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Abstract
I extend the classic SAR, which has achieved status of ecological law and plays a criti-
cal role in global biodiversity and biogeography analyses, to general DAR (diversity–
area relationship). The extension was aimed to remedy a serious application limitation 
of the traditional SAR that only addressed one aspect of biodiversity scaling—species 
richness scaling over space, but ignoring species abundance information. The exten-
sion was further inspired by a recent consensus that Hill numbers offer the most 
appropriate measures for alpha-diversity and multiplicative beta-diversity. In particu-
lar, Hill numbers are essentially a series of Renyi’s entropy values weighted differ-
ently along the rare-common-dominant spectrum of species abundance distribution 
and are in the units of effective number of species (or species equivalents such as 
OTUs). I therefore postulate that Hill numbers should follow the same or similar law 
of the traditional SAR. I test the postulation with the American gut microbiome pro-
ject (AGP) dataset of 1,473 healthy North American individuals. I further propose 
three new concepts and develop their statistical estimation formulae based on the 
new DAR extension, including: (i) DAR profile—z–q relationship (DAR scaling param-
eter z at different diversity order q), (ii) PDO (pair-wise diversity overlap) profile—g–q 
relationship (PDO parameter g at order q, and (iii) MAD (maximal accrual diversity: 
Dmax) profile—Dmax-q. While the classic SAR is a special case of our new DAR profile, 
the PDO and MAD profiles offer novel tools for analyzing biodiversity (including 
alpha-diversity and beta-diversity) and biogeography over space.

K E Y W O R D S

diversity–area relationship, diversity–area relationship (DAR) profile, maximum accrual 
diversity (MAD) profile, pair-wise diversity overlap (PDO) profile, self-similarity, species–area 
relationship

1  | INTRODUC TION

The species–area relationship (SAR), well regarded as one of the few 
classic laws in ecology and biogeography, has been pursued by gen-
erations of ecologists and biogeographers since the 19th century 

(Connor & McCoy, 1979; Drakare, Lennon, & Hillebrand, 2006; 
Harte, Smith, & Storch, 2009; He & Hubbell, 2011; Helmus, Mahler, 
& Losos, 2014; Lomolino, 2000; Preston, 1960; Rosenzweig, 1995; 
Sizling, Kunin, Sizlingova, Reif, & Storch, 2011; Storch, Keil, & Jetz, 
2012; Tjørve, 2009; Tjørve & Tjørve, 2008; Triantis, Guilhaumon, 
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& Whittaker, 2012; Watson, 1835). It is hailed as “ecology’s most 
general, yet protean pattern” by Lomolino (2000) and Whittaker 
and Triantis (2012). SAR relationship had inspired MacArthur and 
Wilson’s (1967) island biogeography theory, and the latter was es-
sential in shifting the focus of ecological research from population to 
community and in advancing community ecology in the 1970s and 
after. Today, it still plays a critical role in setting strategy and policies 
for biodiversity conservation.

Although the study of SAR originated in macroecology of the 
plants and animals, thanks to the revolutionary genomic and es-
pecially metagenomic sequencing technologies, molecular, and mi-
crobial ecologists have already joined in the exploration starting 
approximately a decade ago (Bell et al., 2005; Green et al., 2004; 
Horner-Devin, Lage, Hughes, & Bohannan, 2004; Noguez et al., 
2005). The revolutionary metagenomic technology has lead to the 
launches of several national and international research programs, 
such as European Union’s MetaHIT in 2007, US-NIH human micro-
biome project (HMP) in 2008, Earth Microbiome Project (EMP) in 
2012, and US National Microbiome Initiative (NMI) in 2016 (e.g., 
Turnbaugh et al., 2007; HMP Consortium (Human Microbiome 
Project Consortium), 2012, Gilbert, O’Dor, King, & Vogel, 2011). 
Indeed, the ecological theory has been both a unifying driving 
force and test bed for this revolution (e.g., Barberán, Casamayor, & 
Fierer, 2014; Chiu & Chao, 2015; Costello, Stagaman, Dethlefsen, 
Bohannan, & Relman, 2012; Fierer, 2008; Haegeman et al., 2013; 
Lozupone, Stombaugh, Gordon, Jansson, & Knight, 2012; Ma, 2015; 
Ma, Forney, Geng, & Abdo, 2012). Today, molecular ecologists are 
capable more than ever to test major ecological theories across not 
only taxa (plants, animals, and microbes) but also ecosystem types 
(e.g., forest, lakes, ocean, human, and animal microbiomes), and 
novel findings and insights are revealed more frequently than ever.

In spite of its wide success in biodiversity conservation and bio-
geography, the classic SAR was limited to the relationship between 
species richness (the number of species) and area (space). The spe-
cies abundance was totally ignored in the SAR. Theoretically, there 
is nothing wrong with this ignorance because it was discovered and 
verified within its realm (i.e., the scope of species richness). It was not 
a serious issue either from an application perspective with the data-
sets from traditional survey technologies for biodiversity and bioge-
ography because species abundance was relatively difficult to obtain 
until the DNA (RNA) datasets from metagenomic and metagenetic 
sequencing of environmental samples become readily accessible. 
Bioinformatics pipelines can be utilized to readily generate the OTU 
(operational taxonomic unit) tables in the case of 16s-rRNA amplicon 
or other metagenetic sequencing. The OTU table contains not only 
the information about species richness (the number of species) but 
also the abundance of each species simultaneously. This makes the 
extension of the classic SAR to general diversity–area relationship 
(DAR) necessary to fully harness both species richness and abun-
dance information. Indeed, previously, a few group of researchers, 
notably Helmus and Ives (2012), Mazel et al. (2014), have success-
fully extended the SAR to phylogenetic and functional diversities. 
Their extensions not only verified the applicability of SAR models 

beyond traditional species richness, but also found important appli-
cations in identifying more comprehensive conservation hot spots 
and predicting the impacts of habitat loss. In this study, I extend the 
SAR to general DAR systematically by adopting the Hill numbers as 
diversity measures, for both alpha-diversity and beta-diversity scal-
ing over space (habitat area), and further propose novel concepts 
and their quantifications for more effectively and comprehensively 
analyzing biodiversity and biogeography of the biomes including 
both macrobiomes and microbiomes.

