities,	
and	Figure	3	illustrates	the	alpha-	MAD	profile	and	beta-	MAD	pro-
file,	respectively.

3.2 | Alpha- DAR analysis

Tables	1	and	2	listed	the	test	results	of	the	alpha-	DAR	modeling	with	
100	and	1,000	times	of	resampling,	respectively.	Table	3	listed	the	

(16)D�A∕DA=�z

(17)log� (D�A∕DA)= log� �
z= z log� �= z

(18)D= cAlog� (D�A∕DA)

(19)D= cAlog2 (D2A∕DA)

(20)h= (D�A−DA)∕DA=�z−1

(21)hj= (DjA−D(j−1)A)∕DA= jz− (j−1)z

(22)g= (2DA−D2A)∕DA=2−2z

http://americangut.org/
http://americangut.org/
https://github.com/biocore/American-Gut/tree/master/data/AG
https://github.com/biocore/American-Gut/tree/master/data/AG
http://americangut.org/about/
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test	results	of	the	beta-	DAR	modeling	with	100	times	of	sampling.	In	
these	tables,	I	listed	the	following:	the	diversity	order	(q)	in	Hill	num-
bers,	model	parameters	 (z,	 lnc,	d),	R	 (linear	correlation	coefficient),	
p-	value	measuring	 the	goodness	of	 the	model	 fitting,	pair-	wise	di-
versity	overlap	(g),	and	the	number	of	successful	fitting	of	DAR	mod-
els	 (N).	Listed	 in	 the	 last	 two	columns	of	 the	PLEC	models	are	the	
theoretical	maximal	accrual	diversity	(MAD)	(Dmax)	and	correspond-
ing	area	accrual	(Amax),	predicted	with	PLEC	model	(Equations	11	&	
12).

From	both	Tables	1	and	2,	I	expose	the	following	findings	regard-
ing	the	test	of	alpha-	DAR	models.

3.2.1 | The performance of alpha- DAR models

The	number	of	successful	fittings	(N)	shows	that	at	lower	diversity	
order q = 0	&	1,	all	three	DAR	models	fitted	to	the	AGP	dataset	suc-
cessfully	(p	<	0.0001)	in	100%	of	the	sampled	cases	in	both	100	and	
1,000	times	of	resampling	operations.	At	high	diversity	order	q = 2 
&	3,	the	PLEC	and	PLIEC	succeeded	in	99%	sampling	cases,	and	both	
the	models	performed	slightly	better	than	the	PL	model	(90%–95%)	
(p <	0.01).	The	linear	correlation	coefficients	(R)	confirmed	the	find-
ing.	For	example,	with	PL	model,	at	lower	diversity	order,	R	ranges	
between	0.94	and	0.99,	and	at	higher	diversity	order,	R	ranges	be-
tween	0.47	and	0.51.	The	decreased	goodness-	of-	fit	is	expected	as	
the	higher-	order	Hill	numbers	have	relatively	stronger	nonlinearity.	
Although	either	p-	value	or	R	alone	is	sufficient	to	show	the	model	
fitting,	I	present	both	to	show	more	comprehensive	information	(R 
showing	the	level	of	linear	correlation).	I	conclude	from	the	above	
finding	that	the	extension	of	SAR	to	alpha-	DAR	(in	the	Hill	numbers)	
with	three	DAR	models	is	fully	justified	and	verified	with	the	AGP	
dataset,	a	single	largest	HMP	dataset	I	am	aware	of.	All	three	models	
are	sufficient	to	describe	alpha-	DAR,	and	the	PL	model	is	preferred	
if	one	is	in	favor	of	the	principle	of	parsimony.	PLIEC	performed	the	
best,	but	PLEC	has	an	advantage	over	the	other	two	models	in	pre-
dicting	the	MAD	and	establishing	the	MAD	profile—Dmax–q	pattern.	
The	finding	also	shows	that	100	times	of	resampling	operations	are	
enough	to	deal	with	the	random	noise	from	arbitrarily	setting	the	
accrual	 order	 of	 individuals,	 given	 the	 results	 from	both	100	 and	
1,000	times	of	samplings	had	little	difference.

