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Acquired immune deficiency syndrome (AIDS), which is caused by HIV infection, is

an epidemic disease that has killed millions of people in the last several decades.

Although combination antiretroviral therapy (cART) has enabled tremendous progress

in suppressing HIV replication, it fails to eliminate HIV latently infected cells, and infected

individuals remain HIV positive for life. Lifelong antiretroviral therapy is required to maintain

control of virus replication, which may result in significant problems, including long-term

toxicity, high cost, and stigma. Therefore, novel therapeutic strategies are urgently

needed to eliminate the viral reservoir in the host for HIV cure. In this review, we compare

several potential strategies regarding HIV cure and focus on howwemight utilize chimeric

antigen receptor-modified T cells (CAR T) as a therapy to cure HIV infection.
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INTRODUCTION

According to UNAIDS, more than 70 million people have been infected with the human
immunodeficiency virus (HIV) and about 35 million people have died of HIV infection since this
epidemic was first identified in the early 1980s. Globally, 37.9 million people were living with
HIV at the end of 2018. The most effective and powerful therapy for HIV infection currently
is combination antiretroviral therapy (cART), which has remarkably reduced morbidity and
mortality and achieves durable suppression of plasma viremia below the limit of detection (1).
The therapy has greatly extended life expectancy, turning HIV into a chronic disease that can
be controlled instead of a death sentence, and has helped HIV-infected individuals live an almost
normal life.

However, cART fails to cure HIV infection because of the existence of the latent viral
reservoir, which is mainly a group of latently infected resting memory CD4+ T cells containing
replication-competent HIV. All the cell types bearing the CD4 and its co-receptor (CCR5 or
CXCR4) can be infected and become HIV latent reservoirs, including monocytes, macrophages,
and dendritic cells (2). The HIV reservoir can exist in various compartments, such as peripheral
blood, lymph nodes, the central nervous system, gut-associated lymphoid tissue (GALT), the
genital tract, and any other tissues that contain HIV-infected cells (3). This latency does not
express virus under the suppression of cART, but it can cause virus rebound once the therapy
is interrupted (4). Thus, the persistence of HIV latency is regarded as the major obstacle
to viral eradication (5–7). Meanwhile, as the half-life of HIV under effective cART is 44
months long (8, 9), more than 70 years of treatment is needed to achieve viral eradication.
Hence, cART alone cannot get rid of the HIV reservoir, no matter how effective the drugs
might be in controlling viral replication (10). Certainly, long-term use of cART brings up
problems such as accumulative toxicity (11), drug resistance (12, 13), patient compliance,
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high cost, and even social problems like stigma. Additionally,
chronic low-grade inflammation due to HIV infection continues
even under the control of cART, which can accelerate aging,
causing frailty syndrome at a younger age and a higher rate of
comorbidity (11). So far, only two cases of HIV remission have
been achieved in the past decades. These are Berlin and London
patients who suffered from both hematologic malignancies and
HIV infection, received CCR5132/132 allogeneic hematopoietic
stem-cell transplantation (allo-HSCT), and achieved functional
cure of both diseases. However, their success cannot be applied
widely to HIV patients because of the high level of risk associated
with marrow transplantation and there being limited suitable
donors with CCR5132/132(14). Therefore, new strategies for
HIV therapy that can achieve sterilization or functional cure need
to be investigated. Treatment with chimeric antigen receptor-
modified T cells (CAR T), a type of adoptive immunotherapy, has
shown promising prospects for the therapy of B-cell malignancies
(15–17). In parallel, HIV-specific CAR T cells have been designed
for the treatment of HIV/AIDS. The first generation of HIV-
specific CD4 receptor-based CAR was developed more than 20
years ago but was aborted because the resultant CAR T cell
was susceptible to HIV infection and had negligible efficacy (18,
19). With the discovery of numerous potent anti-HIV broadly
neutralizing antibodies (bNAbs) in recent years, bNAb-based
CAR T therapy has been viewed as a potential strategy to cure
HIV infection. Here, we provide an overview of recent studies on
possible strategies for achieving HIV cure and mainly focus on
the development, barriers, and future direction of CAR T therapy
for HIV cure.