The choice of Hill numbers for extending the classic SAR was 
inspired by a recent consensuses that Hill numbers offer the most 
appropriate measures for alpha-diversity and multiplicative beta-
diversity partition (Chao, Chiu, & Hsieh, 2012; Chao, Chiu, & Jost, 
2014; Ellison, 2010; Jost, 2007). Besides Hill numbers, there have 
been many diversity indexes (metrics) in existing literature, and two 
of the most widely used are Shannon entropy (Shannon & Weaver, 
1949) and Simpson’s (1949) index [see Magurran’s (2004) monograph 
for a comprehensive review]. Southwood and Henserson (2000) 
once commented “the result has been an ‘explosive speciation’ of 
diversity indices, which initially brought confusion to the subject; in 
addition, the ubiquitousness of some relationships and the appar-
ent constancy of certain numerical values have added a measure 
of mystique.” The Hill numbers, which are based on Renyi (1921)’s 
general entropy, and of which Shannon’s entropy is a special case, 
overcome a significant issue in measuring biodiversity, the influence 
of rarer species, which made it hardly possible to compare different 
traditional diversity indexes, such as comparing Shannon index vs. 
Simpson index, a major source for much of the confusion and mys-
tique as critiqued by Southwood and Henserson (2000). In spite of 
its theoretical soundness, the work of Hill (1973) had not received 
the attention it deserves until recent years, when Chao et al. (2012, 
2014) and Chiu and Chao (2015), Ellison (2010), Jost (2006), Jost 
(2007) reintroduced the Hill numbers to ecology with additional 
important clarifications and extensions. Hence, the Hill numbers 
presented a major conceptual advance in measuring diversity and 
should be our first choice for extending SAR to DAR.

The SAR has multiple functional forms, often fitting to datasets 
equally well, although the power law function is predominantly the 
most often used. Flather (1996) tested nine models; Tjørve (2003, 
2009), Dengler (2009), Williams, Lamont, and Henstridge (2009), 
and Triantis et al. (2012) tested around 20 models, respectively. 
As those comparative studies often used different classification 
of sampling or species accrual schemes, the conclusions are fre-
quently debated in the literatures. Traditionally, the modeling 
strategy has been to use the most parsimonious power function, 
and preferably its log-linearized fitting, which facilitates further 
tractable analysis (e.g., Rosenzweig, 1995). In consideration of the 
debates on the functional forms of SAR (e.g., He & Hubbell 2012), 
I test the traditional power law model (PL) as well as what I be-
lieve are two most promising extensions, that is, the PL with ex-
ponential cutoff (PLEC) and the PL with inverse exponential cutoff 
(PLIEC). Still I follow the principle of parsimony given more than 
20 SAR models exist in the literature (see the excellent review and 
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synthesis such as Tjørve & Tjørve, 2008; Tjørve, 2009; Triantis 
et al., 2012; Williams et al., 2009), and the excessive computation 
workload (especially with beta-diversity scaling) had I tested all 
of the 20+ models, which is hardly necessary with our objectives 
set for this study. The taper-off parameter (d) in both PLEC and 
PLIEC not only addresses a critique to the traditional power law 
for overestimating diversity (He & Hubbell, 2011), but also pre-
serves the biological interpretations of the scaling parameter (i.e., 
slope z of SAR) as d is primarily a revision to the other less bi-
ologically meaningful parameter c (Tjørve, 2009). Furthermore, I 
propose to define MAD (maximal accrual diversity) profile, which 
can be estimated with the PLEC parameters. I also discuss the pos-
sible mechanisms of the DAR scaling such as self-similarity or scale 
invariance associated with the power law and define a novel pair-
wise diversity overlap (PDO) metric and the PDO profile, based on 
the inspirations from existing SAR studies (Harte, Kinzig, & Green, 
1999; Harte, Blackburn, & Ostling, 2001; Sizling & Storch, 2004; 
Drakare et al., 2006;  and Tjørve & Tjørve, 2008).

To the best of our knowledge, this should be the first extension 
of the SAR to general diversity–area scaling beyond species richness 
level in terms of the Hill numbers. The methodological extensions 
of SAR to general Hill numbers based DAR should not only enrich 
the theoretical modeling of the diversity scaling in terms of more 
comprehensive diversity profiles, but also overcome the limitation of 
the classic SAR. Furthermore, my novel DAR method is applicable to 
both alpha-diversity and beta-diversity. The three new concepts and 
their statistical parameters including DAR profile, PDO (pair-wise 
diversity overlap) profile, and MAD (maximal accrual diversity) pro-
file, developed below, should greatly enrich the quantitative tools 
for analyzing the biodiversity and biogeography of various biomes 
on the earth.

2  | THE METHODS—E X TENDING CL A SSIC 
SAR TO DAR

I use the following definitions and procedures to extend the classic 
SAR (species–area relationship) to DAR (diversity–area relationship). 
To save page space, their detailed descriptions are presented in the 
online Supporting information Appendix S1. The demonstration and 
interpretation of the DAR definitions and procedures with the AGP 
datasets are presented in the next section of “demonstrations of the 
extensions.”

2.1 | Definitions of alpha and beta diversities

I adopt the Hill numbers to measure both alpha and beta diversi-
ties, and multiplicative partition of the Hill numbers to define 
beta-diversity.

The Hill numbers, originally introduced as an evenness index 
from economics by Hill (1973), were reintroduced into ecology by 
Jost (2007) and Chao et al. (2012) who further clarified Hill’s num-
bers for measuring alpha-diversity as:

where S is the number of species, pi is the relative abundance of spe-
cies i, q is the order number of diversity.

The Hill number is undefined for q = 1, but its limit as q ap-
proaches to 1 exists in the following form:

The parameter q determines the sensitivity of the Hill number 
to the relative frequencies of species abundances. When q = 0, the 
species abundances do not count at all and 0D = S, that is, species 
richness. When q = 1, 1D equals the exponential of Shannon entropy 
and is interpreted as the number of typical or common species in the 
community. When q = 2, 2D equals the reciprocal of Simpson index, 
that is,

which is interpreted as the number of dominant or very abundant 
species in the community (Chao et al., 2012). The general interpreta-
tion of qD (diversity of order q) is that the community has a diversity 
of order q, which is equivalent to the diversity of a community with 
qD = x equally abundant species.