I	now	discuss	a	potential	complication	arisen	from	extending	SAR	
to	 DAR,	 that	 is,	 negative	 scaling	 parameter	 (z)	 at	 higher	 diversity	
order q =	2–3.	Table	4	below	listed	the	number	of	negative	z-	values	
or	 positive	 d-	values	 (to	 be	 discussed	 later)	 from	 fitting	 the	 three	
DAR	models.	The	percentages	of	negative	z	of	the	three	models	PL,	
PLIEC,	and	PLEC	at	q = 2	for	alpha-	diversity	DAR	are	11%,	37%,	and	

F IGURE  1 The	DAR	profile	and	PDO	profile	for	the	alpha-	
diversity	and	beta-	diversity	built	with	the	AGP	dataset:	(i)	The	
alpha-	DAR	profile	(z–q)	and	beta-	DAR	profile	(z–q)	are	nearly	
overlapped,	and	similarly	the	alpha-	PDO	profile	(g–q)	and	beta-	
PDO	profile	(g–q)	are	nearly	overlapped;	(ii)	The	DAR	profile	is	
monotonically	decreasing	with	diversity	order	(q),	and	the	PDO	
profile	is	monotonically	increasing	with	q

TABLE  4 The	percentages	of	negative	z-	values	or	positive	d-	values	in	the	DAR	models	with	100	(1,000)	times	of	resampling	from	the	
random	permutations	of	1,473	individuals	in	the	AGP	datasets

Diversity order Model

Alpha- DAR (100 times) Alpha- DAR (1,000 times) Beta- DAR (100 times)

%Negative z %Positive d %Negative z %Positive d %Negative z %Positive d

q = 0 PL 0 NA 0 NA 0 NA

PLIEC 0 0 0 0 0 0

PLEC 0 0 0 0 0 0

q = 1 PL 0 NA 0 NA 0 NA

PLIEC 0 0 0.7 0 4.0 0

PLEC 0 0 0 0 0 0

q = 2 PL 11.1 NA 13.3 NA 23.7 NA

PLIEC 37.0 2.0 39.8 2.50 40.0 1.0

PLEC 5.00 5.0 11.3 11.3 13.7 13.7

q = 3 PL 29.8 NA 35.1 NA 29.3 NA

PLIEC 44.0 8.0 53.8 11.2 42.0 9.0

PLEC 12.0 12.0 22.5 22.5 21.6 21.6
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5%,	respectively,	and	at	q = 3,	30%,	44%	and	12%,	respectively.	As	
these	percentages	numbers	were	computed	from	100	(1,000)	times	
of	DAR	models	from	resampling	of	the	permutation	orders	of	a	single	
dataset,	rather	than	multiple	datasets,	I	consider	the	negative	z	was	
largely	due	to	arbitrary	ordering	for	diversity	accrual,	which	is	also	
the	very	reason	why	I	adopt	the	average	of	100	times	of	resampling.	
If	the	average	z	from	the	100	(1,000)	times	of	reordering	(resampling	
from	total	permutations	of	 the	1,473	 individual	 in	AGP	dataset)	 is	
positive,	I	still	consider	the	DAR	model	for	the	AGP	dataset	as	posi-
tive	DAR	scaling.

Of	course,	 I	need	to	answer	a	more	fundamental	question,	are	
negative	 z-	values	 justified	 ecologically?	Our	 answer	 is	 yes.	 This	 is	
because	at	higher	diversity	orders,	unlike	species	richness,	diversity	
does	 not	 necessarily	 rise	 in	 an	 accrued	 assemblage	 (community).	
For	 example,	 rare	 species	 in	 individual	 assemblage	 may	 become	
commoner,	 rarer	 or	 the	 same	 level	 of	 rareness	 when	 the	 assem-
blage	 is	 pooled	 together	 with	 another	 assemblage.	 Consequently,	
the	diversity	 of	 the	pooled	 community	 could	 be	up,	 down,	 or	 un-
changed.	As	 a	 side	note,	 as	mentioned	previously,	 as	 parameter	d 
in	PLEC	and	PLIEC	 is	an	extension	to	c,	 rather	than	z,	parameter	z 
should	have	 similar	 ecological	 interpretations	 as	 in	 the	original	 PL	
model.	Therefore,	I	consider	negative	z	in	the	three	DAR	models	as	
an	ecological	reality,	rather	than	a	mathematical	artifact.	In	the	case	
of	AGP	dataset,	I	adopt	the	average	z	of	100	times	resampling	of	the	
permutation	orders	because	there	 is	not	a	natural	order	 to	accrue	
the	 diversity.	 If	 there	 is	 a	 natural	 order	 for	 accruing	 the	 diversity,	
that	order	should	be	followed	to	fit	the	DAR	model,	and	the	sign	of	z 
should	be	determined	by	the	natural	order.