ESTABLISHMENT OF THE HIV LATENT
RESERVOIR

The mechanism of formation of HIV latency in memory CD4+
T cells is still unclear but is likely to involve viral tropism
and activation of CD4+ T cells. When resting CD4+ T cells
are exposed to chemokines in tissue sites, they might become
permissive to being infected by HIV (20). However, these cells
are usually not easily infected due to their low expression of the
co-receptor CCR5 unless they are activated to upregulate this
essential element for viral entry (21). On the other hand, HIV
replication in infected cells usually leads to cell death (22, 23).
However, after infection by HIV, the activated CD4+ T cell could
revert to a resting state, which results in minimal viral gene
expression (24) and enables the host cell to escape from the
immune attack and survive the viral cytopathic effects.

It is important to note that, in HIV infection, very few CD4+
T cells can transit from the activated state to the memory state,
as most infected and activated CD4+ T cells are killed either
by cytopathic effects or host immune targeting (24). It was
determined that latently infected cells have an extremely low
frequency in HIV+ individuals and that the virus yield is about
0.03–3.00 IU (infectious units) per million resting CD4+ T cells
(9). However, during acute infection, the HIV replication level
is very high, which allows for latency to develop shortly after
infection (e.g., within 3 days of infection) (25).

STABILITY OF THE HIV LATENT
RESERVOIR

One important characteristic of the HIV latent reservoir is
its remarkable stability due to the persistence of HIV in the
long-lived resting memory CD4+ T cells, which can undergo
antigen-driven clonal expansion (5, 26). Evidence for clonal
expansion of infected resting memory CD4+ T cells is provided
by the predominant clones discovered in plasma, which remain
unchanged over months to years in HIV patients under effective
cART (27, 28). Analyzing the integration sites of HIV proviral
DNA provides more direct evidence because HIV randomly
integrates into transcriptionally active regions of the host genome
of each infected resting CD4+ T cell clone (29–31). Several
studies have identified identical HIV integration sites in multiple
CD4+ T cells in HIV patients receiving effective cART (32–35).
In addition, full-length proviral sequencing (32, 36) and ex vivo
culture systems also provided evidence for clonal expansion of
infected cells. Furthermore, three recent studies have all shown
that 50–60% of the latent reservoir is made up of expanded clones
at any given time (36–38).

Importantly, infected cells carrying defective proviruses
appear to expand more than infected cells with active provirus,
suggesting that defective proviruses produce fewer viral proteins
inducing cytopathic effects or immune response (32). However,
some studies show that clonal expansion also occurs in cells
carrying replication-competent proviruses (34, 36–38), even
though it could possibly lead to HIV gene expression in the cells
and consequent viral cytopathic effects.

POSSIBLE STRATEGIES FOR HIV CURE

As mentioned above, cART cannot cure HIV infection due to
the existence of the HIV latent reservoir. A number of strategies,
including gene therapy, “block and lock,” and “shock and kill,”
have been developed and tested in order to eradicate the HIV
reservoir. However, despite inducing detectable latency reversal,
these strategies have not yet been able to eliminate the latent
reservoir completely.

Gene Therapy
There are mainly two strategies to cure HIV infection by using
gene-editing tools, which are also commonly used for other
diseases. The first is to remove the latent reservoir directly
by excising the provirus (Figure 1A). Ebina et al. designed a
CRISPR/Cas9 system targeting the HIV long terminal repeat
(LTR) region to excise integrated HIV provirus from the latently
infected resting CD4+ T cells. The result showed efficient
editing in target sites and great loss of LTR-driven expression
(39). Furthermore, the latest report indicated that HIV could
be eliminated from cell and tissue reservoirs in sequential
long-acting slow effective release ART (LASER ART) and
CRISPR/Cas9-treated humanized mice (40). This first successful
experiment using an animal model shows that gene therapy
should be combined with precisely targeted treatment delivery
to effectively block HIV viral growth and provirus integration.
However, the safety of CRISPR-based gene editing in the context
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FIGURE 1 | Possible strategies for HIV cure. Gene therapy for HIV cure by excising provirus DNA (A), mutating CCR5 (B), “block and lock” through silencing latent

reservoir permanently (C), and “shock and kill,” through activating HIV latently infected cells followed by immune destruction or viral cytopathic effects (D).

of the human gene therapy is largely unknown, and the ethical
issues involving human genomemanipulationmust also be taken
into account.