Recent studies (e.g., Chao et al., 2012; Ellison, 2010; Gotelli & 
Chao, 2013; Jost, 2007) have advocated the use of multiplicatively 
defined beta-diversity, rather than additively defined, by partition-
ing gamma-diversity into the product of alpha and beta, in which 
both alpha (qDα) and gamma (

qDγ) diversities are measured with the 
Hill numbers.

This beta-diversity (qDβ) derived from the above partition takes the 
value of 1 if all communities are identical, the value of N (the number 
of communities) when all the communities are completely different 
from each other (there are no shared species). With Jost (2007) words, 
this beta-diversity measures “the effective number of completely dis-
tinct communities.” In this article, I compute diversities until q = 3, that 
is, to the third order. Note that a series of the Hill numbers at different 
order q is termed diversity profile (Chao et al., 2012; Jost, 2007).

2.2 | The DAR models and DAR profiles

As all Hill numbers are in units of species, and in fact, they are re-
ferred to as the effective number of species or as species equivalents; 

(1)qD=

(

S
∑

i=1

p
q
i

)1∕(1−q)

(2)
1D= lim

q→1

qD=exp

(

−

S
∑

i=1

pi log (p1)

)

(3)
2D=

(

1∕

S
∑

i=1

p2
i

)

(4)qD� =
qD�∕

qD�
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intuitively, Hill numbers should follow the same or similar pattern of 
SAR. I postulate that, similar to the well-known SAR for species rich-
ness (i.e., the Hill number of order zero, 0D = R), there exist counter-
parts for the Hill numbers of general q-order, qD. I set to investigate 
the extensions of SAR to general diversity scaling with area (DAR) 
and further verify our extensions with the AGP dataset.

The basic power function, known as the power law (PL) species 
scaling law widely adopted in SAR study, is extended to describe the 
general diversity–area relationship (DAR):

where qD is diversity measured in the q-th order Hill numbers, A is 
area, and c and z are parameters.

I also extend two modified PL models for DAR analysis: Power 
law with exponential cutoff (PLEC) and power law with inverse ex-
ponential cutoff (PLIEC) originally introduced to SAR modeling by 
Plotkin et al. (2000) and Ulrich and Buszko (2003), respectively (also 
see Tjørve, 2009). The PLEC model is as follows:

where d is a third parameter and should be negative in DAR scaling 
models, and exp(dA) is the exponential decay term that eventually 
overwhelms the power law behavior at very large value of A. The 
justification for adding the exponential decay term is because both 
the human body and the microbial species inhibited on or in human 
body are finite, and there should be a taper-off item to reflect the 
finite size of diversity.

PLIEC is similar to PLEC but with Sigmoid shape, rather than con-
vex as PLEC; it is,

Essentially, PLEC and PLIEC can be considered as extensions to 
parameter c, rather than z, that is, c(x) = c exp (dx) or c(x) = c exp (d/x), 
respectively. Therefore, z is assumed to have the similar interpreta-
tion as its counterpart in the basic PL. PLEC and PLIEC, however, 
both behave very differently. The PLEC model asymptotically ap-
proaches cxz as x becomes small, whereas the PLIEC asymptotically 
approaches cxz as x becomes large. They were designed to rem-
edy the potentially unlimited accrual of species when the area ap-
proaches to infinity by introducing a taper-off exponent that may 
even produce asymptote.

I use the following log-linear-transformed equations 8-10 to esti-
mate the model parameters of Equations 5-7, respectively:

I consider the ability to fit all three models (PL, PLEC, and PLIEC) 
in a unified manner—linear transformation—an advantage. I use both 
linear correlation coefficient (R) and p-value to judge the goodness 
of the model fitting. In fact, either of them should be sufficient to 
judge the suitability of the models to data. An even more important 
advantage is that the three models preserve the ecological interpre-
tation of the scaling parameter z.

Adopting the convention in SAR analysis, the fitted parameter z 
with Equation 8 is termed the slope of the power law DAR, because 
z represents the slope of the linearized function in log–log space. 
However, the slope of the DAR as the tangent to the curve in the 
untransformed axes [i.e., the original PL-DAR, Equation 5] is deter-
mined by both fitted parameters z and c as explained in the online 
Supporting information Appendix S1. This is a significant advantage 
of the log-transformed fitting of SAR, and also the primary reason 
why I adopted the log–log-linearized fitting in this study.

I define the relationship between DAR model parameter (z) of 
the traditional PL model and the diversity order (q), or z–q trend, as 
the DAR profile. It describes the change of diversity scaling parame-
ter (z) with the diversity order (q), comprehensively. Our definition is 
obviously inspired by the diversity profile of the Hill numbers (Chao 
et al., 2012, 2014).

2.3 | Sampling schemes to fit DAR models

Proper sampling schemes and the accrual of areas are not obvious in 
our study. I found that Scheiner (2003), Scheiner et al. (2011) type-
III-B sampling scheme (i.e., no spatial relationship among the areas 
sampled) is the most appropriate for DAR modeling. Arguments 
for designing the sampling schemes are provided in the online 
Supporting information Appendix S1.

Unlike most studies in macroecology, where there is often a 
natural spatial sequence (or arrangement) among the communities 
sampled, there is not a naturally occurring spatial sequence (arrange-
ment) among the communities of individual subjects from whom AGP 
samples were obtained. To avoid the potential bias from an arbitrary 
order of the community samples, I totally permutated the orders of 
all the community samples under investigation and then randomly 
choose 100 (1,000 for alpha-DAR) orders of the communities gen-
erated from the permutation operation. That is, rather than taking a 
single arbitrary order for accruing community samples in one-time 
fitting to the DAR model, I repeatedly perform the DAR model-
fitting 100 (1,000) times with the 100 (1,000) randomly chosen or-
ders. Finally, the averages of the model parameters from the 100 
(1,000) times of DAR fittings are adopted as the model parameters 
of the DAR for the set of community samples under investigation.

2.4 | The accrual of diversities to fit DAR models

To devise what I believe to be the most appropriate and also natural 
scheme to accrue diversity, I follow the following three principles. 