An	additional	issue,	similar	to	the	sign	of	z,	is	the	sign	of	d	in	PLEC	
and	PLIEC.	In	both	PLEC	and	PLIEC,	d	as	an	exponential	cutoff	pa-
rameter	is	usually	negative.	However,	when	z < 0,	it	is	possible	that	
d > 0.	This	has	an	implication	for	computing	MAD	(Dmax),	as	in	expla-
nation	for	Equations	11	and	12	in	previous	section	on	the	derivation	
of	MAD.	Indeed,	as	shown	in	Table	4,	in	the	case	of	PLEC,	negative	z 
is	always	matched	with	positive	d.

Yet	another	 interesting	finding	can	be	observed	from	Tables	1,	
2,	and	4	(also	Supporting	information	Tables	S4-S6),	while	PLIEC	has	
the	 best	 statistical	 fitting	 judged	 from	p-	value	 and	R,	 followed	by	
PLEC	and	PL,	PLEC	has	the	lowest	numbers	of	negative	z,	followed	
by	PL	and	PLIEC.	If	I	consider	negative	z	a	potential	issue,	although	
which	may	not	be	an	issue	at	all	as	explained	previously,	PLEC	seems	
to	have	an	advantage	of	the	lowest	percentages	of	negative	z-	values,	
besides	being	able	to	predict	MAD.	The	advantage	of	PL	model	is	its	
simplicity	and	established	ecological	interpretations,	but	it	may	fail	
to	fit	DAR	data	at	higher	diversity	orders.	Table	4	also	suggests	that	
PLIEC	has	the	highest	percentage	of	negative	z-	values,	and	yet,	neg-
ative	z-	values	are	not	matched	with	positive	d-	values	as	in	the	case	
of	PLEC.	I	am	concerned	that,	although	PLIEC	has	the	best	statisti-
cal	fitting,	its	behavior	may	be	unnecessarily	more	complicated	than	
the	PL	and	PLEC	models.	In	consideration	of	the	findings	discussed	
above,	I	recommend	the	utilization	of	PL	for	DAR	profile	and	PDO	
profile,	and	PLEC	for	MAD	profile,	at	 least	for	the	study	of	human	
microbiome.

3.2.2 | The parameter ranges of alpha- DAR models

In	 all	 three	 alpha-	DAR	models,	 the	 scaling	 exponent	 (z)	 decreases	
with	the	 increase	 in	the	diversity	order	 (q).	The	alpha-	DAR	profile,	
that	 is,	 the	 z–q	 series	 with	 the	 PL	 model	 is	 [0.315,	 0.085,	 0.037,	
0.020].	The	counterpart	series	for	PLIEC	and	PLEC	are	[0.291,	0.058,	
0.014,	0.005],	and	[0.387,	0.165,	0.086,	0.052],	respectively.	Hence,	
the	alpha-	DAR	profile	is	a	monotonically	decreasing	curve	(Figure	1).	
As	existing	literature	has	not	established	a	systematic	range	for	the	
diversity	scaling	parameter	(z)	beyond	species	richness,	comparison	
with	existing	studies	is	limited	to	zero-	order	alpha-	diversity	(i.e.,	SAR).	
According	to	Green	and	Bohannan’s	(2006)	review,	the	reported	SAR	
exponents	in	microbes	were	in	the	range	between	0.019	and	0.470,	
but	most	values	were	below	0.2	 (eight	of	11	studies).	Peay,	Bruns,	
Kennedy,	 Bergemann,	 and	 Garbelotto	 (2007)	 reported	 a	 range	 of	
0.20-	0.23	eukaryotic	soil	microbes.	A	major	limitation	of	these	early	
pioneering	studies	on	the	testing	of	SAR	with	microbes	is	then	low	
throughput	 of	 DNA-	sequencing	 technology	 in	 detecting	 bacteria,	
and	consequently,	 the	diversity	and	SAR	exponent	may	be	signifi-
cantly	underestimated.	Recent	studies	further	confirmed	the	validity	
of	microbial	SAR	(e.g.,	van	der	Gast,	2013,	2015;	Ruff	et	al.,	2015).	As	
to	the	range	of	z-	value	in	plants	and	animals	in	macroecology	litera-
ture,	there	are	many	reports	but	most	pointed	to	a	range	between	
0.2	and	0.4.	A	more	recent	large-	scale	investigation	with	601	data-
sets	 from	 terrestrial	 islands	by	Triantis	et	al.	 (2012)	 revealed	a	 full	
range	from	0.064	to	1.312	with	51%	fell	between	0.2%	and	0.4%,	
25%	exceeded	0.4,	and	an	average	of	z = 0.321.	Our	study	hence	not	
only	falls	in	the	general	range,	but	also	happens	to	be	rather	close	to	
the	average	(0.315	vs.	0.321)	reported	in	macroecology.