A second strategy for gene therapy is to stop new infection,
aiming at functional cure. HIV enters a target cell with the
help of CD4 and the CCR5 (41) or CXCR4 (42) co-receptor.
A homozygous 32-bp deletion in the CCR5 gene can make
individuals naturally resistant to CCR5-tropic HIV infection
(43, 44) though still susceptible to virus targeting CXCR4

tropism (45). The success of the “Berlin patient,” the first case
in which HIV sterilizing cure was achieved by transplantation
of allogeneic donor CCR5132 hematopoietic stem progenitor
cells (HSPCs) (46), demonstrated that disruption of the CCR5
gene to prevent new infection could be a potential cure (47).
However, it is unclear which part of the treatment of this
case, the total body irradiation before each HSCT or the
HSCT itself, contributed more to this long-term HIV remission
(14). The second case, the “London patient,” also achieved
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HIV remission after a single allo-HSCT with homozygous
CCR5132 donor cells but did not receive any irradiation
(14). This strongly supports the strategy of deleting the CCR5
receptor on the cell surface to cure HIV infection. Tebas et al.
made CCR5 gene permanently dysfunctional in autologous
CD4+ T cells through ZFN modification (Figure 1B), then
reinfused the modified T cells into patients. During treatment
interruption and resultant viremia, the decline in circulating
CCR5-modified cells was significantly less than the decline in
unmodified cells, and the blood level of HIV DNA decreased
in most patients (48). Recently, Xu et al. reported successful
transplantation and long-term engraftment of CRISPR/Cas9-
edited, CCR5-ablated HSPCs in a patient with HIV infection
and acute lymphoblastic leukemia (49). However, the percentage
of CCR5 ablation in lymphocytes was only ∼5%. Moreover, a
recent study showed that the mortality rate of homozygosity
for CCR5-132 mutation is higher (∼21%) than for the other
genotypes before age 76 (50). Hence, it is necessary to pay
more attention to the safety and risks of gene editing and
the potential deleterious effect of CCR5 mutation at the
individual level.

Block and Lock
Although cART cannot suppress HIV replication completely,
it reveals the possibility of curing HIV through silencing the
latent reservoir permanently, known as the block & lock strategy
(Figure 1C). The whole process, from entry to virus release,
can be the target of this strategy. Lentiviruses, including HIV,
prefer to integrate into the active transcriptional regions of host
DNA (29, 51), indicating that integrase inhibitors may help block
the HIV reservoir. Vranckx et al. used LDGEF/p75 inhibitors
(LEDGINs), a kind of integrase inhibitor that can inhibit HIV
integrase from interacting with LEDGF/p75 host cofactor, to
retarget HIV integration, resulting in the provirus becoming
more refractory to reactivation even by using latency-reversing
agents (LRAs) (52). Mousseau et al. showed that the Trans-
activator of transcription (Tat) protein inhibitor didehydro-
cortistatin A (dCA), an analog of the natural product cortistatin
A, could bind to the trans-activating response (TAR)-binding
domain of Tat and selectively inhibited Tat transactivation of
the HIV promoter. Importantly, dCA abrogated viral production
from stable reservoirs, reduced residual viremia during cART
(53), and greatly diminished the capacity for virus reactivation
(54). According to these results, the inclusion of a Tat inhibitor
in current cART regimens may also contribute to the functional
HIV cure.

Shock and Kill
Initial attempts at viral eradication involved global T-cell
activators such as IL-2 and IL-2 + anti-CD3 antibodies (55,
56). However, despite inducing detectable latency reversal,
these strategies ultimately failed to reduce the latent reservoir
size and were associated with significant side effects due to
massive cytokine release (57). In the last few years, HIV cure
research has focused on the “shock and kill” strategy, which
is aimed at attacking the HIV reservoir directly. This strategy
could effectively expose viral reservoirs to a combination of

cART and immune-mediated destruction or even eliminate the
latently infected cells through viral cytopathic effects (vCPE).
The goal of the “shock” is to reactivate viral replication in
infected resting CD4+ T cells by LRAs in order to induce “kill”
through attack by the immune system or active viral production
(Figure 1D). There are many kinds of LRAs, for example, Protein
kinase C (PKC) agonists (58), Histone Deacetylase inhibitors
(HDACi) (59), and Histone Methylation inhibitors (HMTi) (60,
61). The most promising LRAs at this time are non-specific
Histone Deacetylase inhibitors (HDACi), as they can acetylate
the histone of integrated proviral promoters in vitro. Vorinostat,
Disulfiram, and Romidepsin have been tested in clinical studies as
candidate HDACi to induce viral replication, while the activated
immune response would be expected to “kill” cells producing
HIV (62–65).