(5)qD= cAz

(6)qD= cAz exp (dA),

(7)qD= cAz exp (d∕A)

(8)ln (D)= ln (c)+z ln (A)

(9)ln (D)= ln (c)+z ln (A)+dA

(10)ln (D)= ln (c)+z ln (A)+d∕A
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The first is to use the Hill numbers, or what Jost (2007) termed the 
true diversity; the second is to follow the essence of SAR, as cap-
tured by the word “accumulation” or “aggregate,” that is, species (di-
versity) are accumulated for the accrued areas; the third is that the 
diversity scaling model should be useful for predicting diversity at 
different levels of areas accumulated. I consider these three prin-
ciples as axioms in traditional SAR, and I believe that any extension 
from SAR to DAR should not violate them. One important advantage 
for us to stick to the three principles, which are embodied in the 
traditional SAR theory, is that our new DAR may inherit many of the 
insights and applications traditional SAR has reveled and offered. 
The accrual scheme based on the three axioms is described in detail 
in the online Supporting information Appendix S1.

2.5 | Predicting MAD (Maximal Accrual Diversity) 
with PLEC-DAR models

The wide application of the traditional SAR in the theory and prac-
tice of the global biodiversity conservation sets an excellent prec-
edent for the biomedical applications of the DAR models I build in 
this study. For example, one may use the DAR models predict the 
(accumulated) diversities in a human population. In the following, I 
present one novel application—estimation of the maximal accrual di-
versity (MAD) of the human microbiome with PLEC model. Among 
the three DAR models, only PLEC may have a maximum, as derived 
below based on PLEC model of DAR.

The necessary condition for Equation 6 to achieve maximum is 
its derivative equals zero, that is,

Hence, when

qD may have a maximum in the following form:

Eqs. (11) and (12) can be utilized to predict the maximal ac-
crual diversity (MAD) of the human microbiome, whether it is 
alpha- or beta-diversity. I define the MAD profile as the relation-
ship between the Dmax and diversity order q, that is, Dmax–q trend. 
It is noted that in the above derivation, there are two implicit 

assumptions: One is that Amax > 0, which requires z and d of dif-
ferent signs, and another is z > 0, d < 0. The situation restricted by 
the first assumption is ecologically meaningless, and I can safely 
eliminate it from consideration because negative accrual (Amax < 0) 
is not possible. The situation restricted by the second assumption 
(i.e., z < 0 & d > 0) is possible both mathematically and ecologically, 
but the extreme value is then minimum rather than maximum. In 
the case of the traditional SAR, the z < 0 is not justified. However, 
in general DAR with Hill numbers, z < 0 is possible at higher diver-
sity orders. In this study, I use the average z and d from 100/1,000 
times of resampling operations, to compute Dmax. In case the aver-
age z and d do not satisfy the above two assumptions, I select the 
valid permutations from 100/1,000 re-samplings, compute Dmax 
for each valid permutation, and then obtain the average Dmax of 
the valid permutations.

2.6 | The self-similarity property and pair-wise 
diversity overlap (PDO) profile

As diversity measured in Hill numbers are the numbers of species 
equivalents, I expect that the PL-DAR should possess the self-
similarity or scale invariance as SAR has demonstrated (Drakare 
et al., 2006; Harte et al., 1999, 2001; Sizling & Storch, 2004 and 
Tjørve & Tjørve, 2008). Adopting similar derivation process with 
the SAR, the following properties of PL-DAR can be worked out as 
follows:

From Equation 5, the following equations can be derived as 
follows:

Hence, z is the ratio of diversity accrual rate to area increase 
rate.

By setting A = 1, S0 = cAz = c; hence, c is the number of species 
equivalents of diversity in one unit of area, but not per unit of area 
because the scaling is nonlinear.

The self-similarity is also known as scale invariant, which refers 
to the following mathematical property of the power law:

that is, scaling the argument A (area) by a constant factor α is 
equivalent to scaling its function proportionally by a constant fac-
tor αz Therefore, all power laws with a particular scaling exponent 
z are equivalent up to constant factors because each is a scaled 
version of the others. The scale invariance is also responsible 
for the linear relationship after log-transformation of power law 

df(A)

dA
= (qD)� = [cAz exp (dA)]� =0

czAz−1 exp (dA)+cAz exp (dA)d=0

czAz−1+cAzd=0 (c≠0)

zAz−1+Azd=0

z+Ad=0

(11)Amax=−z∕d

(12)Max(qD)= c
(

−
z

d

)z

exp (−z)= cAz
max

exp (−z)

(13)dD∕dA= zD∕A

(14)
dD∕D

dA∕A
= z

(15)f(�A)= c(�A)z=�zf(A)∝ f(A)
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(Equation 8), and the resulted straight line on log–log plot is termed 
the signature of power law. This is another reason I adopted log–
log-linear transformation fitting of the power law; of course, this is 
essentially the same argument I argued previously (i.e., the “slope” 
argument).

From (15), it is also obvious that:

where DαA and DA are the diversity at area size αA and A, respec-
tively, αz is the scaling factor. I omitted diversity order (q) to simplify 
the notation, for example, DA in place of 

qDA.
Applying log function with the base (α) on both sides of (16), 

there is

It follows that

If α = 2, then z = log 2(D2A/DA)

is a special case of (18).
The fraction (h) of new diversity due to expansion of α times of 

original area A can be expressed as:

Similarly, the proportion of new diversity in the j-th area (of the 
same size) added can be computed with the following equation:

Tjørve and Tjørve (2008) termed α as area multiplication rate, 
and I adopt the same term for DAR, and h is the fraction of new 
diversity accumulated as a function of z. When α = 2, the proportion 
of new diversity h = 2z − 1, the diversity overlap (g) of two bordering 
areas of the same size (computed as the proportion of the new diver-
sity in the second area) is as:

In (22), g is also the scale-invariant overlap because it is the over-
lap between two areas of the same size.

If z = 1, then g = 0, no overlap; and if z = 0, g = 1, totally overlap. 
In reality, g should between 0 and 1.

As the equal size of area assumption is largely true in the case 
of sampling human microbiome, the parameter z of the PL-DAR can 
be utilized to estimate the pair-wise diversity overlap (PDO), that is, 
diversity overlap between two individuals, in the human microbiome 
with Equation 22. Given the range of g is between 0 and 1, I may 
even use percentage notation to measure pair-wise diversity overlap.

Similar to previous definitions for DAR profile (z–q pattern) and 
MAD profile (Dmax–q pattern), I define PDO profile (g–q pattern) 
as a series of values of the pair-wise diversity overlap metric (g) at 
different diversity order (q). The profile comprehensively (at differ-
ent diversity order or nonlinear level, q) captures the average-level, 
pair-wise overlap (similarity) between two communities in a meta-
community setting. Although the g (PDO profile) is simply a pre-
cise function of PL-DAR z (DAR profile) (equation 22), the former is 
far more convenient for measuring community overlap (similarity), 
which should have more straightforward and intuitive usage.