3.2.3 | Alpha- MAD profile prediction

The	 last	two	columns	 in	Tables	1	and	2	 listed	the	alpha-	MAD	pro-
file	 or	Dmax–q	 predicted	 by	 the	 alpha-	DAR	 PLEC	 models,	 that	 is,	
Dmax	=	[9,434,	 229.7,	 47.4,	 24.5]	 (Figure	2)	 and	Amax	=	[2,028,	 802,	

F IGURE  2 The	alpha-	MAD	profile	for	the	alpha-	diversity	built	
with	the	AGP	dataset:	The	MAD	profile	is	monotonically	decreasing	
with	diversity	order	(q)
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969,	1,135]	for	(q = 0,	1,	2,	3).	 I	consider	the	prediction	of	Dmax	se-
ries	 rather	 reasonable	 based	 on	 the	 existing	 reports	 on	 species	
richness	 in	 the	human	gut	microbiome	 (HMP	Consortium	 (Human	
Microbiome	Project	Consortium)	 (2012).	Nevertheless,	 I	am	some-
what	reserved	with	the	estimates	of	Amax,	the	number	of	individuals	
(‘area’)	corresponding	to	the	MAD,	which	seems	being	influenced	by	
the	random	noise	in	the	process	of	area/diversity	accrual.	This	is	evi-
denced	by	the	wide	range	(max–min)	of	Amax	in	Tables	1	and	2,	but	
the	corresponding	Dmax	estimates	are	rather	robust	as	indicated	by	
their	rather	narrow	ranges.

3.2.4 | Pair- wise alpha- diversity overlap

Based	on	the	self-	similarity	property	of	PL-	DAR,	I	 introduce	a	new	
metric,	 pair-	wise	 diversity	 overlap	 (PDO)	 (g)	 and	 PDO	 profile,	 as	
derived	 previously.	 The	 g-	series	 (q = 0–3)	 or	 PDO	 profile	 for	 the	
alpha-	DAR	 is	 [0.756,	 0.939,	 0.976,	 0.987]	 (Figure	1).	While	 the	 in-
terindividual	 (interpersonal)	 similarity	 at	 the	 species	 richness	 level	
(q = 0)	can	be	relatively	low	(0.756%	or	75.6%),	due	to	functional	re-
dundancy,	 the	similarity	at	higher	diversity	 levels	 (q > 0)	should	be	
rather	high	(94%–99%),	which	explains	the	observed	monotonically	
increasing	pattern	of	PDO	profile.