The discovery that some of the latently infected CD4+ T
cells are HIV-specific inspired another approach to reverse HIV
latency (66, 67). By using an HIV vaccine providing a near-
complete representation of viral quasispecies, such HIV-specific
latently infected cells might be reactivated (68), and at the same
time, cytotoxic T Lymphocyte (CTL) priming as well as the
“kill” part of “shock and kill” strategies could be enhanced (57).
A latency-reversing intervention could induce HIV expression
indirectly by involving other cells. For instance, the TLR-7
agonist GS-9620 shows the ability to indirectly induce HIV
expression in CD4+T cells, probably through IFN-γ release from
plasmacytoid dendritic cells (69). However, some reports indicate
that these strategies have been unable to significantly impact
the HIV reservoir size in patients (70, 71). Additionally, there
is evidence to suggest that certain strategies may also adversely
affect immune responses (72, 73). Thus, extensive research is
being conducted to build more powerful “kill” in order to
improve the strategy, including broadly neutralizing antibodies
and immune checkpoint inhibitors (74).

CAR T CELL THERAPY

Chimeric antigen receptor (CAR) contains three domains:
an extracellular domain to specifically bind antigens, a
transmembrane portion to anchor the receptor, and an
endo-domain to transfer signals (75). The extracellular domain is
a single-chain fragment variant (scFv) derived from the variable
domain of antibodies or receptors. The endo-domain being used
is CD3ζ, a signal-transduction component of the T-cell antigen
receptor (76). With these characteristics, researchers can design
CAR to recognize specific antigens and activate CAR-expressed
effector-cells (77). In practice, researchers could generate and
expand CAR T cells from patients’ blood, followed by reinfusion
of CAR T cells into the patients (78). Take HIV-specific CAR T
as example: CD8+ T cells are collected from HIV patients and
transduced with CAR genes; after in vitro verification of the anti-
HIV specificity and effectiveness, the functional HIV-specific
CAR T cells are reinfused into patients to kill HIV-infected
cells (Figure 2).

Four generations of CARs have been developed for the
treatment of diseases since the chimeric antigen receptor
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FIGURE 2 | Schematics of CAR T-cell therapy for HIV infection. Collecting CD8+ T cell from HIV patient (a), inserting CAR genes into CD8+ T cells in vitro (b),

expansion and functional identification of CAR T cells (c), reinfusing the HIV-specific CAR T cells into patients (d), and CAR T cells killing HIV-infected cells (e).

was first presented in 1989. The first generation contains
the CD3ζ-chain as the typical signal structure (75). The
second generation adds additional costimulatory molecules like
CD28, 4-1BB (CD137) to the signaling domain to improve
the effector cells’ proliferation, persistence, cytotoxicity, and
sustained response (79–81). The third generation has two
costimulatory molecules and outperforms the second generation
in terms of cytotoxicity and long-term survival (82). The latest
generation of CAR-T cells, also known as T cell redirected
for universal cytokine-mediated killing (TRUCK), adds IL-
12 gene into the CAR cassette; thus, CAR expression is
accompanied by the release of IL-12. This structure enhances
T-cell activation and attracts and activates innate immune cells
to eliminate antigen-negative targeted cells in the targeted
lesion (83).

Success of CAR T Therapy in Cancer
Recently, by using autologous CD19-specific CAR-modified
T cells, researchers have achieved complete remission in
patients with hematologic malignancies like chronic lymphocytic
leukemia (84), acute lymphoblastic leukemia (ALL) (85), diffuse
large B-cell lymphoma, and follicular lymphoma (86) who
were refractory to immunochemotherapy and transplantation or
relapsed after the treatment. These results showed the safety,
efficiency, feasibility, and durable effect of CAR T therapy. In the
field of anti-ALL, CAR T therapy achieved complete remission
in 27 out of 30 patients with relapsed or refractory ALL. At 6
months, the event-free survival rate was 67%, while the overall
rate of survival is 78%. Durable remissions up to 24 months
were also observed (85). While CAR T therapy worked well in
hematologic cancers, it has been less effective in the treatment of
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solid tumors, likely due to lymphocyte trafficking problems (87).
Fortunately, this might not be a limitation for HIV, as the main
latency pool of HIV consists of CD4+ T cells (6, 11–13).