3  | DEMONSTR ATIONS OF THE 
E X TENSIONS

3.1 | The American Gut microbiome project (AGP) 
dataset

I use the datasets from the American Gut Project (AGP: http://ameri-
cangut.org/), part of the Earth Micorbiome Project (EMP). The dataset 
of OTU tables (which are equivalent to the species abundance data of 
a community in macroecology and utilized to test the DAR extensions 
throughout this article), were rarefied to 10,000 sequence reads per 
sample computed from the DNA-sequencing data of the 16s-rRNA 
(v4 region) marker genes from the gut microbiome of 6,500 volun-
teer participants (as of October 2015), was downloaded from the AGP 
website (https://github.com/biocore/American-Gut/tree/master/
data/AG). According to AGP website (http://americangut.org/about/), 
the protocols used by the AGP project to process the samples and ob-
tain the OTU tables have been extensively tested and benchmarked 
by Knight Lab at the University of California, San Diego, one of the 
largest microbiome research laboratories in the world. I selected the 
dataset of 1,473 healthy Caucasian individuals and excluded the sam-
ples from individuals with IBD, diabetes, and any other diseases.

The test of DAR extensions with the AGP dataset consists of 
two parts: alpha-DAR and beta-DAR modeling, each with three DAR 
models, PL, PLEC, and PLIEC, respectively. I further define DAR, 
MAD, and PDO profiles for the alpha-  and beta-diversity scaling 
of the human gut microbiome, respectively. Tables 1 and 2 list the 
alpha-DAR models, and Table 3 lists the beta-DAR models. Figure 1 
illustrates the DAR and PDO profiles for alpha and beta diversities, 
and Figure 3 illustrates the alpha-MAD profile and beta-MAD pro-
file, respectively.

3.2 | Alpha-DAR analysis

Tables 1 and 2 listed the test results of the alpha-DAR modeling with 
100 and 1,000 times of resampling, respectively. Table 3 listed the 

(16)D�A∕DA=�z

(17)log� (D�A∕DA)= log� �
z= z log� �= z

(18)D= cAlog� (D�A∕DA)

(19)D= cAlog2 (D2A∕DA)

(20)h= (D�A−DA)∕DA=�z−1

(21)hj= (DjA−D(j−1)A)∕DA= jz− (j−1)z

(22)g= (2DA−D2A)∕DA=2−2z

http://americangut.org/
http://americangut.org/
https://github.com/biocore/American-Gut/tree/master/data/AG
https://github.com/biocore/American-Gut/tree/master/data/AG
http://americangut.org/about/
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test results of the beta-DAR modeling with 100 times of sampling. In 
these tables, I listed the following: the diversity order (q) in Hill num-
bers, model parameters (z, lnc, d), R (linear correlation coefficient), 
p-value measuring the goodness of the model fitting, pair-wise di-
versity overlap (g), and the number of successful fitting of DAR mod-
els (N). Listed in the last two columns of the PLEC models are the 
theoretical maximal accrual diversity (MAD) (Dmax) and correspond-
ing area accrual (Amax), predicted with PLEC model (Equations 11 & 
12).

From both Tables 1 and 2, I expose the following findings regard-
ing the test of alpha-DAR models.

3.2.1 | The performance of alpha-DAR models

The number of successful fittings (N) shows that at lower diversity 
order q = 0 & 1, all three DAR models fitted to the AGP dataset suc-
cessfully (p < 0.0001) in 100% of the sampled cases in both 100 and 
1,000 times of resampling operations. At high diversity order q = 2 
& 3, the PLEC and PLIEC succeeded in 99% sampling cases, and both 
the models performed slightly better than the PL model (90%–95%) 
(p < 0.01). The linear correlation coefficients (R) confirmed the find-
ing. For example, with PL model, at lower diversity order, R ranges 
between 0.94 and 0.99, and at higher diversity order, R ranges be-
tween 0.47 and 0.51. The decreased goodness-of-fit is expected as 
the higher-order Hill numbers have relatively stronger nonlinearity. 
Although either p-value or R alone is sufficient to show the model 
fitting, I present both to show more comprehensive information (R 
showing the level of linear correlation). I conclude from the above 
finding that the extension of SAR to alpha-DAR (in the Hill numbers) 
with three DAR models is fully justified and verified with the AGP 
dataset, a single largest HMP dataset I am aware of. All three models 
are sufficient to describe alpha-DAR, and the PL model is preferred 
if one is in favor of the principle of parsimony. PLIEC performed the 
best, but PLEC has an advantage over the other two models in pre-
dicting the MAD and establishing the MAD profile—Dmax–q pattern. 
The finding also shows that 100 times of resampling operations are 
enough to deal with the random noise from arbitrarily setting the 
accrual order of individuals, given the results from both 100 and 
1,000 times of samplings had little difference.

I now discuss a potential complication arisen from extending SAR 
to DAR, that is, negative scaling parameter (z) at higher diversity 
order q = 2–3. Table 4 below listed the number of negative z-values 
or positive d-values (to be discussed later) from fitting the three 
DAR models. The percentages of negative z of the three models PL, 
PLIEC, and PLEC at q = 2 for alpha-diversity DAR are 11%, 37%, and 

F IGURE  1 The DAR profile and PDO profile for the alpha-
diversity and beta-diversity built with the AGP dataset: (i) The 
alpha-DAR profile (z–q) and beta-DAR profile (z–q) are nearly 
overlapped, and similarly the alpha-PDO profile (g–q) and beta-
PDO profile (g–q) are nearly overlapped; (ii) The DAR profile is 
monotonically decreasing with diversity order (q), and the PDO 
profile is monotonically increasing with q

TABLE  4 The percentages of negative z-values or positive d-values in the DAR models with 100 (1,000) times of resampling from the 
random permutations of 1,473 individuals in the AGP datasets

Diversity order Model

Alpha-DAR (100 times) Alpha-DAR (1,000 times) Beta-DAR (100 times)