3.2.5 | Summary on the alpha- DAR

I	 reiterate	 the	 following	 four	 important	 findings	 regarding	 the	
alpha-	DAR	scaling:	First,	 extending	 the	SAR	 to	 alpha-	DAR	meas-
ured	 in	 the	Hill	 numbers	 is	 appropriate	 as	 verified	with	 the	AGP	
dataset.	 PL-	DAR	 model	 is	 preferred	 in	 consideration	 of	 its	 sim-
plicity	and	established	ecological	 interpretations	 in	the	 literature.	
PL-	DAR	parameter	z	 is	 the	diversity	accrual	 rate	 to	area	 increase	
rate	 or	 the	 slope	 of	 the	 linear-	transformed	 PL	model.	 Parameter	
c	 is	 the	number	of	 species	equivalents	of	diversity	 in	one	unit	of	
area	 (but	not	per	unit	of	 area)	 as	 the	 scaling	 is	nonlinear.	Due	 to	

the	interindividual	heterogeneity	(variability),	c	may	be	strongly	in-
fluenced	by	 the	accrual	order	 (what	 I	 termed	 random	noise).	 It	 is	
mainly	for	this	reason	that	I	performed	100/1,000	times	of	resam-
pling	operations	and	computed	the	averages	from	sampling	to	get	
the	DAR	model	parameters.	I	also	found	that	100	times	of	sampling	
is	enough	to	get	reliable	model	parameters.	Second,	the	alpha-	DAR	
profile	for	q = 0–3	is	z	=	[0.315,	0.085,	0.037,	0.020],	monotonically	
decreasing	with	the	diversity	order	(q).	The	parameter	(z)	at	species	
richness	 level	 (q = 0)	of	AGP	not	only	falls	 in	the	range	of	Triantis	
et	al.	 (2012)	 meta-	analysis,	 but	 also	 approaches	 to	 the	 average	
they	 reported	 in	macroecology	 (AMGP	=	0.315	vs.	 Triantis	meta-	
analysis	=	0.321).	Third,	 the	PLEC	=	DAR	model	can	be	harnessed	
to	predict	the	alpha-	MAD	profile	for	q = 0–3,	Dmax	=	[9,434,	229.7,	
47.4,	24.5].	This	is	essentially	the	theoretical	maximal	accrual	diver-
sity	of	the	human	gut	micorbiome,	estimated	from	the	AGP	dataset.	
Fourth,	based	on	the	self-	similarity	property,	the	pair-	wise	diversity	
overlap	 (g)	 between	 two	 individual	 samples	 (two	humans	 in	AGP	
case)	 or	 the	 alpha-	PDO	profile	 for	q = 0	 to	3	 is	g =	[0.756,	0.939,	
0.978,	0.987].	This	metric	is	obviously	useful	for	characterizing	the	
average	pair-	wise	similarity	(dissimilarity)	between	two	human	indi-
viduals	 in	their	gut	microbiome	diversity.	Although	other	ecologi-
cal	similarity	measures	 (e.g.,	 reviewed	 in	Chao	et	al.	 (2014)	 in	 the	
literature	may	offer	similar	information,	our	new	metric	(g)	has	an	
advantage	that	synthesized	information	from	cohorts	such	as	AGP	
dataset	of	1473	individuals.

3.3 | Beta- DAR analysis

Previous	alpha-	DAR	analysis	shows	that	100	times	of	sampling	op-
erations	are	large	enough	to	deal	with	the	random	noise	from	area	
accrual.	I	then	only	sampled	100	times	to	conduct	beta-	DAR	analysis	
to	save	computational	resources	(I	observed	that	the	computing	load	
of	beta-	diversity	analysis	is	nearly	10	times	that	for	alpha-	diversity),	
and	the	results	are	listed	in	Table	3.	The	symbols	in	Table	3	are	the	
same	 as	 those	 in	 previous	 Tables	1	 and	 2	 of	 alpha-	DAR	 analysis.	
From	Tables	3,	I	obtain	the	following	findings	regarding	the	test	of	
beta-	DAR	models.	Overall,	 the	 findings	 from	beta-	DAR	are	 rather	
similar	to	those	from	alpha-	DAR,	and	therefore,	I	keep	the	exposi-
tion	of	Table	3	intentionally	brief.