CAR T Therapy for HIV Cure
The CTL response is a key component of host immunity against
HIV infection (88, 89). In elite controllers, a rare group of people
who are able to control HIV replication by their immune system
for a prolonged period without anti-HIV treatment (90), it is
believed that their spontaneous viral control is mediated largely
by CD8+ T-cell response (91, 92). In addition to its significant
role in suppressing HIV replication during acute infection (93,
94), boosting HIV-specific CTL responses before viral activation
by LRAs could lead to rapid and effective killing of infected cells
(57). On the other hand, due to this robust selective pressure, HIV
quickly obtains mutations to escape CTL recognition (93, 95).
It is reported that unless cART is started in the early stages
of HIV infection, the vast majority (>98%) of latent viruses
will carry CTL escape mutations (95). Studies also revealed
that elite controllers have higher functional avidity and broader
variant cross-reactivity of CTL responses when compared with
non-controllers, indicating the critical importance of dealing
with viral escape mutations for controlling HIV infection (96).
Therefore, equipping CD8+ T cells with a CAR that is able to
recognize various HIV antigens is a key for HIV cure. At present,
the CD4 receptor (97) and bNAbs (98, 99) are used to construct
anti-HIV CARs. CD4, which interacts with gp120 during HIV
infection, has naturally high affinity to HIV. The CD4 receptor-
based CAR T cell was demonstrated to have the same level
of kinetics of lysis and efficiency of inhibition as naturally
occurring CTL clones (100). Despite the fact that the CD4
receptor can fully neutralize all HIV isolates, the CD4 receptor-
based CARs make the gene-modified T cells vulnerable to
HIV infection.

Broadly neutralizing antibodies against HIV are found in
∼20% of HIV-infected individuals. These bNAbs target HIV
envelope glycoprotein (Env) and have the ability to neutralize
most circulating HIV strains (101). Due to their affinity, potency,
and breadth of anti-HIV neutralization, it is believed that
developing bNAb-CAR for HIV cure would be effective. Hale
et al. tested four types of bNAb-based CARs (PGT-128, PGT-145,
VRC07-523, and 10E8). Co-culturing with a stably infected HIV-
positive T cell line in the presence of ART, primary human T cells
engineered with bNAb-based CARs showed specific activation
and killing of HIV-infected cells (99). CTL can mediate infected
cell lysis with the help of major histocompatibility complex class
I (MHC-I) molecules, but HIV could downregulate the surface
expression of MHC-I in infected cells to escape this immune
response (102, 103). However, CAR T cells could overcome
this viral escape mechanism, as the chimeric antigen receptor
directly recognizes antigen without MHC I restriction (75,
104). Further, the long-term persistence of CAR T-cell therapy
promises prolonged therapeutic benefit (85, 105). Scholler et al.
reported that CD4 receptor-based CAR T cells have a decay half-
life exceeding 16 years with stable levels of engraftment. As this
group measured >500 patient-years of follow-up, their results
also emphasized the safety of this therapy (105). One explanation

for the long survival time of CAR T cells could be that a portion
of these cells persist as functional memory T cells (88), whose life
expectancy is much longer than that of effector T cells. Memory
CAR T cells also promise to react rapidly and robustly, even if
HIV infection reoccurs years later. Additionally, it was observed
that CAR T cells persisted at high levels for at least 6 months in
the cerebrospinal fluid (CSF) (106), a compartment that contains
a significant but hard-to-reach reservoir of HIV (107). A recent
study showed that primary T cells transduced with a multi-
specific CAR (targeting both the gp120 CD4-binding site and
the gp120 co-receptor–binding site) had the ability to potently
reduce cellular HIV infection by up to 99% in vitro and >97% in
vivo (108).

Two phase II clinical trials of CAR T therapy were carried
out in 2000, using the same CAR design but treating two
groups of patients with either undetectable viremia or active viral
replication. In these trials, both CD4+ and CD8+ T cells were
engineered with CD4ζ CAR including a CD28 costimulatory
domain. The help provided by CD4-CAR CD4+ T cells was
believed to contribute to the prolonged survival of engineered
T cells in both studies (97, 109). In the trial with active viral
replication, CAR T cells had high persistence in blood for the 8
week observation period (1–3% of peripheral bloodmononuclear
cells) and survived in 17 of 18 subjects for at least 1 year. In
this trial, researchers also reported a >0.5 log mean decrease for
at least 14 days in rectal tissue-associated HIV RNA, suggesting
antiviral activity of these CAR T cells against this important
tissue reservoir of HIV (109). In another trial in 2002, in which
the plasma viral loads were <50 copies/ml, infusion of CD4-
CAR T cells decreased HIV burden from baseline but caused
no differences in the size of the viral reservoir (97). These trials
confirmed the safety and feasibility of CD4-CAR T-cell therapy
and suggested the necessity of enhancing in vivo expansion
of chimeric receptor-modified T cells and optimizing in vivo
function. Another two clinical trials of CAR T-cell therapy in
HIV-positive patients under cART treatment are ongoing or in
recruitment: one (NCT03240328) is testing a bNAb (VRC01)-
based CAR, and the other (NCT03617198) is evaluating a
CD4-CAR T cell modified by ZFN disruption of its CCR5 for
HIV resistance.