%Negative z %Positive d %Negative z %Positive d %Negative z %Positive d

q = 0 PL 0 NA 0 NA 0 NA

PLIEC 0 0 0 0 0 0

PLEC 0 0 0 0 0 0

q = 1 PL 0 NA 0 NA 0 NA

PLIEC 0 0 0.7 0 4.0 0

PLEC 0 0 0 0 0 0

q = 2 PL 11.1 NA 13.3 NA 23.7 NA

PLIEC 37.0 2.0 39.8 2.50 40.0 1.0

PLEC 5.00 5.0 11.3 11.3 13.7 13.7

q = 3 PL 29.8 NA 35.1 NA 29.3 NA

PLIEC 44.0 8.0 53.8 11.2 42.0 9.0

PLEC 12.0 12.0 22.5 22.5 21.6 21.6
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5%, respectively, and at q = 3, 30%, 44% and 12%, respectively. As 
these percentages numbers were computed from 100 (1,000) times 
of DAR models from resampling of the permutation orders of a single 
dataset, rather than multiple datasets, I consider the negative z was 
largely due to arbitrary ordering for diversity accrual, which is also 
the very reason why I adopt the average of 100 times of resampling. 
If the average z from the 100 (1,000) times of reordering (resampling 
from total permutations of the 1,473 individual in AGP dataset) is 
positive, I still consider the DAR model for the AGP dataset as posi-
tive DAR scaling.

Of course, I need to answer a more fundamental question, are 
negative z-values justified ecologically? Our answer is yes. This is 
because at higher diversity orders, unlike species richness, diversity 
does not necessarily rise in an accrued assemblage (community). 
For example, rare species in individual assemblage may become 
commoner, rarer or the same level of rareness when the assem-
blage is pooled together with another assemblage. Consequently, 
the diversity of the pooled community could be up, down, or un-
changed. As a side note, as mentioned previously, as parameter d 
in PLEC and PLIEC is an extension to c, rather than z, parameter z 
should have similar ecological interpretations as in the original PL 
model. Therefore, I consider negative z in the three DAR models as 
an ecological reality, rather than a mathematical artifact. In the case 
of AGP dataset, I adopt the average z of 100 times resampling of the 
permutation orders because there is not a natural order to accrue 
the diversity. If there is a natural order for accruing the diversity, 
that order should be followed to fit the DAR model, and the sign of z 
should be determined by the natural order.

An additional issue, similar to the sign of z, is the sign of d in PLEC 
and PLIEC. In both PLEC and PLIEC, d as an exponential cutoff pa-
rameter is usually negative. However, when z < 0, it is possible that 
d > 0. This has an implication for computing MAD (Dmax), as in expla-
nation for Equations 11 and 12 in previous section on the derivation 
of MAD. Indeed, as shown in Table 4, in the case of PLEC, negative z 
is always matched with positive d.

Yet another interesting finding can be observed from Tables 1, 
2, and 4 (also Supporting information Tables S4-S6), while PLIEC has 
the best statistical fitting judged from p-value and R, followed by 
PLEC and PL, PLEC has the lowest numbers of negative z, followed 
by PL and PLIEC. If I consider negative z a potential issue, although 
which may not be an issue at all as explained previously, PLEC seems 
to have an advantage of the lowest percentages of negative z-values, 
besides being able to predict MAD. The advantage of PL model is its 
simplicity and established ecological interpretations, but it may fail 
to fit DAR data at higher diversity orders. Table 4 also suggests that 
PLIEC has the highest percentage of negative z-values, and yet, neg-
ative z-values are not matched with positive d-values as in the case 
of PLEC. I am concerned that, although PLIEC has the best statisti-
cal fitting, its behavior may be unnecessarily more complicated than 
the PL and PLEC models. In consideration of the findings discussed 
above, I recommend the utilization of PL for DAR profile and PDO 
profile, and PLEC for MAD profile, at least for the study of human 
microbiome.

3.2.2 | The parameter ranges of alpha-DAR models

In all three alpha-DAR models, the scaling exponent (z) decreases 
with the increase in the diversity order (q). The alpha-DAR profile, 
that is, the z–q series with the PL model is [0.315, 0.085, 0.037, 
0.020]. The counterpart series for PLIEC and PLEC are [0.291, 0.058, 
0.014, 0.005], and [0.387, 0.165, 0.086, 0.052], respectively. Hence, 
the alpha-DAR profile is a monotonically decreasing curve (Figure 1). 
As existing literature has not established a systematic range for the 
diversity scaling parameter (z) beyond species richness, comparison 
with existing studies is limited to zero-order alpha-diversity (i.e., SAR). 
According to Green and Bohannan’s (2006) review, the reported SAR 
exponents in microbes were in the range between 0.019 and 0.470, 
but most values were below 0.2 (eight of 11 studies). Peay, Bruns, 
Kennedy, Bergemann, and Garbelotto (2007) reported a range of 
0.20-0.23 eukaryotic soil microbes. A major limitation of these early 
pioneering studies on the testing of SAR with microbes is then low 
throughput of DNA-sequencing technology in detecting bacteria, 
and consequently, the diversity and SAR exponent may be signifi-
cantly underestimated. Recent studies further confirmed the validity 
of microbial SAR (e.g., van der Gast, 2013, 2015; Ruff et al., 2015). As 
to the range of z-value in plants and animals in macroecology litera-
ture, there are many reports but most pointed to a range between 
0.2 and 0.4. A more recent large-scale investigation with 601 data-
sets from terrestrial islands by Triantis et al. (2012) revealed a full 
range from 0.064 to 1.312 with 51% fell between 0.2% and 0.4%, 
25% exceeded 0.4, and an average of z = 0.321. Our study hence not 
only falls in the general range, but also happens to be rather close to 
the average (0.315 vs. 0.321) reported in macroecology.

3.2.3 | Alpha-MAD profile prediction

The last two columns in Tables 1 and 2 listed the alpha-MAD pro-
file or Dmax–q predicted by the alpha-DAR PLEC models, that is, 
Dmax = [9,434, 229.7, 47.4, 24.5] (Figure 2) and Amax = [2,028, 802, 

F IGURE  2 The alpha-MAD profile for the alpha-diversity built 
with the AGP dataset: The MAD profile is monotonically decreasing 
with diversity order (q)
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969, 1,135] for (q = 0, 1, 2, 3). I consider the prediction of Dmax se-
ries rather reasonable based on the existing reports on species 
richness in the human gut microbiome (HMP Consortium (Human 
Microbiome Project Consortium) (2012). Nevertheless, I am some-
what reserved with the estimates of Amax, the number of individuals 
(‘area’) corresponding to the MAD, which seems being influenced by 
the random noise in the process of area/diversity accrual. This is evi-
denced by the wide range (max–min) of Amax in Tables 1 and 2, but 
the corresponding Dmax estimates are rather robust as indicated by 
their rather narrow ranges.