3.3.1 | The performance of beta- DAR models

The	 goodness-	of-	fittings	 of	 the	 three	DAR	models	 (PL,	 PLEC,	 and	
PLIEC)	to	the	beta-	diversity	scaling	with	the	AGP	dataset	are	even	
slightly	better	than	to	the	alpha-	diversity	scaling.	For	example,	the	
minimum	 percentage	 of	 successfully	 beta-	DAR	 models	 is	 93%	 in	
Table	3,	compared	with	90%	in	Tables	1	and	2.	The	minimum	of	av-
erage R	(linear	correlation	coefficients)	in	beta-	DAR	models	(Table	3)	
is	0.555,	higher	 than	 that	of	0.465	 in	alpha-	DAR	models	 (Table	1).	
Therefore,	 beta-	diversity	 scaling	 can	 be	 modeled	 with	 the	 same	
mathematical	 functions	 as	 alpha-	diversity	 scaling	 models.	 To	 the	
best	of	our	knowledge,	this	 is	 the	first	systematic	modeling	of	the	
scaling	of	beta-	diversity	in	the	Hill	numbers.

F IGURE  3 The	beta-	MAD	profile	for	the	beta-	diversity	built	
with	the	AGP	dataset:	The	MAD	profile	is	monotonically	decreasing	
with	diversity	order	(q)
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Similar	 to	 the	 previous	 alpha-	DAR	 model,	 I	 also	 counted	 the	
negative	z-	values	when	the	three	DAR	models	were	fitted	to	beta-	
diversity	scaling	and	the	results	are	listed	in	Table	4	(the	same	table	
as	for	alpha-	DAR).	The	percentages	of	negative	z	of	the	three	models	
PL,	PLIEC,	and	PLEC	at	q = 2	for	beta-	diversity	DAR	are	24%,	40%,	
and	14%	respectively,	and	at	q = 3,	29%,	42%	and	22%,	respectively.	
These	percentages	are	somewhat	higher	than	their	alpha-	diversity	
counterparts	 discussed	 previously,	 but	 our	 explanations	 and	 con-
clusions	are	the	same	as	 those	previously	summarized	and	recom-
mended	for	the	alpha-	diversity	scaling.

3.3.2 | The parameter ranges of beta- DAR models

The	beta-	DAR	profile,	 that	 is,	 the	z–q	 series	with	 the	PL	 for	beta-	
diversity	 scaling	 is	 beta-	z	=	[0.311,	 0.078,	 0.027,	 0.019]	 (Figure	1).	
This	 series	 is	 rather	 close	 to	 that	 for	 alpha-	DAR	 model,	 which	 is	
alpha-	z	=	[0.315,	0.085,	0.037,	0.020].	Overall,	the	scaling	patterns	
for	both	alpha-	DAR	and	beta-	DAR	are	rather	similar.	As	existing	lit-
erature	has	not	established	a	systematic	range	for	the	beta-	diversity	
scaling,	there	are	no	existing	studies	with	which	I	can	compare	the	
range	of	scaling	parameters.

3.3.3 | Beta- MAD- profile prediction

The	beta-	MAD	profile	predicted	by	the	beta-	DAR	PLEC	models,	that	
is,	beta-Dmax	=	[24.3,	5.5,	3.7,	3.4]	(Figure	3)	and	beta- Amax	=	[2123,	848,	
818,	953]	for	(q = 0,	1,	2,	3).	This	beta-Dmax- q	series	is	orders	of	magni-
tude	smaller	 than	 its	alpha	counterpart,	which	 is	alpha- Dmax	=	[9434,	
229.7,	47.4,	24.5],	although	both	the	q–Amax	series	are	rather	close	to	
each	other.	The	magnitudes	of	differences	in	Dmax	between	alpha-		and	
beta-	diversity	scaling	are,	of	course,	expected	because	the	values	of	
alpha	and	beta	diversities	are	simply	at	rather	different	magnitudes.

3.3.4 | Pair- wise beta- diversity overlap

Similar	 to	pair-	wise	alpha-	diversity	overlap,	 I	obtained	the	g-	series	
(q = 0–3)	 or	 PDO	 profile	 for	 beta-	DAR	 is	 beta-g =	[0.759,	 0.944,	
0.981,	0.987]	(Figure	1),	which	is	rather	close	to	that	for	the	alpha-	
DAR,	 that	 is,	 alpha-g =	[0.756,	 0.939,	 0.976,	 0.987].	 This	 indicates	
that	 while	 the	 values	 of	 alpha-	diversity	 and	 beta-	diversity	 are	 at	
different	orders	of	magnitudes,	the	degree	(level)	of	their	pair-	wise	
diversity	overlaps	is	essentially	independent	of	the	type	of	diversity	
measure	adopted	(alpha	or	beta).