Obstacles and Solutions for Using CAR T
Therapy in HIV
Even though it is predicted that anti-HIV CAR T therapy should
be effective based on its performance in vitro, early clinical
trials showed the safety of CAR T therapy but little efficacy
in vivo. Besides, there are several obstacles or limitations as
described below.

Cell Expansion
Several groups infusing expanded modified (110, 111) or even
natural (112) CTL specific to HIV all showed that those cells died
as a result of immune response or apoptosis in a very short time.
Scholler et al. observed that CD4 receptor-based CAR T cells had
no evidence of expansion and even persisted in high levels in
vivo for decades (105). The problem of CAR T-cell expansion and
persistence also occurred when applied in tumor treatment (113,
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FIGURE 3 | Obstacles in HIV-specific CAR T therapy development. Cell expansion and persistence in vivo (A), susceptibility to HIV infection (B), off-target effects (C),

and severe cytokine release syndrome (D).

114). It is still unknown howmuch cell expansion and persistence
contributes to the modest effect of CAR T cell in vivo. However,
researchers consider it a possible direction for achieving a better

outcome for CAR T therapy (Figure 3A). Sockolosky et al.
utilized interleukin-2 (IL-2), a cytokine required for effector T
cell expansion, survival, and function to help in CAR T-cell
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expansion. To avoid universal stimulation of effector T cells
by IL-2, they engineered interleukin-2 (IL-2) cytokine-receptor
orthogonal (ortho) pairs to interact with one another only,
without interacting with their natural counterparts, while still
transmitting native IL-2 signals. By introducing this engineered
orthoIL-2Rβ into T cells, they selectively exploited the benefit of
IL-2 with limited off-target effects and negligible toxicity (115).
By using CRISPR/Cas9, Eyquem et al. directed CD19-specific
CAR to the T-cell receptor α constant locus to help with CAR
T-cell expansion. They reported that CAR expressed uniformly
in human peripheral blood T cells, enhanced T-cell potency,
performed tonic CAR signaling, and re-expressed following
single or repeated exposure to antigen. Their results also showed
a delay in effector T-cell differentiation and exhaustion (116).
Fraietta et al. knocked down methylcytosine dioxygenase TET2
gene to improve the expansion and efficacy of CAR T cells
and observed that, in one subject, 94% of CAR T cells likely
originated from a single colony in which the TET2 gene was
disrupted by the integrated CAR gene (117). Lack of antigen
stimulation due to very low viral replication under cART might
also contribute to the short-term persistence of infused CAR
T cells. Therefore, in addition to a strong killing effect, the
ideal shock and kill strategy using CAR T cells also needs to
effectively reactivate latent reservoirs to produce virus, which
will not only help CAR T cells to recognize the latently infected
CD4+ T cells but will also help them to expand and achieve a
better outcome.

Susceptibility to HIV Infection
Another challenge is that CD4 CAR engineered CD8+ T cells
are vulnerable to HIV infection (118), since CD8+ T cells
have abundant CCR5 coreceptor on the cell surface (119)
(Figure 3B). For this reason, Kamata et al. co-expressed two
shRNAs, one targeting CCR5 expression and another targeting
the HIV LTR, to prevent CD4 receptor-based CAR T cells
from becoming HIV infected (120). Their results showed that
over time, the number of shRNA-expressing CD4 receptor-
based CAR T cells was higher than those without shRNA
expression, suggesting that the susceptibility of CAR CD8+
T cell to HIV infection might partly account for its short
persistence (120). Liu et al. constructed a novel bispecific CD4-
CAR by adding a single-chain variable fragment of the 17b
human monoclonal antibody, which can recognize a highly
conserved epitope on gp120. Their CD4-17b CAR showed
resistance to HIV infection, with higher potency of viral
suppression than CD4 receptor-based CAR (18). To improve
this bispecific CAR, the same group next substituted 17b
with carbohydrate recognition domains (CRD) of a human
C-type lectin that had been reported to interact with HIV
gp120 mannose-containing glycans, including serum mannose-
binding lectin (MBL), langerin, and liver/lymph node-specific
intercellular adhesion molecule-3 grabbing non-integrin (L-
SIGN). It was reported that the recognition by CRDs was a
universal feature that would be hard for HIV to escape. They
also emphasized that MBL, a soluble protein present in the
circulation, should be safer, as immune reactivity against it
should not target normal cellular self-protein. According to

their results, this new bispecific CD4-lectin CARs enhanced
potency and successfully prevented HIV infection (121). Using
bNAb in CAR construction is another approach to prevent the
susceptibility of engineered T cells. These bNAbs would not
serve as a natural molecule on the cell surface to mediate HIV
infection. Researchers using bNAb-based CAR have not reported
any CAR T cells infected by HIV (98). Hale et al. even used a
gene-editing tool to recombine a bNAb-CAR gene cassette into
the CCR5 locus in order to destroy the CCR5 gene and ensure
the engineered cells are HIV resistant and confirmed its feasibility
and effectiveness (99).