3.2.4 | Pair-wise alpha-diversity overlap

Based on the self-similarity property of PL-DAR, I introduce a new 
metric, pair-wise diversity overlap (PDO) (g) and PDO profile, as 
derived previously. The g-series (q = 0–3) or PDO profile for the 
alpha-DAR is [0.756, 0.939, 0.976, 0.987] (Figure 1). While the in-
terindividual (interpersonal) similarity at the species richness level 
(q = 0) can be relatively low (0.756% or 75.6%), due to functional re-
dundancy, the similarity at higher diversity levels (q > 0) should be 
rather high (94%–99%), which explains the observed monotonically 
increasing pattern of PDO profile.

3.2.5 | Summary on the alpha-DAR

I reiterate the following four important findings regarding the 
alpha-DAR scaling: First, extending the SAR to alpha-DAR meas-
ured in the Hill numbers is appropriate as verified with the AGP 
dataset. PL-DAR model is preferred in consideration of its sim-
plicity and established ecological interpretations in the literature. 
PL-DAR parameter z is the diversity accrual rate to area increase 
rate or the slope of the linear-transformed PL model. Parameter 
c is the number of species equivalents of diversity in one unit of 
area (but not per unit of area) as the scaling is nonlinear. Due to 

the interindividual heterogeneity (variability), c may be strongly in-
fluenced by the accrual order (what I termed random noise). It is 
mainly for this reason that I performed 100/1,000 times of resam-
pling operations and computed the averages from sampling to get 
the DAR model parameters. I also found that 100 times of sampling 
is enough to get reliable model parameters. Second, the alpha-DAR 
profile for q = 0–3 is z = [0.315, 0.085, 0.037, 0.020], monotonically 
decreasing with the diversity order (q). The parameter (z) at species 
richness level (q = 0) of AGP not only falls in the range of Triantis 
et al. (2012) meta-analysis, but also approaches to the average 
they reported in macroecology (AMGP = 0.315 vs. Triantis meta-
analysis = 0.321). Third, the PLEC = DAR model can be harnessed 
to predict the alpha-MAD profile for q = 0–3, Dmax = [9,434, 229.7, 
47.4, 24.5]. This is essentially the theoretical maximal accrual diver-
sity of the human gut micorbiome, estimated from the AGP dataset. 
Fourth, based on the self-similarity property, the pair-wise diversity 
overlap (g) between two individual samples (two humans in AGP 
case) or the alpha-PDO profile for q = 0 to 3 is g = [0.756, 0.939, 
0.978, 0.987]. This metric is obviously useful for characterizing the 
average pair-wise similarity (dissimilarity) between two human indi-
viduals in their gut microbiome diversity. Although other ecologi-
cal similarity measures (e.g., reviewed in Chao et al. (2014) in the 
literature may offer similar information, our new metric (g) has an 
advantage that synthesized information from cohorts such as AGP 
dataset of 1473 individuals.

3.3 | Beta-DAR analysis

Previous alpha-DAR analysis shows that 100 times of sampling op-
erations are large enough to deal with the random noise from area 
accrual. I then only sampled 100 times to conduct beta-DAR analysis 
to save computational resources (I observed that the computing load 
of beta-diversity analysis is nearly 10 times that for alpha-diversity), 
and the results are listed in Table 3. The symbols in Table 3 are the 
same as those in previous Tables 1 and 2 of alpha-DAR analysis. 
From Tables 3, I obtain the following findings regarding the test of 
beta-DAR models. Overall, the findings from beta-DAR are rather 
similar to those from alpha-DAR, and therefore, I keep the exposi-
tion of Table 3 intentionally brief.

3.3.1 | The performance of beta-DAR models

The goodness-of-fittings of the three DAR models (PL, PLEC, and 
PLIEC) to the beta-diversity scaling with the AGP dataset are even 
slightly better than to the alpha-diversity scaling. For example, the 
minimum percentage of successfully beta-DAR models is 93% in 
Table 3, compared with 90% in Tables 1 and 2. The minimum of av-
erage R (linear correlation coefficients) in beta-DAR models (Table 3) 
is 0.555, higher than that of 0.465 in alpha-DAR models (Table 1). 
Therefore, beta-diversity scaling can be modeled with the same 
mathematical functions as alpha-diversity scaling models. To the 
best of our knowledge, this is the first systematic modeling of the 
scaling of beta-diversity in the Hill numbers.

F IGURE  3 The beta-MAD profile for the beta-diversity built 
with the AGP dataset: The MAD profile is monotonically decreasing 
with diversity order (q)
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Similar to the previous alpha-DAR model, I also counted the 
negative z-values when the three DAR models were fitted to beta-
diversity scaling and the results are listed in Table 4 (the same table 
as for alpha-DAR). The percentages of negative z of the three models 
PL, PLIEC, and PLEC at q = 2 for beta-diversity DAR are 24%, 40%, 
and 14% respectively, and at q = 3, 29%, 42% and 22%, respectively. 
These percentages are somewhat higher than their alpha-diversity 
counterparts discussed previously, but our explanations and con-
clusions are the same as those previously summarized and recom-
mended for the alpha-diversity scaling.

3.3.2 | The parameter ranges of beta-DAR models

The beta-DAR profile, that is, the z–q series with the PL for beta-
diversity scaling is beta-z = [0.311, 0.078, 0.027, 0.019] (Figure 1). 
This series is rather close to that for alpha-DAR model, which is 
alpha-z = [0.315, 0.085, 0.037, 0.020]. Overall, the scaling patterns 
for both alpha-DAR and beta-DAR are rather similar. As existing lit-
erature has not established a systematic range for the beta-diversity 
scaling, there are no existing studies with which I can compare the 
range of scaling parameters.

3.3.3 | Beta-MAD-profile prediction

The beta-MAD profile predicted by the beta-DAR PLEC models, that 
is, beta-Dmax = [24.3, 5.5, 3.7, 3.4] (Figure 3) and beta-Amax = [2123, 848, 
818, 953] for (q = 0, 1, 2, 3). This beta-Dmax-q series is orders of magni-
tude smaller than its alpha counterpart, which is alpha-Dmax = [9434, 
229.7, 47.4, 24.5], although both the q–Amax series are rather close to 
each other. The magnitudes of differences in Dmax between alpha- and 
beta-diversity scaling are, of course, expected because the values of 
alpha and beta diversities are simply at rather different magnitudes.