3.3.5 | Summary on the beta- DAR

When	measured	in	the	Hill	numbers,	the	beta-	diversity	follows	the	
same	 scaling	 law	 as	 the	 alpha-	diversity	 does.	 Indeed,	 both	 alpha-	
DAR	and	beta-	DAR	 follow	 the	 same	 scaling	 law	 as	 the	 traditional	
SAR	does.	 This	 finding	 should	 be	 expected	 if	 I	 realize	 that	 all	Hill	
numbers	(either	for	measuring	alpha,	beta,	or	gamma	diversities)	are	
in	units	of	species	(or	as	species	equivalents),	and	measure	the	effec-
tive	number	of	species.	Indeed,	it	was	this	fundamental	property	of	

the	Hill	numbers	that	motivated	us	to	extend	SAR	to	general	DAR.	In	
other	words,	SAR	is	a	special	case	of	DAR	when	the	diversity	order	is	
set	to	zero	(i.e.,	species	richness	when	q = 0).	The	tests	with	the	AGP	
dataset	verified	our	postulation	that	motivated	this	study.

4  | DISCUSSION

Multiple	mechanisms	 have	 been	 proposed	 to	 explain	 the	 classic	
SAR,	 including	more	individuals	(also	known	as	passive	sampling,	
random	placement,	rarefaction	effect,	sampling	effect,	etc.),	envi-
ronmental	heterogeneity	(spatial	or	temporal),	dispersal	limitations,	
population	dynamics,	niche-	based	interactions,	biotic	interactions,	
multiple	species	pools,	meta-	population	theory,	and	self-	similarity	
(see	reviews	by	White	et	al.	(2006),	Scheiner	et	al.	(2011)).	In	spite	
of	the	extensive	studies	in	macroecology,	little	direct	experimen-
tal	evidence	exists	 in	the	 literature	to	prove	or	reject	those	pro-
posed	mechanisms.	Unlike	many	physical	laws	whose	mechanisms	
can	be	theoretically	derived	and	experimentally	verified,	ecologi-
cal	 laws	 are	 usually	 established	 inductively	 by	 the	 accumulation	
of	 experimental	 data.	Although	 the	 accumulated	 ecological	 data	
may	establish	the	validity	of	an	ecological	 law,	the	data	that	can	
directly	determine	or	reveal	the	mechanism	are	frequently	difficult	
to	 collect.	 Due	 to	 this	 limitation,	meta-	analysis	 is	 often	 used	 to	
investigate	 the	 factors	 (variables)	 that	may	affect	ecological	 law.	
In	 the	 case	 of	 SAR,	 quite	 a	 few	 excellent	meta-	analysis	 or	 simi-
lar	 synthesis	 (not	 necessarily	 followed	 meta-	analysis	 procedure	
strictly)	studies	exist	(e.g.,	Drakare	et	al.,	2006),	but	the	results	of	
meta-	analysis	 usually	 only	 identify	 the	 factors	 that	 significantly	
affect	ecological	laws	(SAR),	still	may	not	offer	direct	evidence	to	
support	or	reject	a	specific	mechanism	hypothesis	underlying	the	
law	because	the	complex	interaction	among	the	factors	is	usually	
hard	 to	 consider	 in	meta-	analysis,	 which	may	 play	 an	 important	
role	in	controlling	the	behavior	of	ecosystem	(or	community).	This	
somewhat	unique	property	of	ecological	laws	also	explains	why	I	
cannot	offer	definite	conclusion	on	the	mechanism	underlying	the	
DAR	of	the	human	microbiome.	For	example,	Drakare	et	al.	(2006)	
meta-	analysis	with	794	SAR	studies	reported	 in	major	ecological	
journals	revealed	that	SAR	is	significantly	influenced	by	variables	
determining	sampling	schemes,	the	spatial	scale,	and	the	types	of	
organisms	or	habitats	involved.	Those	meta-	analyses	on	SAR	also	
offered	important	insights	on	the	model	selection	(more	than	20	
SAR	models	have	been	proposed,	tested,	and	evaluated)	and	other	
important	 issues	 (Tjørve,	 2009;	 Triantis	 et	al.,	 2012;	 Williams	
et	al.,	 2009).	 Our	 study	 benefits	 enormously,	 especially	 on	 the	
study	design	 including	 the	model	selection	and	fitting,	choice	of	
sampling	scale	(unit),	accrual	scheme,	from	the	insights	and	recom-
mendations	 reported	 in	 those	existing	meta-	analyses.	Even	with	
these	efforts,	like	many	other	SAR	studies,	I	could	not	escape	from	
the	general	limitation	involved	in	the	research	of	ecological	laws.