Off-Target Effects
Chimeric antigen receptors (CARs) could be constructed to
specifically target HIV latently infected cells to achieve a
cure. However, it is possible that CAR could also attack
other healthy cells expressing the same or similar target
antigen, which is known as an off-target effect (Figure 3C).
For example, as CD19 is expressed on both normal and
malignant B cells, B cell aplasia is inevitable when using CD19-
based CAR T therapy to treat hematologic malignancies (84–
86, 88). Fortunately, no evidence showed cytolysis of MHC
II (CD4 counterpart)-expressing cell lines in CD4-CAR trials
(18, 122). It is even safer to utilize bNAb-based CAR T
therapy, because these bNAbs are specifically targeting HIV
envelope glycoprotein, while CD4 may have more orthologs in
nature. However, the ability of CAR to recognize its specific
antigen without MHC I assistance raises another concern that
it could recognize soluble antigen (e.g., cell-free or virion-
associated HIV protein) and be activated to release cytokines
toxic to surrounding tissues instead of specifically targeting HIV-
infected cells.

Severe Cytokine Release Syndrome
When CAR T cells are infused into a recipient, they will
be activated through cognate interaction with their specific
antigens. While they could specifically attack the target antigen-
expressing cells, they might also result in a progressive
systemic inflammatory process, known as severe cytokine release
syndrome (sCRS), whose typical manifestations are usually
high fever, hypotension, or even organ failure (Figure 3D).
After the infusion of CAR T cells, CRS usually occurs within
1–14 days and has a duration of 2–3 weeks to reach full
resolution, influenced by the product, clinical trial design, the
individual being treated, and the intervention. IL-6 is a signature
cytokine of CRS. CAR T cell-mediated clearance of cancer could
trigger elevated IL-6 levels. The most important source of IL-
6 during CRS is human monocytes. Therefore, getting rid of
human monocytes or blocking IL-6 receptor with tocilizumab
could prevent CRS. It was reported that tocilizumab rapidly
reversed sCRS induced in a critically ill child by CAR T
therapy (106). Corticosteroids are also helpful in some cases to
control CRS. However, in contrast to tocilizumab, high doses
of corticosteroids may impact the antitumor effect of the CAR
T cells.
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Neurologic Toxicity
Neurologic events in CAR T therapy include encephalopathy,
delirium, aphasia, focal deficits, and seizures. Neurologic toxicity
is poorly understood but is considered to be associated with
supraphysiologic levels of cytokines and CAR T cells crossing
blood–brain barriers. Within the first few weeks of CAR T-
cell therapy, neurologic events could occur following CRS
or during resolution. Although both neurologic toxicity and
CRS are related to high cytokine levels due to CAR T-
cell activation, more severe systemic CRS can be a risk
factor for neurologic toxicity. However, these two adverse
events have independent definitions and need independent
management. Tocilizumab was observed to have limited efficacy
in resolving neurologic toxicity, possibly because of its poor
central nervous system penetration (16, 123, 124). Thus,
corticosteroids are used by some centers as first-line therapy
for isolated neurologic toxicity (125–127). Optimized treatment
algorithms and further research on mechanisms of CAR T-cell
therapy-related neurologic toxicity are needed to achieve better
management outcomes.