3.3.4 | Pair-wise beta-diversity overlap

Similar to pair-wise alpha-diversity overlap, I obtained the g-series 
(q = 0–3) or PDO profile for beta-DAR is beta-g = [0.759, 0.944, 
0.981, 0.987] (Figure 1), which is rather close to that for the alpha-
DAR, that is, alpha-g = [0.756, 0.939, 0.976, 0.987]. This indicates 
that while the values of alpha-diversity and beta-diversity are at 
different orders of magnitudes, the degree (level) of their pair-wise 
diversity overlaps is essentially independent of the type of diversity 
measure adopted (alpha or beta).

3.3.5 | Summary on the beta-DAR

When measured in the Hill numbers, the beta-diversity follows the 
same scaling law as the alpha-diversity does. Indeed, both alpha-
DAR and beta-DAR follow the same scaling law as the traditional 
SAR does. This finding should be expected if I realize that all Hill 
numbers (either for measuring alpha, beta, or gamma diversities) are 
in units of species (or as species equivalents), and measure the effec-
tive number of species. Indeed, it was this fundamental property of 

the Hill numbers that motivated us to extend SAR to general DAR. In 
other words, SAR is a special case of DAR when the diversity order is 
set to zero (i.e., species richness when q = 0). The tests with the AGP 
dataset verified our postulation that motivated this study.

4  | DISCUSSION

Multiple mechanisms have been proposed to explain the classic 
SAR, including more individuals (also known as passive sampling, 
random placement, rarefaction effect, sampling effect, etc.), envi-
ronmental heterogeneity (spatial or temporal), dispersal limitations, 
population dynamics, niche-based interactions, biotic interactions, 
multiple species pools, meta-population theory, and self-similarity 
(see reviews by White et al. (2006), Scheiner et al. (2011)). In spite 
of the extensive studies in macroecology, little direct experimen-
tal evidence exists in the literature to prove or reject those pro-
posed mechanisms. Unlike many physical laws whose mechanisms 
can be theoretically derived and experimentally verified, ecologi-
cal laws are usually established inductively by the accumulation 
of experimental data. Although the accumulated ecological data 
may establish the validity of an ecological law, the data that can 
directly determine or reveal the mechanism are frequently difficult 
to collect. Due to this limitation, meta-analysis is often used to 
investigate the factors (variables) that may affect ecological law. 
In the case of SAR, quite a few excellent meta-analysis or simi-
lar synthesis (not necessarily followed meta-analysis procedure 
strictly) studies exist (e.g., Drakare et al., 2006), but the results of 
meta-analysis usually only identify the factors that significantly 
affect ecological laws (SAR), still may not offer direct evidence to 
support or reject a specific mechanism hypothesis underlying the 
law because the complex interaction among the factors is usually 
hard to consider in meta-analysis, which may play an important 
role in controlling the behavior of ecosystem (or community). This 
somewhat unique property of ecological laws also explains why I 
cannot offer definite conclusion on the mechanism underlying the 
DAR of the human microbiome. For example, Drakare et al. (2006) 
meta-analysis with 794 SAR studies reported in major ecological 
journals revealed that SAR is significantly influenced by variables 
determining sampling schemes, the spatial scale, and the types of 
organisms or habitats involved. Those meta-analyses on SAR also 
offered important insights on the model selection (more than 20 
SAR models have been proposed, tested, and evaluated) and other 
important issues (Tjørve, 2009; Triantis et al., 2012; Williams 
et al., 2009). Our study benefits enormously, especially on the 
study design including the model selection and fitting, choice of 
sampling scale (unit), accrual scheme, from the insights and recom-
mendations reported in those existing meta-analyses. Even with 
these efforts, like many other SAR studies, I could not escape from 
the general limitation involved in the research of ecological laws.

As demonstrated in previous sections, I systematically extend 
the traditional SAR relationships to their counterparts of DAR re-
lations for both alpha-diversity and beta-diversity, based on the 
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known most appropriate diversity metrics—the Hill numbers. These 
extensions enrich our tools for investigating the biogeography of 
ecological communities and ecosystems in general, which can be 
particularly true for deepening our understanding of the biogeo-
graphic properties such as spatial heterogeneity of the human mi-
crobiome (e.g., Hanson, Fuhrman, Claire Horner-Devine, & Martiny, 
2012; Oh et al., 2014). The DAR models are likely to offer important 
guidelines for conserving arguably the most important biodiversity 
to our health—the diversity of our gut microbiome (O’Doherty 
et al., 2014), similar to the role of SAR in conservation biology.

It should be pointed out that the focus of the present article 
was centered on the definitions and computational procedures 
(methodology) for extending the classic SAR to more general 
DAR. I intentionally chose a large, but with relatively simple sam-
pling design, dataset of the American gut project, to simplify the 
demonstration of the extensions. In a follow-up, more application-
oriented study (Ma, 2018), we utilized more comprehensive and 
sophisticated datasets from the HMP (human microbiome project), 
which includes samples from 18 body sites of a cohort of 242 indi-
viduals. Some of the DAR features, including their biological inter-
pretations, may be better illustrated in the follow-up application 
reported in Ma (2018). Nevertheless, I should emphasize that the 
concepts and estimations of PDO and MAD, especially those of 
MAD, are rather complex, and cautions must be taken when they 
are recommended for practical applications. This is because ad-
ditional factors beyond those considered in building DAR models 
may influence their estimates, because, ultimately, MAD depends 
on the parameters of PLEC-DAR models, and PDO depends on the 
scaling parameter of PL-DAR. In particular, MAD-Dmax depends on 
all three parameters (z, c, and d) of PLEC model, while PDO-g only 
depends on the scaling parameter (z) of the PL model. I expect that 
the parameter c is likely influenced by sampling schemes adopted 
(especially sampling unit or scale). In the case of microbial DAR, 
sequencing platforms including bioinformatics software pipelines 
may have an effect on the estimation of parameter c. A reason I am 
less concerned with the estimation of scaling parameter (z) is to do 
with the property of the power law model, which is scale invariant 
as explained in Ma (2015).
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