As	demonstrated	 in	previous	sections,	 I	systematically	extend	
the	traditional	SAR	relationships	to	their	counterparts	of	DAR	re-
lations	 for	 both	 alpha-	diversity	 and	 beta-	diversity,	 based	 on	 the	
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known	most	appropriate	diversity	metrics—the	Hill	numbers.	These	
extensions	enrich	our	 tools	 for	 investigating	 the	biogeography	of	
ecological	 communities	 and	ecosystems	 in	general,	which	 can	be	
particularly	 true	 for	deepening	our	understanding	of	 the	biogeo-
graphic	properties	such	as	spatial	heterogeneity	of	the	human	mi-
crobiome	(e.g.,	Hanson,	Fuhrman,	Claire	Horner-	Devine,	&	Martiny,	
2012;	Oh	et	al.,	2014).	The	DAR	models	are	likely	to	offer	important	
guidelines	for	conserving	arguably	the	most	important	biodiversity	
to	 our	 health—the	 diversity	 of	 our	 gut	 microbiome	 (O’Doherty	
et	al.,	2014),	similar	to	the	role	of	SAR	in	conservation	biology.

It	should	be	pointed	out	that	the	focus	of	the	present	article	
was	 centered	 on	 the	 definitions	 and	 computational	 procedures	
(methodology)	 for	 extending	 the	 classic	 SAR	 to	 more	 general	
DAR.	I	intentionally	chose	a	large,	but	with	relatively	simple	sam-
pling	design,	dataset	of	the	American	gut	project,	to	simplify	the	
demonstration	of	the	extensions.	In	a	follow-	up,	more	application-	
oriented	 study	 (Ma,	 2018),	we	utilized	more	 comprehensive	 and	
sophisticated	datasets	from	the	HMP	(human	microbiome	project),	
which	includes	samples	from	18	body	sites	of	a	cohort	of	242	indi-
viduals.	Some	of	the	DAR	features,	including	their	biological	inter-
pretations,	may	be	better	 illustrated	 in	the	follow-	up	application	
reported	in	Ma	(2018).	Nevertheless,	I	should	emphasize	that	the	
concepts	 and	 estimations	of	PDO	and	MAD,	 especially	 those	of	
MAD,	are	rather	complex,	and	cautions	must	be	taken	when	they	
are	 recommended	 for	 practical	 applications.	 This	 is	 because	 ad-
ditional	factors	beyond	those	considered	in	building	DAR	models	
may	influence	their	estimates,	because,	ultimately,	MAD	depends	
on	the	parameters	of	PLEC-	DAR	models,	and	PDO	depends	on	the	
scaling	parameter	of	PL-	DAR.	In	particular,	MAD-	Dmax	depends	on	
all	three	parameters	(z, c,	and	d)	of	PLEC	model,	while	PDO-	g	only	
depends	on	the	scaling	parameter	(z)	of	the	PL	model.	I	expect	that	
the	parameter	c	is	likely	influenced	by	sampling	schemes	adopted	
(especially	 sampling	unit	or	 scale).	 In	 the	case	of	microbial	DAR,	
sequencing	platforms	including	bioinformatics	software	pipelines	
may	have	an	effect	on	the	estimation	of	parameter	c.	A	reason	I	am	
less	concerned	with	the	estimation	of	scaling	parameter	(z)	is	to	do	
with	the	property	of	the	power	law	model,	which	is	scale	invariant	
as	explained	in	Ma	(2015).
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