Other New Development in CAR T Therapy
Beside the above-mentioned advantages and potential problems
of CAR T therapy, there are some other important developments
in HIV CAR T strategies, including improvements of CAR T in
tumor therapy that might be useful for HIV cure. Leibman et al.
optimized the construction of CD4 receptor-based CAR from
the lessons of engineering CARs for hematologic malignancies
(128). In terms of capacity to control HIV replication, their
re-engineered CAR was at least 50-fold more effective than
the original CD4 receptor-based CAR, a TCR-based approach,
and bNAb-based CARs. By switching the MMLV-based gamma-
retroviral vector to an HIV-based lentiviral vector and by
switching the PGK promoter to an EF1α promoter, CAR surface
expression was significantly augmented. In addition, the CD8α
transmembrane (TM) domain took the place of the CD4 TM
domain, which would be downregulated by HIV Vpu. The
CD8α TM domain also promoted CAR dimerization, increased
variability from the HIV cellular receptor, and enhanced the
cytotoxicity of the resultant CAR. The substitution of the
transmembrane domain also decreased the susceptibility of CAR
CD8+ T cells to HIV infection. Next, different costimulatory
molecules, including CD28, 4-1BB, CD28+4-1BB, OX40, ICOS,
and CD27, were compared in culture. Experiments showed that
ICOS, CD27, and 4-1BB co-stimulation impaired the suppression
of HIV duplication. However, when compared with CD28-
containing CARs, 4-1BB-containing CARs performed better in
controlling early infection in the HIV prevention model and
exhibited more durability in the treatment model. The authors
concluded that the 4-1BB zeta signaling domain was optimal
in HIV cure strategies for (1) acting rapidly to prevent HIV
transmission, (2) durably preventing viral rebound, and (3)
promoting T-cell survival in the absence of antigen.

It has been reported that, within B cell follicles where T
follicular helper (Tfh) cells are located, the number of specific
CTLs was too low to stop ongoing viral replication during

chronic HIV infection. To solve this problem, Haran et al. co-
expressed a potent bispecific anti-SIV CAR (rhCD4–MBL) with
the B-cell follicle-homing chemokine receptor CXCR5 to direct
CAR T cells. In in vitro migration assay, they showed that the
CAR/CXCR5T cells migrated to CXCL13, the ligand for CXCR5.
Meanwhile, CXCR5 co-expression improved the concentration
of CAR T cell in the B cell follicles in ex vivo tissues. They also
showed that the co-expression of CXCR5 did not compromise
the SIV-suppressive activity of the CAR T cell (129).

In addition to successful CD19 CAR T-cell therapy, there
are also many other explorations of CARs for various tumor
treatments, shedding light on the possible future applications of
CAR T treatment for HIV infection. Wu et al. designed “ON-
switch” CARs, whose function is controlled by a heterodimerizing
small molecule, with the purpose of gaining more precise
control over the timing, location, and dosage of T-cell activity,
thus decreasing toxicity (130). CAR T strategies in current
studies are all using patient-specific cells, the generation of
which is prohibitively expensive. Researchers are now trying
to develop universal CAR T cells that can adapt to multiple
recipients. Torikai et al. took the very first step by using
zinc-finger nucleases (ZFN) to eliminate the endogenous αβ-
TCR in CAR T cells to avoid graft-vs.-host response. This
study suggested that future studies should focus on inhibiting
the attack of the recipient’s immune system on allogeneic
CAR+ T cells (131). Similarly, Hale et al. used homology-
directed recombination (HDR) to target the CAR gene to the
T cell receptor alpha constant (TRAC) locus, producing TCR-
deficient CAR T cells. They then produced CCR5-negative
anti-CD19 CAR T cells in the same way, which could be
applied in treating HIV-associated B-cell malignancies. The
most attractive feature of this HDR-generated CAR T cell
was that the CAR gene integrated into a single, definitive
target site, diminishing the risk of randomly insertional
mutagenesis (132).

Besides CD8+ T cells, researchers have also investigated other
immune cell types for alternative CAR therapy. For example, NK
cells are considered to be promising candidates, because they do
not require prior sensitization, they are not MHC-independent
in nature, and they have shown less severe adverse effects since
they are tightly controlled by inhibitory receptors. In addition,
there are sufficient numbers of NK cells in peripheral blood
and functional NK cell lines that can be used in clinical trials
(133). Zhen et al. modified HSPCs with CD4zeta-based CAR and
successfully differentiated them into functional T cells and NK
cells upon transplantation into humanized mice. These modified
HSPCs could continuously provide functional antigen-specific
cells and suppress HIV replication, with possible resistance to
virus infection (134).

CONCLUSION

In summary, cART cannot eradicate HIV latency; therefore, new
strategies for HIV cure are still needed and under development.
There are three possible ways to achieve this goal: “block and
lock,” “shock and kill,” and gene therapy. It is widely accepted
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that chimeric antigen receptor (especially bNAb-based CAR)
engineered CD8+ T-cell therapy is a promising approach for
curing HIV infection that is worth further exploration, even
though there are limitations such as CAR T-cell expansion,
persistence, off-target effect, and sCRS.
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